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Abstract. Regression learning is classic and fundamental for medical
image analysis. It provides the continuous mapping for many critical
applications, like the attribute estimation, object detection, segmenta-
tion and non-rigid registration. However, previous studies mainly took
the case-wise criteria, like the mean square errors, as the optimization
objectives. They ignored the very important population-wise correlation
criterion, which is exactly the final evaluation metric in many tasks. In
this work, we propose to revisit the classic regression tasks with novel
investigations on directly optimizing the fine-grained correlation losses.
We mainly explore two complementary correlation indexes as learnable
losses: Pearson linear correlation (PLC) and Spearman rank correlation
(SRC). The contributions of this paper are two folds. First, for the PLC
on global level, we propose a strategy to make it robust against the
outliers and regularize the key distribution factors. These efforts signif-
icantly stabilize the learning and magnify the efficacy of PLC. Second,
for the SRC on local level, we propose a coarse-to-fine scheme to ease the
learning of the exact ranking order among samples. Specifically, we con-
vert the learning for the ranking of samples into the learning of similarity
relationships among samples. We extensively validate our method on two
typical ultrasound image regression tasks, including the image quality as-
sessment and bio-metric measurement. Experiments prove that, with the
fine-grained guidance in directly optimizing the correlation, the regres-
sion performances are significantly improved. Our proposed correlation
losses are general and can be extended to more important applications.
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1 Introduction

Regression is a statistical method that attempts to determine the continuous
mapping relationship between one dependent variable and another one. Regres-
sion has been explored as a fundamental solution for versatile medical image
analysis, e.g. image quality assessment (IQA) [4], landmark localization [10,11],
object detection [2], segmentation [6], bio-metric measurement (BMM) [15] and
registration [1]. Fig.1 shows the tasks we accomplished with regression in this
paper, including IQA and bio-metric estimation in fetal ultrasound (US) images.

Fig. 1. The regression tasks considered in this paper. (a)-(b): IQA on fetal heart US
images with IQS stands for image quality score. (c)-(d): AC and FL denote abdominal
circumference and femur length of fetus in US images, respectively.

Lots of approaches have been devised for the regression. Dong et al. [5] pro-
posed a regression forest to predict the landmark coordinates in brain MR. Wang
et al. [13] formulated the spine segmentation as a boundary regression. In deep
learning era, Cao et al. [1] designed deep networks to regress the deformation
field. Korhonen et al. [14] built a deep transformer for IQA regression. In recent
years, researchers explored to introduce extra information for case-wise super-
vision and improve the regression. Christian et al. [11] proposed to regress the
Gaussian heatmap instead of coordinates for landmark detection. In [10], authors
collected both landmark and classification cues to refine the location regression.

To the best of our knowledge, these medical regression studies mainly focus
on learning the mapping among input and output for individual samples, but ig-
nore the learning of the structured relationships over the dataset and among the
samples. Correlation criterion at population level just fits the very capacities
to describe the relationships, including linear relationship and ranking order.
Recent work in computer vision community explored to directly optimize the
correlation based objectives. V-MEON-SF [9] and Norm-In-Norm [7] approxi-
mated the Pearson linear correlation (PLC) based loss function on global level
for regression. Although effective, their solution is sensitive to the outliers. Fur-
ther, Engilberge et al. [3] use deep networks to directly regress the absolute
ranking order with brute force. The solution is heavy and still overlooks the
relative ranking among samples.

In this work, we propose to directly optimize the correlation in a fine-grained
way to improve medical image regression. We mainly explore two complementary
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correlation indexes with novel formulations for maximization: PLC to regular-
ize the strength of linear relationship and Spearman rank correlation (SRC) to
further emphasize relative ranking order. Our contributions are two folds. First,
for the PLC on global level, we propose a new design by customizing different
optimization objectives for normal and outliers. Further, we propose to directly
regularize the key distribution factors for regression. These composite efforts sig-
nificantly stabilize the learning and strengthen the efficacy of PLC. Second, for
the SRC on local level, we propose a lightweight, coarse-to-fine scheme to ease
the learning of the relative ranking order among samples. Specifically, we trans-
form the learning into the constraints on similarity relationships among samples.
We extensively validate our method on two typical ultrasound image regression
tasks, including the IQA and BMM. Experiments prove that, with the novel
formulations in directly optimizing the correlation, our method can significantly
improve the regression performances. Our proposed method is general and can
be considered in more applications.

Fig. 2. Schematic view of our proposed method.

2 Methodology

Fig. 2 provides an overview of our framework in the training phase. For a batch
of image samples, the backbone firstly extracts feature tensors and then forwards
them to the PLC based regression branch. The branch automatically identifies
the outliers from normal samples and splits the batch into two parts. The normal
part then receives the supervision from PLC loss. The feature tensors also flow
into the similarity rank branch to constrain the ranking order. In testing, the
regression branch would provide the final prediction.
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2.1 Effective PLC Loss to Optimize Linear Relationship

PLC is used to measure the strength of linear relationship between two vari-
ables. We aim to take PLC as the objective to maximize and hence reduce the
distribution discrepancy at global level. The basic definition of PLC between X
and Y follows the Pearson index as follows:

PLC(X,Y ) =

∑n
i=1(Xi − µX)(Yi − µY )√∑n

i=1(Xi − µX)2
√∑n

i=1(Yi − µY )2
, (1)

where µX or µY denotes the mean value of the variable. This definition is in-
herently very sensitive to the outliers in the prediction. The outliers mean the
samples with predictions differ severely from the ground truth. Therefore, we
propose to automatically identify and handle the outliers with customized loss
for a stable training. For the rest clean samples, we move further to narrow the
constraints on the distribution by minimizing the distance between means and
variances, respectively. Finally, as Fig. 2 illustrates, the detailed definition of our
reformed PLC loss is:

LossPLC =


1
m

∑m
i=1(ŷi − yi)

2, if yi is outlier,

1 − PLC2(Ŷ , Y ) + (µŶ − µY )2 + (σŶ − σY )2, otherwise

(2)

where ŷ ∈ Ŷ and y ∈ Y represent the ground truth and the regression result,
respectively. σ is the variance of variable. We take the top 10% samples with the
largest difference between ŷ and y in each iteration as outliers.

Fig. 3. The coarse-to-fine rank learning scheme.

2.2 Coarse-to-Fine SRC to Regularize Rank

A perfect regression should simultaneously satisfy the criteria from individual,
global and peer levels. Previous methods mainly focus on optimizing the losses
at individual level, like the mean square error, but ignore the correlation re-
lationship. Our reformed PLC loss partially addresses the problem at global
level, but still misses an important relationship at peer level, i.e., the ranking
order. Our proposed SRC loss aims to solve this problem. The original SRC is
defined to measure the strength of association between two ranked variables as
SRC(X,Y) = 1− (6||rk(X)− rk(Y)||22)/(n(n2− 1)), where X and Y denote two
variables, rk(·) is the sorting operator, n is the sample number of the variable.
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Low SRC means X and Y matches each other on not only the value but also the
strict rank. However, the discrete ranking involved loss is difficult to minimize,
like the SRC which is non-differentiable in its original formulation. Moreover,
how to describe the absolute and relative ranking for learning is challenging.

In this paper, we propose to transform the learning of the ranking order into
the problem of regularizing the similarities among samples. This transformation
provides not only a differentiable approximation for SRC, but also a new way
for rank representation. Specifically, the sample similarity is represented by the
cosine distance S(xi, xj) between feature vectors (Fig. 2). Notably, as shown in
Fig. 3, to further ease the rank learning, we decompose the rank among samples
into global and local rank and propose a coarse-to-fine learning scheme (Fig. 2).

Coarse Level for Global Rank. In the coarse level, as Fig. 3 shows, we aim
to roughly regularize the global rank by adding constraints on sample similarity.
Our hypothesis is that the samples with similar rank ground truth should have
similar feature representations to some extent, while the images with dissimilar

ranks should be pushed away from each other. We propose P(xi, xj) =
[
R(xi)
R(xj)

]
as a proxy similarity reference between sample i and j, where xi is the feature
vector, R(·) denotes the vector’s regression target. [·] is the reciprocal operation
when the value is greater than 1.0. Based on our hypothesis and P(xi, xj), we
can conduct the rough regularization on features to encourage the clustering and
scattering of samples guided by the R(·) (Fig. 3). The sample similarity S(xi, xj)
should satisfy the following condition in this coarse level:

r(xi, xj) : P(xi, xj) < |S(xi, xj)| < P(xi, xj) + α (3)

The parameter α is an interval and controls the margin. We set α to 0.25 in this
study. Then, the first part of our SRC loss is defined as Eq. 4 for rough penalty:

LC = (|S(xi, xj)| −P(xi, xj))
2, if |S(xi, xj)| not subject to r(xi, xj). (4)

Fine Level for Local Rank. LC in coarse level set rough cluster and rank for
samples. However, the exact rank in local range among samples is not reviewed.
Therefore, when Eq. 3 is satisfied, we further propose to regularize the local
rank for any tuple of sample features (xi, xj , xk) in a fine level, as the triangle
relationship shown in Fig. 3. Our intuitive motivation is that, if the target rank of
the tuple (xi, xj , xk) presents the relationship R(xi) > R(xj) > R(xk), then the
similarity metrics should accordingly satisfy the symmetric distance relationship
of S(xi, xj) > S(xi, xk) and S(xj , xk) > S(xi, xk). Therefore, we can realize the
sample ranking by constraining the similarities.

Inspired by the margin-based ranking loss [12], the difference between the
similarities should be larger than a margin, in order to better distinguish the
relationship between similar samples. Instead of using a fixed margin in [12],
we propose to build an adaptive margin to better fit the diverse similarity re-
lationships in regression task. Hence, we introduce the difference between the
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proxy similarity reference P(xi, xj) as the dynamic margin. We therefore build
the following losses as the second part of our SRC to regularize the local rank:

Lascent = max {0, (P(xi, xj)−P(xi, xk))− (|S(xi, xj)| − |S(xi, xk)|)} (5)

Ldescent = max {0, (P(xj , xk)−P(xi, xk))− (|S(xj , xk)| − |S(xi, xk)|)} (6)

The tuple (xi, xj , xk) in Eq. 5 and Eq. 6 is in its sorted version according to the
ground truth rank. We considered both Lascent and Ldescent as a bi-directional
design for symmetric constraints on similarity relationships. Ablation studies in
Tab. 2 validates the importance of this design. Finally, our SRC loss covering
global and local rank, with coarse-to-fine learning scheme, is defined as:

LossSRC =


1
m

∑m
(i,j,k)(Lascent + Ldescent), otherwise

1
n

∑n
(i,j) LC , if |S(xi, xj)| not subject to r(xi, xj).

(7)

3 Experimental Results

3.1 Materials and Implementation Details

We evaluate the regression performance of the proposed framework on two typ-
ical ultrasound image-based regression tasks. The first one is IQA, consisting
of 2000 images of right ventricular outflow tract (RVOT), 2000 images of pul-
monary bifurcation (PB) and 4475 images of aortic arch (AA). The second task
is BMM, including 5026 images of fetal head circumference (HC), 4551 images
of fetal abdominal circumference (AC) and 6454 images of femur length mea-
surement (FL). The pixel resolution of AC, HC and FL is 0.22 × 0.22mm2,
0.18 × 0.18mm2 and 0.17 × 0.17mm2, respectively. Image quality score of IQA
and measurement length of BMM were manually annotated by experts using
the Pair annotation software package [8]. We randomly split the dataset into a
training (60%), a validation (15%) and a test set (25%). All experimental results
are based on three-fold cross-validation and presented in the form of mean(std).

We implement our method in Pytorch and train the system by Adam opti-
mizer, using a standard server with an NVIDIA 2080Ti GPU. For optimization,
we run 160 epochs with a stage-wise learning rate: initial value of 3e-4 and de-
caying to 25% of previous for every 70 epochs of training for all experiments.
The batch size is set to 160 on all datasets. In addition, we employ a warm-up
strategy to train the network with a basic loss function (i.e. Mean Square Er-
ror). Then, we introduce the correlation-based loss functions when the training
meets both of the following conditions: 1) training for more than 30 epochs; 2)
the PLC and SRC on the validation did not rise for 5 consecutive epochs. Data
augmentation includes random rotation and random scaling. The input size of
the image is 320× 320 and the fixed size is generated by padding after scaling.
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3.2 Quantitative and Qualitative Analysis

The performance is measured via three criteria for IQA task: PLC ↑, SRC ↑ and
Kendall correlation (KLC ↑), and another two criteria are used for BMM task:
absolute error (AE ↓) and relative error (RE ↓). We use Resnet18 as the net-
work for all methods. Ablation study was conducted by comparing the methods
including Resnet18, Resnet18 with PLC loss (Res-PLC), Resnet18 with SRC
loss (Res-SRC) and Resnet18 with PLC and SRC loss (Res-PLC-SRC). We also
compared with NIN [7] and SoDeep [3] under the same warm-up strategy.

Table 1. Quantitative evaluation of mean(std) results for two regression tasks.

Methods Resnet18 Res-PLC NIN [7] Res-SRC SoDeep [3] Res-PLC-SRC

ROVT
PLC 0.597(0.01) 0.616(0.02) 0.616(0.03) 0.602(0.01) 0.574(0.01) 0.659(0.01)
SRC 0.551(0.02) 0.651(0.03) 0.628(0.01) 0.583(0.02) 0.670(0.02) 0.685(0.01)
KLC 0.398(0.01) 0.477(0.02) 0.456(0.01) 0.422(0.01) 0.490(0.01) 0.506(0.00)

PB
PLC 0.622(0.04) 0.662(0.03) 0.570(0.03) 0.627(0.07) 0.565(0.08) 0.649(0.06)
SRC 0.583(0.05) 0.615(0.04) 0.596(0.07) 0.627(0.07) 0.585(0.07) 0.648(0.05)
KLC 0.420(0.04) 0.444(0.03) 0.425(0.06) 0.445(0.06) 0.418(0.06) 0.469(0.04)

AA
PLC 0.771(0.01) 0.808(0.01) 0.804(0.01) 0.801(0.01) 0.786(0.01) 0.820(0.01)
SRC 0.796(0.03) 0.821(0.02) 0.814(0.02) 0.813(0.01) 0.810(0.03) 0.832(0.02)
KLC 0.610(0.02) 0.632(0.02) 0.630(0.02) 0.628(0.01) 0.626(0.03) 0.642(0.01)

AC

PLC 0.977(0.03) 0.980(0.02) 0.962(0.03) 0.978(0.02) 0.966(0.03) 0.984(0.02)
SRC 0.955(0.03) 0.963(0.02) 0.961(0.03) 0.962(0.02) 0.961(0.03) 0.968(0.02)
KLC 0.855(0.07) 0.869(0.06) 0.860(0.07) 0.863(0.06) 0.867(0.04) 0.878(0.06)

AE(mm) 5.74(6.38) 6.01(6.28) 68.36(6.67) 6.53(4.90) 39.18(5.08) 5.47(5.51)
RE(%) 4.21(5.59) 4.43(5.54) 42.94(3.42) 5.23(5.89) 32.74(18.85) 3.86(4.73)

HC

PLC 0.995(0.00) 0.997(0.00) 0.994(0.00) 0.996(0.00) 0.988(0.01) 0.998(0.00)
SRC 0.993(0.01) 0.995(0.00) 0.993(0.00) 0.995(0.00) 0.992(0.01) 0.996(0.00)
KLC 0.943(0.03) 0.953(0.02) 0.933(0.01) 0.947(0.02) 0.945(0.03) 0.954(0.02)

AE(mm) 2.07(1.04) 1.55(1.09) 32.44(2.24) 1.73(1.48) 25.96(3.06) 1.52(1.26)
RE(%) 2.64(1.72) 1.96(1.51) 27.41(4.13) 2.40(2.69) 39.61(12.54) 1.85(1.42)

FL

PLC 0.975(0.02) 0.979(0.02) 0.978(0.01) 0.977(0.01) 0.972(0.01) 0.982(0.01)
SRC 0.963(0.01) 0.973(0.01) 0.972(0.00) 0.970(0.01) 0.966(0.02) 0.978(0.01)
KLC 0.850(0.03) 0.877(0.03) 0.873(0.04) 0.868(0.03) 0.883(0.02) 0.890(0.03)

AE(mm) 1.73(1.04) 1.27(1.20) 14.55(1.49) 1.32(1.32) 5.63(1.04) 1.17(1.22)
RE(%) 11.28(11.63) 8.09(11.82) 38.59(2.56) 9.40(15.98) 33.56(19.39) 7.02(11.32)

Table 1 compares the performance of the different methods on two regres-
sion tasks. Comparing Res-PLC and NIN [7] can prove that paying attention
to outliers and explicitly constraining the mean and variance of the distribution
can significantly improve model performance. Our proposed Res-SRC outper-
forms SoDeep [3] in overall comparison demonstrates that the Coarse-to-Fine
strategy is more suitable for learning rank. Moreover, SoDeep and NIN perform
poor in AE and RE is because they only focus on the rank correlation among
predictions and labels, while ignore the value differences. This results in high
correlation values, but poor AE and RE. According to Table 1, the superior
performance of Res-PLC and Res-SRC compared to Resnet18 shows the efficacy
of our proposed PLC loss and SRC loss separately. Furthermore, the Res-PLC-
SRC achieved the best result on both regression tasks among all these methods
further demonstrates the effectiveness and generality of our approach.
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Table 2. Ablation Results of SRC loss.

Methods Resnet18 Res-SRCascent Res-SRCdescent Res-SRC

ROTV
PLC 0.597(0.01) 0.583(0.02) 0.562(0.01) 0.602(0.01)
SRC 0.551(0.02) 0.569(0.01) 0.559(0.06) 0.583(0.02)
KLC 0.398(0.01) 0.403(0.01) 0.403(0.05) 0.422(0.01)

PB
PLC 0.622(0.04) 0.531(0.09) 0.638(0.04) 0.627(0.07)
SRC 0.583(0.05) 0.575(0.07) 0.625(0.05) 0.627(0.07)
KLC 0.420(0.04) 0.408(0.05) 0.443(0.04) 0.445(0.06)

AA
PLC 0.771(0.01) 0.793(0.01) 0.785(0.02) 0.801(0.01)
SRC 0.796(0.03) 0.793(0.00) 0.799(0.02) 0.813(0.01)
KLC 0.610(0.03) 0.609(0.01) 0.614(0.02) 0.628(0.01)

Table 2 shows the ablation experiments on SRC loss. Res-SRCascent indi-
cates that only the ascent part in SRC loss was used, as shown in Eq. 5, and
Res-SRCdescent is the opposite. Experiments show that constraining both the
ascent and descent parts simultaneously can achieve the best results. Fig. 4 il-
lustrates the consistency and correlation distribution map of three datasets in
two regression tasks. Our proposed methods can reduce outliers very well and
achieve excellent performance on correlation and consistency in various tasks.

Fig. 4. Visualization of correlation and consistency. Blue dots are the Resnet18’s result
and red dots are our approach’s result. Green circles indicate outliers.
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4 Conclusion

In this paper, we propose two correlation-based loss functions for medical image
regression tasks. By constraining the outliers and explicitly regularizing the key
distribution factors of normal samples, our proposed PLC loss exhibits powerful
capabilities on regression tasks. Moreover, we propose a Coarse-to-Fine opti-
mization strategy to ease the rank learning, which can further improve regres-
sion performance. Experimental results show that the simple network equipped
with our proposed loss functions can achieve excellent performance on various
medical image regression tasks.
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