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Abstract. A retinal trait, or phenotype, summarises a specific aspect
of a retinal image in a single number. This can then be used for further
analyses, e.g. with statistical methods. However, reducing an aspect of
a complex image to a single, meaningful number is challenging. Thus,
methods for calculating retinal traits tend to be complex, multi-step
pipelines that can only be applied to high quality images. This means
that researchers often have to discard substantial portions of the available
data. We hypothesise that such pipelines can be approximated with a
single, simpler step that can be made robust to common quality issues.
We propose Deep Approximation of Retinal Traits (DART) where a deep
neural network is used predict the output of an existing pipeline on
high quality images from synthetically degraded versions of these images.
We demonstrate DART on retinal Fractal Dimension (FD) calculated
by VAMPIRE, using retinal images from UK Biobank that previous
work identified as high quality. Our method shows very high agreement
with FDVAMPIRE on unseen test images (Pearson r = 0.9572). Even
when those images are severely degraded, DART can still recover an FD
estimate that shows good agreement with FDVAMPIRE obtained from the
original images (Pearson r = 0.8817). This suggests that our method could
enable researchers to discard fewer images in the future. Our method can
compute FD for over 1,000img/s using a single GPU. We consider these
to be very encouraging initial results and hope to develop this approach
into a useful tool for retinal analysis.

Keywords: Retinal fractal dimension · Deep approximation of retinal
traits · Robust retinal image analysis.

1 Introduction

Retinal fundus images are non-invasive and low-cost. They are important for
ophthalmology and also capture a detailed picture of the retinal vasculature.
Thus, they can be used for studying and potentially predicting diseases such
? Equal supervision.
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Fig. 1. Overview of our proposed framework. a) A typical pipeline for computing
FD: an encoder-decoder neural network for segmentation, potentially some refinement
steps like optic disc segmentation and removal, and a method to calculate FD of the
segmentation (e.g. box counting or multifractal). b) DART, our proposed approach
outputs a deep approximation of FD in a single step using an encoder-only neural
network, with drastically reduced complexity. c) We can train our model to be robust
to image quality issues by synthetically degrading input images and training our model
to minimise the loss between its output and the FD obtained with the original high
quality image.

as diabetes, stroke, hypertension and neurovascular disease [10]. To analyse the
relationships between aspects of the retina and other quantities of interest, retinal
traits (also called features, parameters or phenotypes) are used as a quantitative
description of a specific aspect of the retinal image. Reducing a complex image
to a single, meaningful number is necessary to use standard statistical methods
yet a challenging task. It is challenging to identify a potentially salient aspect
of the retina in the first place and to then design a method that can reliably
quantify this aspect. This is further complicated by the large variability in retinal
images stemming from idiosyncrasies of the imaged retinas (e.g. due to retinal
diseases or rare phenotypes) and image quality (e.g. due to operator inexperience
or time pressures in large scale cohort studies). Thus, pipelines for extracting
such retinal traits tend to be complex and comprise of multiple steps, and can
only be applied to images of sufficient quality.

Poor image quality is a key problem in retinal image analysis. Particularly
for large scale studies such as UK Biobank, many images are of poor quality
being blurred, obscured, or hazy [9]. Imaging artefacts such as noise, non-uniform
illumination or blur can also lead to poor vessel segmentations [12]. Previous
work analysing 2,690 UK Biobank participants found that only 60% had an image
that could be adequately analysed by VAMPIRE [9]. Two recent large-scale
studies using retinal Fractal Dimension (FD) for predicting cardiovascular disease
risk discarded 26% [21] and 43% [16] of the images in UK Biobank. Although
necessary, this is unfortunate as it leads to lower sample sizes and makes it hard
to study rare diseases in particular.
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We hypothesise that it is possible to approximate pipelines for calculating
retinal traits with a single, simpler step and propose Deep Approximation of
Retinal Traits (DART). Fig. 1 gives a high-level overview of our approach. DART
trains a deep neural network (DNN) to predict the output of an original method
(OM) for calculating a retinal trait. We can then train the model to be robust to
image quality issues by synthetically degrading the input images during training
and asking the DNN model to predict the output of the OM on the original
high quality image. The intuition behind this approach is that obtaining a high
quality segmentation of the entire retina is a much harder task than describing
an aspect of the vasculature like vascular complexity directly. DART offers a
segmentation-free way of computing retinal traits related to the vasculature,
but can also be applied to any other retinal image analysis method like feature
extraction for disease grading or pathology segmentation.

In the present work, we focus on retinal Fractal Dimension (FD), a key retinal
trait that has been used to predict cardiovascular disease risk [16, 21] and is
associated with neurodegeneration and stroke [6]. We use FD as calculated by
VAMPIRE [15] with the multifractal [14] method as the OM we apply DART
to. At minimum, FDDART should have very high agreement with FDVAMPIRE

on high quality images so that it can be interpreted in the same way. To be a
useful method, it should further be robust to image quality issues and efficient.
Robustness would enable researchers to discard fewer images than currently
necessary while efficiency allows to conduct analyses at large scale without
requiring large compute resources.

2 Deep Approximation of Retinal Traits (DART)

2.1 Motivation and theory

We hypothesise that it is possible to approximate the entire pipeline of an original
method (OM) for calculating a retinal trait in a single, simpler step. We denote
the distribution of high quality retinal fundus images as XHQ, where each image
xi has dimensions height H, width W, and channels C. The OM can be interpreted
as a function f that maps from the image space to one-dimensional retinal trait
space (in our case, FD) f : RHxWxC → R1, i.e. given an image xi ∈ XHQ the
FD computed by the OM is FDOM = f(xi). Our goal is to find an alternative
function g : RHxWxC → R1 that is both simpler than f and has high agreement
with f for all images of sufficient quality that the OM can be used, i.e. for all
xi ∈ XHQ f(xi) ≈ g(xi).

Designing such a simpler function by hand would be very challenging. Thus,
we use a deep neural network (DNN). DNNs are universal function approximators
in theory and very effective for image analysis in practice. We can then find a
good approximation of f by simply updating the model parameters θ (weights,
biases, normalisation layer parameters) to minimise some differentiable measure
of divergence between f(xi) and g(xi), e.g. mean squared error.
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Accuracy The output of the OM is fully determined by the given image, so we
would expect that very high accuracy can be achieved. This contrasts with other
problems, e.g. clincians take into account additional information like symptoms
and family history, and might disagree with each other or even themselves if
shown the same image multiple times.

Simplicity & Efficiency Some readers might not perceive DNNs as simple or
efficient. However, modern pipelines for retinal image analysis tend to use DNNs
for vessel segmentation, so not requiring additional steps implies strictly lower
complexity both computationally and in terms of required code. Furthermore,
segmentation models tend to have an encoder-decoder structure (e.g. UNet)
whereas models for classification/regression only need an encoder and small
prediction head, making them more parameter-, memory-, and compute-efficient.
Finally, given the widespread adoption of deep learning, the frameworks are very
mature and can be very efficiently GPU-accelerated.

Robustness We hypothesise that there images of lower quality that are such
that a) current pipelines would not produce a useful FD number, but b) there
is still sufficient information to give an accurate estimate of the FD number we
would have obtained on a counterfactual high quality image. For example, in an
image with an obstruction, only part of the retina might be visible. Thus, the
resulting vessel segmentation map would be poor and the FD of this map would
be very different from that of the counterfactual high quality image, yet the
visible parts of the retina might contain sufficient information about the vascular
complexity of the retina as a whole to recover an accurate estimate of the FD.

As we do not observe counterfactual high quality images or objective ground
truth FD values, we artificially degrade high quality images with a degradation
function degrade(xi) = xdegardedi and train our model to minimise the difference
between the predicted FD for the degraded image and the OM’s FD for the high
quality image gθ(x

degarded
i ) ≈ f(xi). If there indeed is sufficient information in

the degraded images, then our model should be able to predict the OM’s FD from
the high quality image reasonably well. However, this is a much harder task than
matching the OM on high quality images, as the degradations lose information
and for a given degraded image there are multiple possible counterfactual high
quality images.

2.2 Implementation

Model & Training Our model consists of a pretrained ResNet18 [4] backbone
that extracts a feature map from the images, followed by spatial average pool
and a small multi-layer perceptron with a two hidden layers with 128 and 32
units, and a single output. Each hidden layer is followed by a layernorm [1] and
GELU [5] activation. No activation is applied to the final output. ResNet is a
well-established architecture that has been shown to perform competitively with
more recent architectures when using modern training techniques [2, 19]. We use
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Table 1. Severity levels for the degradations. Brightness, contrast and gamma
changes are independently sampled from the given interval. Dimensions in pixels.

Severity 1 2 3 4 5

Brightness/Contrast/Gamma ±5% ±10% ±15% ±20% ±25%
Mini Artifacts (holes, height, width) 2-20/1-3/5-8 2-24/1-5/5-12 2-28/1-5/5-16 2-32/1-3/5-20 2-40/1-3/5-24
Square Artifacts (side length) 25 50 75 100 125
Chop Artifacts (% of image removed) 10-15 10-25 10-35 10-45 10-50
Advanced Blur (kernel size, sigma) 3-5/0.2-0.5 3-7/0.2-0.7 3-9/0.2-0.8 3-11/0.2-0.9 3-13/0.2-1.0
Gaussian Noise (variance) 1-10 5-10 5-20 5-25 5-30

Resnet18 as it is the most light-weight member of the Resnet family. We initialise
the backbones with pre-trained weights on natural images from Instagram [20].
Those images are very different from retinal images, thus this is merely a minor
refinement on random initialisation. We resize images to 224x224 pixels for
computational efficiency and lower memory requirements. Apart from standard
normalisation using channel-wise ImageNet mean and standard deviations, no
further preprocessing is done and all 3 colour channels are kept.

We train our model using a batchsize of 256 to minimise the mean squared
error between prediction and target after normalizing the target to zero mean
and unit variance, using mean and standard deviation from the training data
to avoid data leakage. The model output can then be mapped back to FD
range by applying the inverse transformation. We use the AdamW optimiser [8]
(β1 = 0.9, β2 = 0.999, weight decay of 10−6) and a cosine learning rate schedule [7].
We train for 35 epochs with a linear learning rate warmup from ηmin = 10−5 to
ηmax = 10−3 for 5 epochs, followed by 3 cycles of 10 epochs each. During each
cycle, the current epoch learning rate is set according to a cosine schedule, and
after each cycle ηmax is decayed by taking the square root. We apply generic
data augmentations (horizontal (p = 0.5) and vertical flip (p = 0.1), mild affine
transformations (p = 0.15, rotation by up to ±10°, shear of up to ±5°, and scaling
by ±5%)) as well as the image degradations described in the next section with
p = 0.75 (sampling all 5 levels uniformly) to the images during training. We
implemented our code in Python 3.9 using PyTorch and timm [18] and plan to
make it publicly available upon publication.

Synthetic degradations We focus on three types of quality issues in retinal
images [9, 12]: Lighting issues, artifacts/obstructions, and imaging issues. To
simulate general lighting issues, we independently change brightness, contrast and
gamma of the image. To simulate artifacts/obstructions and severely inconsistent
lighting, we introduce one of three artifacts: 1) many smaller rectangular holes
placed across the retina, b) a single large square hole, or c) we “chop” off the
bottom or top part of the image. The latter is inspired by the observation that in
UK Biobank some images only have the top or bottom part properly illuminated.
To simulate general imaging issues, we add pixel-wise Gaussian noise and blur
the image. Standard isotropic Gaussian blur kernels do not mimic realistic image
blur, so we use an advanced anisotropic blurring technique developed for image
super-resolution [17] where the standard deviations for both dimensions of the
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kernel are sampled independently, and the kernel is then rotated and has some
noise added before being applied to the image.

We specify degradation parameters for five levels of severity, shown in Table 1.
For a given level, we sample parameters for each image independently from the
given ranges. Degradations are applied after images have already been downsized
to 224x224. We apply an artifact with p = 0.2 ∗ s where s is the severity. If an
image was chosen to have an artifact applied to it, we then choose Mini Artifacts
with p = 0.85, Square Artifact with p = 0.10, and Chop Artifact with p = 0.05.
Degradations are implemented using the albumentations package [3].

Fig. 2. Random examples of synthetically degraded versions of the same fundus image.
Best viewed zoomed in, especially for the advanced blur. UK Biobank asks to only
reproduce imaging data where necessary, so we demonstrate the degradations on an
image taken from DRIVE [13] which is similar in appearance to those in UK Biobank.

3 Experiments

3.1 Data

We apply our DART framework multi-fractal FD [14] calculated with VAMPIRE
[15]. We use only images that had been identified as high quality in a previous
study [16] as for those images FDVAMPIRE should be reliable and can be considered
as a reasonable “ground-truth”. We randomly split the data into train, validation,
and test sets containing 70, 10, and 20% of the participants in UK Biobank,
resulting in 52,242 / 7,478 / 14,907 images belonging to 32,300 / 4,614 / 9,229
participants in each set. We split at the participant level such that no images
of the same participant occur in different sets. Images are cropped to square to
remove black non-retinal regions and processed at 224x224 as described above.

3.2 Results

Agreement & Robustness We find very high agreement between FDVAMPIRE

and FDDART on the original images with Pearson r = 0.9572 and r2 = 0.9160.
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Table 2. Agreement between FDVAMPIRE obtained on high quality images, and FDDART

for different levels of degradation measured on 14,907 held-out test set images.

Degradations R2 Pearson r (p-value) Spearman r (p-value) OLS Regression fit

None 0.9160 0.9572 (0.0000) 0.9561 (0.0000) y=0.01 + 1.00x
Severity 1 0.8957 0.9467 (0.0000) 0.9446 (0.0000) y=0.01 + 0.99x
Severity 2 0.8859 0.9414 (0.0000) 0.9396 (0.0000) y=0.01 + 0.99x
Severity 3 0.8623 0.9287 (0.0000) 0.9282 (0.0000) y=0.00 + 1.00x
Severity 4 0.8309 0.9116 (0.0000) 0.9103 (0.0000) y=0.01 + 0.99x
Severity 5 0.7773 0.8817 (0.0000) 0.8840 (0.0000) y=0.02 + 0.99x

(a) Scatterplots of FDDART against FDVAMPIRE obtained
from original images for different levels of degradation.

(b) Boxplots of the
residuals.

Fig. 3. Agreement results for 14,907 held-out test set images. Best viewed zoomed in.
a) Red line: best linear fit; dashed black line: y = x. b) Faint red line: x = 0; vertical
black lines: ± one interquartile range (IQR) of FDVAMPIRE for reference.

Table 2 shows results for different levels of degradations. When degrading the
images and asking our model to predict the FDVAMPIRE obtained from the high
quality image, agreements goes down as the images become more degraded, which
is what we would expect as these degradations remove substantial information
about the retinal vasculature. However, despite this, we still observe good agree-
ment with the FDVAMPIRE obtained on the original image even at severity level
5 where extreme degradations are applied (Pearson r = 0.8817 and R2 = 0.7773).
This suggests that DART can recover good estimates of the retinal trait that
would have been obtained from a counterfactual high quality image even if the
available image has very poor quality. Thus, this might allow for discarding much
fewer images than currently necessary.

For comparison, a previous study comparing FD for arteries and veins sepa-
rately between VAMPIRE and SIVA [11] found very poor agreement between
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the measures of the two tools (R2 = 0.139 and R2 = 0.168 for arteries and veins,
respectively). Another study comparing vessel caliber-related retinal traits ob-
tained with VAMPIRE, SIVA, and IVAN found that they agreed with Pearson rs
of 0.29 to 0.86. Thus, the observed agreement between FDVAMPIRE and FDDART

with a Pearson r = 0.9572 and r2 = 0.9160 is very high, and even when DART
is applied the most degraded images the agreement (Pearson r = 0.8817 and
R2 = 0.7773) is higher than what could be expected when using two different
tools on the same high quality images.

Finally, our method shows very low bias even as degradation severity is
increased (Fig. 3). The best OLS fit is very close to the identity line for all
levels of severity, or equivalently, the optimal linear translation function from
FDDART to FDVAMPIRE is almost simply the identity function. This also implies
that no post-hoc adjustment for image quality is needed and FDDART values
obtained for images of varying quality are on the same scale out-of-the-box. As
degradation severity increases, the variance of the residuals also increases but
most residuals are still less than one interquartile range (IQR), a robust equivalent
of the standard deviation, even when applying the strongest degradation.

Speed Images were loaded into RAM so that hard disk speed is not a factor. We
then measured the time it took to process all 52,242 training images, including
normalisation, moving them from RAM to GPU VRAM, as well as the time to
move the results back to RAM. We used a modern workstation (Intel i9-9920X
24 core CPU, single Nvidia RTX A6000 24GB GPU, 126GB of RAM) and a
batchsize of 440. With ResNet18 as backbone, our model processed all 52,242
images in 48.5s ± 93.6 ms (mean±std over 5 runs), yielding a rate of 1077 img/s.

4 Conclusion

We have shown that we can use DART to approximate the multi-step pipeline
for obtaining FDVAMPIRE with very high agreement. Our resulting model can
compute FDDART for over 1,000img/s using a GPU. Furthermore, our model
can compute FDDART values from severely degraded images that still match the
FDVAMPIRE values obtained on the high quality images well. This could allow
researchers interested in studying retinal traits to discard fewer images than
currently necessary and thus have higher sample sizes. We consider these to be
very encouraging initial results.

There are a number of directions for future work. First, the proposed frame-
work can be easily applied to other retinal traits like vessel tortuosity or width,
or FD as calculated by other pipelines. We would expect that this would be simi-
larly successful. Second, the robustness of the resulting DART model should be
evaluated in more depth and the cases with extreme residuals should be manually
examined. We expect that robustness can be further improved, especially if we
identify common failure cases and use those as data augmentations. Third, many
straight-forward, incremental technical improvements should be possible such as
improved training procedures to further increase performance, trying different
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architectures and resolutions, and speeding up inference speed further through
common tricks like fusing batch norm layers into the convolutional layers. Finally,
we hope that our approach will eventually enable other researchers to conduct
better analyses, e.g. by not having to discard as many images and thus having a
larger sample size available.
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