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Abstract. A large-scale labeled dataset is a key factor for the success of
supervised deep learning in computer vision. However, a limited number
of annotated data is very common, especially in ophthalmic image analy-
sis, since manual annotation is time-consuming and labor-intensive. Self-
supervised learning (SSL) methods bring huge opportunities for better
utilizing unlabeled data, as they do not need massive annotations. With
an attempt to use as many as possible unlabeled ophthalmic images,
it is necessary to break the dimension barrier, simultaneously making
use of both 2D and 3D images. In this paper, we propose a universal
self-supervised Transformer framework, named Uni4dEye, to discover the
inherent image property and capture domain-specific feature embedding
in ophthalmic images. Uni4Eye can serve as a global feature extractor,
which builds its basis on a Masked Image Modeling task with a Vision
Transformer (ViT) architecture. We employ a Unified Patch Embed-
ding module to replace the origin patch embedding module in ViT for
jointly processing both 2D and 3D input images. Besides, we design a
dual-branch multitask decoder module to simultaneously perform two
reconstruction tasks on the input image and its gradient map, deliver-
ing discriminative representations for better convergence. We evaluate
the performance of our pre-trained Uni4dEye encoder by fine-tuning it
on six downstream ophthalmic image classification tasks. The superior-
ity of Uni4Eye is successfully established through comparisons to other
state-of-the-art SSL pre-training methods.

Keywords: Self-supervised pre-training - Unified 2D and 3D - Vision
Transformer - Ophthalmic disease classification - Multitask.
1 Introduction

Recently, supervised deep learning methods have been found to perform compa-
rably to human experts in various medical image analysis tasks such as disease
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classification [19] and structure segmentation [14, 22|, benefiting from supervi-
sion of large-scale labeled datasets [27]. However, manual delineation is time-
consuming and labor-intensive, especially for large-scale datasets. Besides, fully
supervised learning may somehow limit the model performance in some scenar-
ios, such as in the Noisy Label [8] scenario.

To address these issues, self-supervised learning (SSL) methods have been
gaining increasing research interest in the medical image analysis realm. SSL
methods can be mainly categorized into generative and discriminative approaches
[1]. For generative approaches, [10] models the distribution of the data based on
a GAN [13] framework, which is very computationally expensive. On the other
hand, discriminative approaches focus on obtaining better generalized repre-
sentations with relatively low computational burdens. Typically, discriminative
approaches are implemented with contrastive learning frameworks [3,7,16,17]
or through novel pre-text tasks [12,29]. The main shortcoming of contrastive
learning methods is that they often focus on the main part of a medical image of
interest but disregard contextual representations. Since the main parts are highly
similar across different medical images, contrastive learning methods might fail,
in which situation pre-text tasks accommodate better [1]. Recently, novel pre-
text tasks have been explored, such as the Rubik’s Cube Recovery task [31] and
the Masked Image Modeling (MIM) task [15,28]. MIM originates from the idea
of masked signal modeling which refers to masking a portion of the input signals
and trying to predict the masked signals. Lately, based on Vision Transformer
(ViT) backbones, MIM attains huge success in SSL on natural image. For ex-
ample, [2] and [15] employ MIM and get pre-trained on ImageNet-1k [9], which
respectively achieve 86.3% and 87% Top-1 accuracy.

Nevertheless, the success of SSL has a prerequisite of massive datasets [24].
For instance, the recent success of Transformers on image classification [11] is
mainly due to the large-scale ImageNet [9] dataset. However, for intelligent anal-
yses of ophthalmic images, the sample sizes are usually very small. Ophthalmic
image modalities can be categorized into 2D (e.g., fundus image [21] and Fun-
dus Fluorescein Angiography (FFA)) and 3D (e.g., Optical Coherence Tomog-
raphy (OCT) and Optical Coherence Tomography Angiography (OCTA)). Be-
cause of the dimension barrier, current SSL approaches are typically designed
for dimension-specific images [4,5,26,30]; that is, an SSL model can only accom-
modate either 2D or 3D images, which contradicts the intuitive motivation of
employing as many as possible data for better performance.

In such context, we propose a simple yet effective framework that can learn
universal representations from both 2D and 3D ophthalmic images, named
Uni4Eye. UnidEye is designed to perform dual MIM tasks with a ViT archi-
tecture. We design a two-branch switchable patch embedding layer in Uni4Eye
to replace the origin patch embedding layer, which allows it to switch to dif-
ferent branches for patch embedding of 2D and 3D images. Furthermore, we
employ a dual-branch decoder in our network and train it with different mod-
eling/reconstruction tasks, so as to achieve more robust convergence and bet-
ter representation. Additionally, we create so far the largest ophthalmic image
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dataset of multiple modalities as well as multiple dimensions, consisting a total
of 95,978 samples. We name it as mmOphth-v1, on which our proposed Uni4Eye
gets pre-trained.

Collectively, our main contributions are three-fold: (1) To the best of our
knowledge, this is the first time that a self-supervised pre-training framework is
proposed to learn general visual representations of both 2D and 3D ophthalmic
images. (2) We collect and create the largest ophthalmic image dataset of multi-
ple modalities and of both 2D and 3D dimensions, named as mmOphth-v1. This
dataset will be made publicly available. (3) We conduct extensive experiments
on six downstream classification tasks with four datasets involving common eye
diseases. The superiority of our proposed UnidEye over other state-of-the-art
(SOTA) self-supervised pre-training methods is successfully established on these
tasks. The source code is available at https://github.com/Davidczy/Uni4Eye.

2 Methodology
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Fig. 1: The overall framework of Uni4Eye.

The overview of our Uni4dEye is provided in Fig. 1. There are three main
components, including a Unified Patch Embedding (UPE) module, a ViT en-
coder and a dual-branch decoder. We first pre-train our encoder on two MIM
self-supervised tasks in the pre-training stage and then fine-tune our model on
different downstream tasks. As shown in Fig. 1, the pre-training stage and down-
stream fine-tuning stage are respectively denoted as P and D. Stage P aims at
training the encoder to generate more generalized and discriminative represen-
tations from different input ophthalmic images. Then, the UPE module and the
ViT encoder in D are utilized to load pre-trained parameters and continue to


https://github.com/Davidczy/Uni4Eye

4 Cal et al.

fine-tune on different downstream tasks to achieve better performance. For a
downstream classification task, we adopt a fully-connected layer as the classifi-
cation head to process features generated by the encoder and output prediction.
We now delve into the details of UPE and the dual-branch decoder.

2.1 Unified Patch Embedding Module

To make our self-supervised framework compatible with both 2D and 3D data
and accommodate different downstream scenarios, we employ UPE as the patch
embedding module. As shown in Fig. 1, different images in the mmOphth-v1
dataset can be directly fed into the UPE module, regardless of their dimensions.
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Fig. 2: The structure of the Unified Patch Embedding module.

Fig. 2 illustrates the structure of UPE. Let an unlabeled training image
sampled from mmOphth-v1 be denoted by z?, where d € {2,3} represents the
dimension of the image. Then, data augmentation 7 is applied to ¢ to generate
an input 2 of the UPE module. UPE switches #¢ to specific patch embedding
depending on the dimension of £¢. Afterwards, a random masking strategy is
employed to generate the masked patch embedding f¢ in stage P, while the
strategy is skipped in stage D. To be more specific, since we divide an image
into regular non-overlapping patches (2D square patches for 2D input and 3D
cubic patches for 3D input), we follow a uniform distribution to sample random
patches without replacement. Then, the remaining ones are masked out, which
means these patches will not be fed into the encoder. Thus, the ViT encoder
operates only on the visible patches but not the masked ones, which differs our
proposed method from inpainting methods.

2.2 Dual-Decoder for Intensity and Edge Reconstruction

Compared with natural images, ophthalmic images are more similar across dif-
ferent samples, which makes diagnoses of eye diseases challenging. Some detailed
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Fig.3: Generation of the gradient map. Please note the original image is the
reconstruction objective of the intensity decoder and the gradient map is the
reconstruction target of the edge decoder. Keys: G, - Sobel operator in the
horizontal direction; G, - Sobel operator in the vertical direction.

information, such as that on the retinal vessels, is important for disease dignosis
but is easily to be ignored due to the redundancy in image information. For
example, the reconstructed images in [2] are blurry with little edge information,
which is not suitable for medical images. Therefore, we employ two decoders,
namely an intensity decoder and an edge decoder, to encourage the network to
learn representations containing both local and global information. The inten-
sity decoder and edge decoder share the same network structure and the same
input . As shown in Fig. 1, §¢ denotes the full set of patches consisting both
the encoded visible patches g% and the masked patches. §¢ is simultaneously fed
into the intensity decoder and the edge decoder. The difference between the two
decoders lies in the reconstruction objectives.

As shown in Fig. 3, taking the fundus image as an example, the left side is the
original input, which is the reconstruction objective of the intensity decoder. We
apply Sobel operators [18] at both horizontal G, and vertical G, directions to
the original image, to get the horizontal gradient map and the vertical gradient
map. Afterwards, we integrate these two gradient maps and obtain the gradient
map of the fundus image, which is the reconstruction target of the edge decoder.
We apply this operation to all 2D images and the 2D slices of each 3D volume.
Compared with the original image, the gradient map uniformly characterizes
the edge of the retinal structure and more clearly depicts tiny retinal vessels. In
summary, in stage P, with trade-off parameters \; and Ao, the total objective
function of our self-supervised learning framework is

Lssi = ML + AL, (1)
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where £; and L. are mean squared error (MSE) losses of the masked patches
between the predictions from the intensity /edge decoders and the corresponding
targets. A\; and \s are set as 0.5 and 0.5 to make the network concentrate equally
on global intensity information and local edge information of the ophthalmic
images of interest.

3 Experiments and Results

3.1 Experimental Setup

In the pre-training phase, the input images of mmOphth-vl are downsampled
as 224 x 224 for 2D images and 112 x 224 x 112 for 3D images. The batch
size is 64 for 2D and 4 for 3D. The data augmentation strategy is a combination
of random color jitter, random grayscaling, random cropping and random hor-
izontal flipping. The model is optimized by an AdamW optimizer [23] with an
initial learning rate of 0.0005. Our model is implemented in PyTorch [25] with
2 NVIDIA GeForce RTX 3090 GPUs, which takes 50 epochs and 20 hours to
converge. In the fine-tuning phase, the input keeps consistent with the aforemen-
tioned settings. AdamW is also used as the optimizer with an initial learning rate
of 0.0001 and the batch sizes are respectively set to be 8 and 1 for 2D and 3D
images. Since all downstream tasks are classification tasks, we employ the area
under curve (AUC), accuracy, precision, recall, F1-score and Kappa as our evalu-
ation metrics. Details of the mmOphth-v1 ophthalmic dataset and the evaluation
datasets are presented in Fig. A1l and Table A1 of the appendix.

Table 1: Results obtained by fine-tuning on four 2D datasets. Rand denotes
randomly-initialized model parameters. ViT-base and ViT-large respectively de-
note ViT-base-patch16-224 and ViT-large-patch16-224. - denotes the result is
not available from the original article. (Unit: %)

Ichallenge-AMD Ichallenge-PM
Method AUC Accuracy Precision Recall F1-score Ka‘ppa‘ AUC Accuracy Precision Recall Fl-score Kappa
Convolutional Neural Network

Rand [20] 77.19  87.09 82.98 77.82 79.27 - 198.04 97.66 97.30 98.04 97.53 -

Invariant [29] 81.62  87.51 81.92 81.62 81.35 - 198.02 97.84 97.56  98.02 97.75 -

Li et al. [20] 83.17  89.37 85.71 83.17 83.67 - 19841 98.38 98.31 98.41 98.33 -

Method Vision Transformer

Rand 64.92  82.25 TTAT  64.92 67.59 36.78 [96.65  96.48 96.13  96.65 96.36 92.73
ImageNet 73.75  86.00 82.68 73.75 76.79 54.00 |97.70  97.74 97.60 97.70 97.65 95.30
SiT [1] 78.81  88.25 85.32 78.81 81.38 62.92|97.80 97.49 97.10 97.80 97.41 94.82

Ours (ViT-base) |83.13  89.95 86.86 83.13 84.78 69.60 |98.22  98.24 98.12  98.22 98.17 96.35
Ours (ViT-large)|85.85 90.45 86.44 85.85 86.14 72.28|98.53 98.24 97.90 98.53 98.18 96.37

OCTA-500 (2D) GAMMA (2D)
Method AUC Accurancy Precision Recall Fl-score Kappa‘ AUC Accurancy Precision Recall Fl-score Kappa
Vision Transformer
Rand 73.63  73.60 74.35 73.63 73.41 4724 |190.04  90.00 90.04 90.04 90.00 78.01
ImageNet 74.65  74.60 76.50 74.65 74.16 49.25|91.00  91.00 91.02 91.00 91.00 82.00
SiT [1] 81.72 81.73 81.73 81.72 81.73 63.45|93.83 93.88 93.98 93.83 93.87 87.74

Ours (ViT-base) |82.10  82.13 82.32 8210 82.09 64.3294.92  94.90 94.90 94.92 94.90 89.80
Ours (ViT-large) |83.40 83.34 83.33 83.40 83.33 66.67|97.00 97.00 97.02 97.00 97.00 94.00

3.2 Comparison with State-of-the-art

We compare Uni4dEye with other SOTA SSL methods employing convolutional
neural network (CNN) or ViT as the backbone. The binary classification results
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of different pre-training methods on four 2D datasets are shown in Table 1. Li
et al. [20] feeds paired fundus and FFA data into a CNN for self-supervised
contrastive learning, and achieves SOTA performance on Ichallenge-AMD and
Ichallenge-PM datasets. Self-supervised Vision Transformer (SiT) [1] conducts
image reconstruction, rotation prediction and contrastive learning tasks for pre-
training, which outperforms randomly-weighted initialization and ImageNet pre-
training. Although these SSL methods are beneficial in improving the classifi-
cation performance, it is worth emphasizing that our Uni4Eye outperforms all
compared methods regardless of the backbone. On the Ichallenge-AMD dataset,
our method outperforms the second best method in terms of the Fl-score by
2.2%.

Table 2: Results obtained by fine-tuning on 3D OCT volumes from the GAMMA
and OCTA-500 datasets. (Unit: %)

GAMMA (3D) OCTA-500 (3D)
Method | AUC Accurancy Precision Recall F1-score Kappa‘ AUC Accurancy Precision Recall F1-score Kappa
Convolutional Neural Network
Med3D [6]| 86.23  86.73 87.24 86.23 86.50 73.07 ‘66.07 67.87 7829 66.07 63.17 33.27
Method Vision Transformer
Rand |85.79  85.71 85.91 85.79 85.71 71.46 |60.33  60.64 7715 60.33 53.25 20.78
ImageNet | 85.28  85.71 86.01 85.28 85.50 71.04 |65.12  66.87 7545 65.12 62.32 31.27
Ours [86.39 86.73 86.90 86.39 86.57 73.16|66.18 67.87 76.13 66.18 63.75 33.43

For 3D downstream tasks, we fine-tune Uni4dEye on the OCT volumes from
the GAMMA dataset and the OCTA-500 dataset. As shown in Table 2, our
proposed Uni4Eye performs better than random initialization and ImageNet
pre-training. Please note that ImageNet pre-training means we only replace the
patch embedding module of ViT with a 3D version, and maintain all other pre-
trained parameters of ViT. Since there is relatively few amount of 3D ophthalmic
data, the classification performance of the 3D model is worse than that of the
2D model.

Table 3: Results obtained by first training a self-supervised model on mmOphth-
vl with different mask ratios o and then fine-tuning on the Ichallenge-AMD
dataset. (Unit: %)

Metrics| AUC Accurancy Precision Recall F1-score Kappa
«=0.25/80.80  89.45 87.32 80.8 83.42 66.97
a=0.5 |85.85 90.45 86.44 85.85 86.14 T72.28
a=0.75/83.38  91.00 89.56 83.38 85.94 71.96

3.3 Reconstruction Results

We visualize the reconstruction results of different ophthalmic modalities from
the same network pre-trained on mmOphth-v1 to highlight the universality of
our learned features. As shown in Fig. 4, we feed the input of different modalities
to the network and obtain the reconstruction results. We set the mask ratio in
UPE as 25%, 50%, 75%. It is clear that a smaller mask ratio enables the model



8 Cal et al.

Target Mask ratio = 0.25 Mask ratio = 0.5 Mask ratio = 0.75

UWF FA FFA  OCT enface Fundus

UWF FP

Gradient

Fig.4: The reconstruction results for six common modalities (from top to bot-
tom), with different mask ratios in stage P.

to generate better reconstruction results. However, better reconstruction is not
equivalent to better performance on downstream tasks. We fine-tune these three
models on Ichallenge-AMD with the same settings. As shown in Table 3, the
network pre-trained with a 50% mask ratio achieves the best performance on
the specific downstream task of interest. For ophthalmic image analysis, this
result may suggest the encoder cannot generate discriminative representations
through a too-easy (mask ratio = 25%) or a too-difficult (mask ratio = 75%)
reconstruction task. Ablation analysis results are presented in Tables A2-A3 of
the appendix, demonstrating the importance of resolving the dimension barrier
and that of employing the dual-branch decoder.

4 Conclusion

This paper proposes a simple, unified and powerful self-supervised framework,
namely Uni4Eye, for ophthalmic image analysis. Specifically, by modifying the
patch embedding module to generate UPE in ViT, Uni4Eye can easily break the
dimension barrier and process both 2D and 3D images. We also design a dual-
decoder structure based on the MIM task, to make Uni4dEye take advantage of
not only intensity information but also edge information in ophthalmic images.
Extensive experiments on four 2D datasets and two 3D datasets show that our
Uni4Eye achieves better classification performance than representative SOTA
methods for eye disease diagnoses. Our results also demonstrate the potential
of MIM for self-supervised pre-training in various medical image analyses. Our
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future work will involve investigating the feasibility of our framework for other
types of medical images and exploring methods to further improve the efficiency
of our framework.
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A Appendix

Fundus OCT volume OCT en-face UWF FP image
b
FFA OCTA volume OCTA en-face UWF FA image

Fig. Al: Demonstration of the mmOphth-v1 dataset for self-supervised training.
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Table Al: Details of the mmOphth-vl ophthalmic dataset for self-supervised
pre-training and evaluation datasets for downstream classification tasks. Keys:
UWF FA - ultra-widefield fluorescein angiography, UWF FP - ultra-widefield
fundus photography, FFA - Fundus Fluorescein Angiography.

mmOphth-vl Ophthalmic Dataset

Name Modality Sample Size
OCTA-500 OCT, OCTA, OCT en-face, OCTA en-face|500, 500, 3,000, 3,000
GAMMA Fundus, OCT 100, 100
EyePACS Fundus 88,702

PRIME-FP20 UWF FP, UWF FA 15
Synthesized FFA FFA 400
Downstream Task Evaluation Datasets

Name Modality Sample Size
OCTA-500 OCT, OCTA, OCT en-face, OCTA en-face|500, 500, 3,000, 3,000
GAMMA Fundus, OCT 100, 100

Ichallenge-AMD Fundus 400
Ichallenge-PM Fundus 400

Table A2: Ablation analysis results on the GAMMA dataset. Keys: 2D - Pre-
training with 2D data; 3D - Pre-training with 3D data. (Unit: %)

2D 3D AUC Acc Precision Recall Fl-score Kappa
v 89.52 90.82 90.09 89.52 89.80 79.59

v 88.74 89.80 88.74 88.74 88.74 77.48
v v 92.6594.90 96.38 92.65 94.15 88.34

Table A3: Ablation analysis results of the intensity reconstruction decoder and
the edge reconstruction decoder on the Ichallenge-AMD dataset. (Unit: %)

Intensity Edge AUC Acc Precision Recall Fl-score Kappa
v 84.64 89.20 84.97 84.64 84.50 69.01

v’ 84.80 89.45 84.80 84.80 84.80 69.61

v v 85.8590.45 86.44 85.85 86.14 72.28
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