Skip to main content

Combining Active Learning and Fast DNN Ensembles for Process Deviance Discovery

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2022)

Abstract

Detecting deviant traces in business process logs is a crucial task in modern organizations due to the detrimental effect of certain deviant behaviors (e.g., attacks, frauds, faults). Training a Deviance Detection Model (DDM) only over labeled traces with supervised learning methods unfits real-life contexts where a small fraction of the traces are labeled. Thus, we here propose an Active-Learning-based approach to discovering a deep DDM ensemble that exploits a temporal ensembling method to train and fuse multiple DDMs sharing the same DNN architecture, devised in a way ensuring rapid convergence in relatively few training epochs. Experts’ supervision is required only on small numbers of unlabelled traces exhibiting high values of (epistemic) prediction uncertainty, estimated in an ensemble-driven fashion. Tests on real data confirmed the approach’s effectiveness, even compared to the results obtained by state-of-the-art supervised methods in the ideal case where all the data are labeled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose, R.P.J.C., van der Aalst, W.M.P.: Discovering signature patterns from event logs. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2013), pp. 111–118 (2013)

    Google Scholar 

  2. Cuzzocrea, A., Folino, F., Guarascio, M., Pontieri, L.: A multi-view multi-dimensional ensemble learning approach to mining business process deviances. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3809–3816 (2016)

    Google Scholar 

  3. Cuzzocrea, A., Folino, F., Guarascio, M., Pontieri, L.: A robust and versatile multi-view learning framework for the detection of deviant business process instances. Int. J. Coop. Inf. Syst. 25(04), 1740003 (2016)

    Article  Google Scholar 

  4. Folino, F., Pontieri, L.: Business process deviance mining. In: Encyclopedia of Big Data Technologies. Springer (2019). https://doi.org/10.1007/978-3-319-77525-8

  5. Folino, F., Folino, G., Guarascio, M., Pontieri, L.: A multi-view ensemble of deep models for the detection of deviant process instances. In: ECML-PKDD Workshop, pp. 249–262 (2020)

    Google Scholar 

  6. Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E., Weinberger, K.Q.: Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109 (2017)

  7. Kubat, M., Holte, R., Matwin, S.: Learning when negative examples abound. In: Proceedings of 9th European Conference on Machine Learning (ECML 1997), pp. 146–153 (1997)

    Google Scholar 

  8. Lo, D., Cheng, H., Han, J., Khoo, S.C., Sun, C.: Classification of software behaviors for failure detection: a discriminative pattern mining approach. In: Proceedings of 15th International Conference on Knowledge Discovery and Data Mining (KDD 2009), pp. 557–566 (2009)

    Google Scholar 

  9. Neu, D.A., Lahann, J., Fettke, P.: A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev. 55(2), 801–827 (2022)

    Google Scholar 

  10. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business process deviance: a quest for accuracy. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 436–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45563-0_25

  11. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: A multi-view deep learning approach for predictive business process monitoring. IEEE Trans. Serv. Comput. (Early Access) (2021). https://doi.org/10.1109/TSC.2021.3051771

  12. Pasquadibisceglie, V., Castellano, G., Appice, A., Malerba, D.: Fox: a neuro-fuzzy model for process outcome prediction and explanation. In: 2021 3rd International Conference on Process Mining (ICPM), pp. 112–119 (2021)

    Google Scholar 

  13. Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)

    Google Scholar 

  14. Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Understanding process behaviours in a large insurance company in Australia: a case study. In: Proceedings of the 25th International Conference on Advanced Information Systems Engineering (CAiSE 2013), pp. 449–464 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Folino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Folino, F., Folino, G., Guarascio, M., Pontieri, L. (2022). Combining Active Learning and Fast DNN Ensembles for Process Deviance Discovery. In: Ceci, M., Flesca, S., Masciari, E., Manco, G., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2022. Lecture Notes in Computer Science(), vol 13515. Springer, Cham. https://doi.org/10.1007/978-3-031-16564-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16564-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16563-4

  • Online ISBN: 978-3-031-16564-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics