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Preface

Deep learning (DL)-based computer-aided diagnostic systems have been widely and
successfully studied for analyzing various image modalities such as chest X-rays,
computed tomography, ultrasound, and optical imaging including microscopic imagery.
Such analyses help in identifying, localizing, and classifying disease patterns as well as
staging the extent of the disease and recommending therapies. Although DL approaches
have a huge potential to advance medical imaging technologies and potentially improve
quality and access to healthcare, their performance relies heavily on the quality, variety,
and size of training data sets as well as appropriate high-quality annotations. In the
medical domain, obtaining such data sets is challenging due to several privacy constraints
and tedious annotation processes. Further, real-world medical data tends to be noisy
and incomplete leading to unreliable and potentially biased algorithm performance.
To mitigate or overcome training challenges in imperfect or data-limited scenarios,
several training techniques have been proposed. Despite the successful application
of these techniques in a wide range of medical image applications, there is still a
lack of theoretical and practical understanding of their learning characteristics and
decision-making behavior when applied to medical images.

This volume presents novel approaches for handling noisy and limited medical
image data sets. This collection is derived from articles presented in the workshop titled
“Medical Image Learning with Noisy and Limited Data (MILLanD)” that was held
in conjunction with the 25th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI 2022). The workshop brought together
machine learning scientists, biomedical engineers, and medical doctors to discuss the
challenges and limitations of current deep learning methods applied to limited and
noisy medical data and present new methods for training models using such imperfect
data. The workshop received 54 full-paper submissions in various topics including
efficient data annotation and augmentation strategies, new approaches for learning with
noisy/corrupted data or uncertain labels, weakly-supervised learning, semi-supervised
learning, self-supervised learning, and transfer learning strategies. Each submission
was reviewed by 2–3 reviewers and further assessed by the workshop’s chairs. The
workshop’s reviewing process was double-blind, i.e., both the reviewer and author
identities were concealed throughout the review process. This process resulted in the
selection of 22 high-quality papers that are included in this volume.
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