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Abstract. Deep learning methods have been shown to be effective for the 

automatic segmentation of structures and pathologies in medical imaging. 

However, they require large annotated datasets, whose manual segmentation is a 

tedious and time-consuming task, especially for large structures. We present a 

new method of partial annotations of MR images that uses a small set of 

consecutive annotated slices from each scan with an annotation effort that is equal 

to that of only few annotated cases. The training with partial annotations is 

performed by using only annotated blocks, incorporating information about slices 

outside the structure of interest and modifying a batch loss function to consider 

only the annotated slices. To facilitate training in a low data regime, we use a 

two-step optimization process. We tested the method with the popular soft Dice 

loss for the fetal body segmentation task in two MRI sequences, TRUFI and 

FIESTA, and compared full annotation regime to partial annotations with a 

similar annotation effort. For TRUFI data, the use of partial annotations yielded 

slightly better performance on average compared to full annotations with an 

increase in Dice score from 0.936 to 0.942, and a substantial decrease in Standard 

Deviations (STD) of Dice score by 22% and Average Symmetric Surface 

Distance (ASSD) by 15%. For the FIESTA sequence, partial annotations also 

yielded a decrease in STD of the Dice score and ASSD metrics by 27.5% and 

33% respectively for in-distribution data, and a substantial improvement also in 

average performance on out-of-distribution data, increasing Dice score from 0.84 

to 0.9 and decreasing ASSD from 7.46 to 4.01 mm. The two-step optimization 

process was helpful for partial annotations for both in-distribution and out-of-

distribution data. The partial annotations method with the two-step optimizer is 

therefore recommended to improve segmentation performance under low data 

regime. 
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1 Introduction 

Fetal MRI has the potential to complement US imaging and improve fetal development 

assessment by providing more accurate volumetric information about the fetal 

structures [1,2]. However, volumetric measurements require manual delineation, also 

called segmentation, of the fetal structures, which is time consuming, annotator-

dependent and error-prone.  

In this paper, we focus on the task of fetal body segmentation in MRI scans. Several 

automatic segmentation methods were proposed for this task. In an early work, Zhang 

et al. [3] proposed a graph-based segmentation method. More recently, automatic 

segmentation methods for fetal MRI are based on deep neural networks. Dudovitch et 

al. [4] describes a fetal body segmentation network that reached high performance with 

only nine annotated examples. However, the method was tested only on data with 

similar resolutions and similar gestational ages for the FIESTA sequence. Lo et al. [5] 

proposed a 2D deep learning framework with cross attention squeeze and excitation 

network with 60 training scans for fetal body segmentation in SSFP sequences.  

While effective, robust deep learning methods usually require a large, high-quality 

dataset of expert-validated annotations, which is very difficult and expensive to obtain. 

The annotation process is especially time consuming for structures with large volumes, 

as they require the delineation of many slices. Therefore, in many cases, the annotation 

process is performed iteratively, when first initial segmentation is obtained with few 

annotated datasets, and subsequently manual segmentations are obtained by correcting 

network results. However, the initial segmentation network trained on few datasets is 

usually not robust and might fail for cases that are very different from the training set. 

To address the high cost associated with annotating structures with large volumes, 

one approach is to use sparse annotations, where only a fraction of the slices or pixels 

are annotated [6]. Çiçek et al. [7] describes a 3D network to generate a dense volumetric 
segmentation from sparse annotations, in which uniformly sampled slices were selected 

for manual annotation. Goetz et al. [8] selectively annotated unambiguous regions and 

employed domain adaptation techniques to correct the differences between the training 

and test data distributions caused by sampling selection errors. Bai et al. [9] proposed 

a method that starts by propagating the label map of a specific time frame to the entire 

longitudinal series based on the motion estimation, and then combines FCN with a 

Recurrent Neural Network (RNN) for longitudinal segmentation. Lejeune et al. [10] 

introduced a semi-supervised framework for video and volume segmentation that 

iteratively refined the pixel-wise segmentation within an object of interest. However, 

these methods impose restrictions on the way the partial annotations are sampled and 

selected that may be inconvenient for the annotator and still require significant effort.  

Wang et al. [11] proposed using incomplete annotations in a user-friendly manner 

of either a set of consecutive slices or a set of typical separate slices. They used a 

combined cross-entropy loss with boundary loss and performed labels completion 

based on the network output uncertainty that was incorporated in the loss function. They 

showed that their method with 30% of annotated slices was close to the performance 

using full annotations. However, the authors did not compare segmentation results 

using full versus partial annotations with the same annotation effort. Also, a question 

remains if user- 
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Fig. 1. Training flow with partial annotations. 1) Non-empty blocks are picked from the partially 

annotated scans (sagittal view, example of relevant blocks is shown in yellow). 2) A batch of 

non-empty blocks is used as input along with information about non-empty slices. The black 

areas of the blocks correspond to unselected voxels (voxels that are not used by the loss function). 

3) The network is trained with a selective loss that uses only the pixels in annotated slices. 

friendly partial annotations can be leveraged in the context of the Dice loss as well, a 

widely used loss function that is robust to class imbalance [12].  
Training with limited data usually makes the training optimization more difficult. 

Therefore, to facilitate optimization, we seek a scheme that will help in avoiding 

convergence to a poor local minimum.  Smith [13] proposed the usage of a cyclic 

learning rate to remove the need for finding the best values and schedule for the global 

learning rates. Loshchilov et al [14] showed the effectiveness of using warm learning 

rate restarts to deal with ill-conditioned functions. They used a simple learning rate 

restart scheme after a predefined number of epochs. 

In this paper, we explore the effectiveness of using partial annotations under low 

data regime with the Soft Dice loss function. We also explore the usefulness of a warm 

restarts optimization scheme in combination with fine-tuning to deal with the 

optimization difficulties under low data regime. 

2 Method 

Our segmentation method with small annotation cost consists of two main steps: 1) 

manual partial delineations, where the user partially annotates scans with the guidance 

of the algorithm; 2) training with partial annotations, where a 3D segmentation network 

is trained with blocks of the partially annotated data using a selective loss function.  

The manual partial delineations step is performed as follows. First, the uppermost 

and lowermost slices of the organ are manually selected by the annotator, which is a 

quick and easy task. Then, the algorithm randomly chooses a slice within the structure 

of interest. Finally, the slices to annotate around this slice are selected. The number of 

slices is determined by the chosen annotation percentage. The annotation percentage is 

taken from the slices that include the structure of interest, i.e., non-empty segmentation 

slices. The slices to annotate are chosen consecutively to reduce annotation time, as 

often the annotations depend on the 3D structure of the organ seen by scrolling and 
viewing nearby slices during the annotation.  

  The training with partial annotations is performed as follows. Only the non-empty 

blocks of the partially annotated data are used for training, as some of the blocks may 

not include annotations at all. To enrich the annotated data, we also use the border slices 

information in the loss function and treat the slices outside the structure of interest as  
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Fig. 2. Illustration of the two-step optimization process with the proposed learning rate regimes 

(graphs of learning rate as a function of epoch number).  

annotated slices. We add as input to the network a binary mask specifying the locations 

of the annotated slices during training. The network is trained with a selective loss 

function that takes into account only the annotated slices. Also, we use a relatively large 

batch size of 8 to include enough information during each optimization iteration. Fig. 1 

shows the training flow. 

2.1 Selective Dice Loss 

To train a network with partially annotated data, we modify the loss function to use 

only the annotated slices information. We illustrate the use of a selective loss for the 

commonly used Soft Dice loss. A batch loss is used, meaning that the calculation is 

performed on the 4-dimentional batch directly instead of averaging the losses of single 

data blocks. 

Let the number of image patches be 𝐼 and let the image patch consist of 𝐶 pixels. 

The number of voxels in a minibatch is therefore given by 𝐼 × 𝐶 = 𝑁. Let 𝑡𝑖  be a voxel  

at location 𝑖 in the minibatch for the ground truth delineation 𝑡𝑖 ∈ 𝑇 and  𝑟𝑖 be a voxel 

at the location 𝑖 in the minibatch for the network result 𝑟𝑖 ∈ 𝑅. 

The Batch Dice loss [15] is defined as: 

Batch Dice Loss (LCD) = -
2 ∑ 𝑡𝑖N 𝑟𝑖

∑ 𝑡𝑖N +∑ 𝑟𝑖N
            (1) 

Since we have partial annotations, we will use only the annotated slices locations in 

the loss calculation. Let 𝑇′ ⊂ 𝑇 and 𝑅′ ⊂ 𝑅  be the ground truth in the annotated slices 

and the network result in the annotated slices, with minibatch voxels 𝑡𝑖
′ ∈ 𝑇′ and 𝑟𝑖

′ ∈
𝑅′ respectively. The number of voxels that we consider in the minibatch is now 𝑁′ <
𝑁, corresponding only to the annotated slices. The batch dice loss for partial annotations 

is defined as:  

Selective Batch Dice Loss (LCD) = -
2 ∑ 𝑡𝑖

′
𝑁′ 𝑟𝑖

′

∑ 𝑡𝑖
′

𝑁′ +∑ 𝑟𝑖
′

𝑁′
        (2) 

2.2 Optimization 

To facilitate the optimization process under  small data regime, we perform the 

training in two steps. First, a network is trained with reduction of learning rate on 

plateau. Then, we use the weights of the network with best results on the validation set 

to continue training. Similarly to the first phase, the training in the second phase is 
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performed with reduction in plateau, but this time with learning rate restarts every 

predefined number of epochs (Fig. 2). 

3 Experimental Results 

To evaluate our method, we retrospectively collected fetal MRI scans with the FIESTA 

and TRUFI sequences and conducted two studies.  

Datasets and annotations: We collected fetal body MRI scans of patients acquired 

with the true fast imaging with steady-state free precession (TRUFI) and the fast 

imaging employing steady-state acquisition (FIESTA) sequences from the Sourasky 

Medical Center (Tel Aviv, Israel) with gestational ages (GA) 28-39 weeks and fetal 

body MRI scans acquired with the FIESTA sequence from Children's Hospital of 

Eastern Ontario (CHEO), Canada with GA between 19-37 weeks. Table 1 shows 

detailed description of the data. 

Table 1. Datasets description. 

 Ground truth segmentations were created as follows. First, 36 FIESTA cases were 

annotated from scratch. Then, 68 ID and 33 OOD cases were manually corrected from 

network results. For the TRUFI data all cases were created by correcting network 

results: first, a FIESTA network was used to perform initial segmentation and 

afterwards a TRUFI network was trained for improved initial segmentation. Both the 

annotations and the corrections were performed by a clinical trainee. All segmentations 

were validated by a clinical expert.  

Studies: We conducted two studies that compare partial annotations to full annotations 

with the same number of slices. Study 1 evaluates the partial annotations method for 

the TRUFI body dataset and performs ablation for the two-step optimization process 

and the usage of slices outside of the fetal body structure. Study 2 evaluates the partial 

annotations method for the FIESTA body dataset for both ID and OOD data. 

For both studies, we compared training with 6 fully annotated cases to 30 partially 

annotated cases with annotation of 20% of the slices. The selection of cases and the 

location for partial annotations was random for all experiments. Because of the high  

 

MRI 

sequence 

ID/ 

OOD 

Clinical 

Site 
Scanners Resolution (mm3) 

Pixels/ 

slice 

# 

Slices 
GA # 

TRUFI 

ID Sourasky 

Medical 

Center 

Siemens Skyra 3T, 

Prisma 3T, 

Aera 1.5T 

0.6-1.34×0.6-1.34 

×2-4.8 

320-512 

×320-512 

50- 

120 
28-39 101 

FIESTA 

ID Sourasky 

Medical 

Center 

GE MR450 1.5T 
1.48-1.87×1.48-1.87 

×2-5 
256×256 

50- 

100 
28-39 104 

OOD Children'

s 

Hospital 

Mostly GE Signa 

HDxt 1.5T; Signa 

1.5T, SIEMENS 

Skyra 3T 

0.55-1.4×0.55-1.4 

×3.1-7.5 

256×256

512×512 

19- 

55 

19-37, 

mostly 

19-24 

33 
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Fig. 3. Fetal body segmentation results for the FIESTA sequence. Training with full annotations 

(full) is compared to training with partial annotations with (\w) and without (\wo) border slices. 

The colored bars show the STD of the metric and the grey bars show the range of the metric 

(minimum and maximum). 

variability in segmentation quality for the low-data regime, we performed all the 

experiments with four different randomizations and averaged between them. The 

segmentation quality is evaluated with the Dice, Hausdorff and 2D ASSD (slice 

Average Symmetric Surface Difference) metrics.  

A network architecture similar to Dudovitch et al. [4] was utilized with a patch size 

of 128×128×48 to capture a large field of view. A large batch size of 8 was used in all 

experiments to allow for significant updates in each iteration for the partial annotations 

regime. Since the TRUFI sequence had a higher resolution compared to FIESTA, the 

scans were downscaled by ×0.5 in the in-plane axes to have a large field of view [16]. 

The segmentation results were refined by standard post-processing techniques of holes 

filling and extraction of the main connected component. 

Both partially annotated and fully annotated networks were trained in a two-step 

process. First, the network was trained with a decreasing learning rate, with an initial 

learning rate of 0.0005. The network that yielded the best validation result was selected, 

and this network was then fine-tunned on the same data. For fine-tuning, we again used 

a decreasing learning rate scheme with an initial learning rate of 0.0005, but this time 

we performed learning rate restarts every 60 epochs.  

 

Study 1: partial annotations for TRUFI sequence and ablation 

The method was evaluated on 30/13/58 training/validation/test split for partially 

annotated cases with 20% of annotated slices and 6/13/58 for fully annotated cases. The 

6 fully annotated training cases were randomly chosen out of the 30 partially annotated 

training cases. Ablation experiments were performed to evaluate the effectiveness of 

the two-step optimization scheme and the usage of slices outside the body structure.  
Six scenarios were tested: 1) full annotations without fine tuning; 2) partial 

annotations without fine tuning and without borders information; 3) partial annotations 

without fine-tuning and with borders information; 4) full annotations with fine tuning; 

5) partial annotations with fine tuning but without borders information; 6) partial 

annotations with fine tuning and borders information.  
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 Fig. 3 shows the fetal body segmentation results with the Dice score and ASSD 

evaluation metrics. Fine tuning with restarts was helpful for both full and partial 

annotations  

Table 2. Segmentation results comparison between partial and full annotations for FIESTA body 

sequence on ID and OOD data. Best results are shown in bold. Unusual behavior for fine-tuning 

(two step optimization) is indicated with italics. 

Data 

distribution 

Network 

training 

Dice Hausdorff 

(mm) 

2D ASSD 

(mm) 

 

In-Distribution 

(ID) 

 

 

Full  0.9590.044 34.5137.26 2.152.33 

Full fine-tuned 0.9640.040 32.9836.86 1.882.07 

Partial  0.9590.034 34.1535.96 2.211.67 

Partial fine-tuned 0.9650.029 31.8935.82 1.901.39 

 

Out-of-Distribution 

(OOD)  

Full  0.8360.178 39.3429.26 7.4610.61 

Full fine-tuned 0.8260.214 39.6132.66 8.8616.54 

Partial  0.8750.091 36.1921.44 5.473.92 

Partial fine-tuned 0.8990.067 30.3718.86 4.002.26 

 

 

Fig. 4. Illustrative fetal body segmentation results for the FIESTA OOD data. Left  to right 

(columns): 1) original slice; 2) Full annotations without fine-tuning; 3) Full annotations with 

fine-tuning; 4) Partial annotations with fine-tuning; 5) ground truth.  

regimes, increasing the full annotations segmentation Dice score from 0.919 to 0.937 

and partial annotations with borders segmentation Dice score from 0.92 to 0.942. 

Incorporating border information with the selective Dice loss function improved partial 

annotation setting, increasing the Dice score from 0.936 to 0.942 and decreasing the 

Dice Standard Deviation (STD) from 0.056 to 0.049. Finally, partial annotations with 

borders information had slightly better average results to the full annotations regime 

with a Dice score of 0.937 and 0.942 and ASSD of 3.61 and 3.52 for the full and partial 

annotations respectively, with a substantially smaller STD: a Dice score STD of 0.063 

compared to 0.049 and ASSD STD of 4.04 compared to 3.45 for the full annotations 

and partial annotations regimes respectively. 
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Study 2: partial annotations for FIESTA sequence for ID and OOD data  

For partial annotations regime, the network was trained on 30 cases and for the full 

annotations regime the network was trained on 6 cases randomly chosen out of the 30 

partially annotated training cases. For both methods, we used the same 6 cases for 

validation, 68 test cases for ID data and 33 test cases for OOD data.  

The OOD data was collected from a different clinical site than the training set and 

included mostly smaller fetuses (28 out of 33 fetuses had GA between 19-24 weeks 

compared to GA between 28-39 in the training set). For both partial and full annotations  

regimes we used Test Time Augmentations (TTA) [17] for the OOD setting to reduce 

over-segmentation. Because of large resolution differences, we rescaled OOD data to 

the resolution of 1.56×1.56×3.0 mm3, similar to the resolution of the training set. 

In total, eight scenarios were tested, four for ID data and four for OOD data. For 

both ID and OOD data the following was tested: 1) full annotations without fine tuning. 

2) full annotations with fine tuning. 3) partial annotations without fine-tuning. 4) partial 

annotations with fine-tuning. 

Table 2 shows the results. For the ID data, partial annotations results were similar to 

full annotations with the same annotation effort, but again the STD was much smaller: 

Dice STD of 0.04 compared to 0.029 and ASSD STD of 2.07 compared to 1.39 for full 

and partial annotations respectively. For both full and partial annotations regimes the 

fine tuning slightly improved the segmentation results.  

For the OOD data, the differences between segmentation results using full and partial 

annotations were much larger, with better results for partial annotations regime. Using 

partial annotations, results improved from a Dice score of 0.836 to 0.899 and from 

ASSD of 7.46 mm to 4 mm. Unlike in the ID setting, fine-tuning with restarts hurt 

performance on OOD data in the full annotations regime, potentially indicating an 

overfitting phenomenon. This was not the case for partial annotations, where again fine 

tuning with learning rate restarts further improved segmentation results as in the ID 

setting.  

     Fig. 4. shows illustrative body segmentation results for the OOD data. Partial 

annotations showed better performance on these cases compared to full annotations, 

indicating higher robustness. Also, fine tuning full annotations resulted in decreased 

performance with a complete failure to the detect the case in the top row, which may 

indicate an overfitting to the training set. 

4 Conclusion 

We have presented a new method for using partial annotations for large structures. The 

method consists of algorithm-guided annotation step and a network training step with 

selective data blocks and a selective loss function. The method demonstrated 

significantly better robustness under low data regime compared to full annotations.  

We also presented a simple two-step optimization scheme for low data regime that 

combines fine-tuning with learning rate restarts. Experimental results show the 

effectiveness of the optimization scheme for partial annotations method on both ID and 

OOD data. For full annotations, the two-step optimization was useful only for ID data 

but hurt performance on OOD data, indicating potential overfitting. 
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The selected partial annotations are user-friendly and require only two additional 

clicks in the beginning and end of the structure of interest, which is negligible compared 

to the effort required for segmentation delineations. Thus, they can be easily used to 

construct a dataset with a low annotation cost for initial segmentation network. 

Acknowledgements  

This research was supported in part by Kamin Grant 72061 from the Israel Innovation 

Authority. 

References 

1. Reddy UM, Filly RA, Copel JA. Prenatal imaging: ultrasonography and magnetic resonance 

imaging. Obstetrics and Gynecology 112(1):145-50, 2008. 

2. Rutherford M, Jiang S, Allsop J, Perkins L, Srinivasan L, Hayat T, Kumar S, Hajnal J. MR 

imaging methods for assessing fetal brain development. Developmental Neurobiology 

68(6):700-11, 2008. 

3. Zhang, T., Matthew, J., Lohezic, M., Davidson, A., Rutherford, M., Rueckert, D et al (2016). 

"Graph-based whole body segmentation in fetal MR images". Proc. Medical Image 

Computing and Computer-Assisted Intervention Workshop on Perinatal, Preterm and 

Paediatric Image Analysis, 2016. 

4. Dudovitch G, Link-Sourani D, Ben Sira L, Miller E, Ben Bashat D, Joskowicz L. Deep 

learning automatic fetal structures segmentation in MRI scans with few annotated datasets. In 

Proc. Int. Conference on Medical Image Computing and Computer-Assisted Intervention 

2020 Oct 4 (pp. 365-374). Springer, Cham. 

5. Lo J, Nithiyanantham S, Cardinell J, Young D, Cho S, Kirubarajan A, Wagner MW, Azma R, 

Miller S, Seed M, Ertl-Wagner B. Cross Attention Squeeze Excitation Network (CASE-Net) 

for Whole Body Fetal MRI Segmentation. Sensors 21(13):4490, 2021. 

6. Tajbakhsh N, Jeyaseelan L, Li Q, Chiang JN, Wu Z, Ding X. Embracing imperfect datasets: 

A review of deep learning solutions for medical image segmentation. Medical Image Analysis 

63(1):101693, 2020. 

7. O. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, 3D U-net: Learning 

dense volumetric segmentation from sparse annotation, in Proc. Int. Conf. Med. Image 

Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2016, pp. 424–432. 

8. M. Goetz et al., “DALSA: Domain adaptation for supervised learning from sparsely annotated 

MR images,” IEEE Trans. Med. Imag. 35(1):184–196, 2016. 

9. W. Bai et al., “Recurrent neural networks for aortic image sequence segmentation with sparse 

annotations,” in Proc. Int. Conf. Med. Image Comput.-Assist. Intervent. Cham, Switzerland: 

Springer, 2018, pp. 586–594. 

10. L. Lejeune, J. Grossrieder, and R. Sznitman. Iterative multi-path tracking for video and 

volume segmentation with sparse point supervision. Medical Image Analysis 50:65–81, 2018. 

11. Wang S, Nie D, Qu L, Shao Y, Lian J, Wang Q, Shen D. CT male pelvic organ segmentation 

via hybrid loss network with incomplete annotation. IEEE Trans. Medical Imaging 

39(6):2151-62, 2020. 

12. Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M. Generalised dice overlap as a 

deep learning loss function for highly unbalanced segmentations. In Deep learning in medical 



10 

image analysis and multimodal learning for clinical decision support 2017 Sep 14 (pp. 240-

248). Springer, Cham. 

13. Smith LN. Cyclical learning rates for training neural networks. In: 2017 IEEE winter 

conference on applications of computer vision (WACV) 2017 Mar 24 (pp. 464-472). IEEE. 

14. Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint 

arXiv:1608.03983. 2016 Aug 13.  

15. Kodym, O., ˇSpanˇel, M., Herout, A.: Segmentation of Head and Neck Organs at Risk Using 

CNN with Batch Dice Loss. Lecture Notes in Computer Science 11269 LNCS, 105–114 

(2019). https://doi.org/10.1007/978-3-030-12939-2 8 

16. Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring 

method for deep learning-based biomedical image segmentation. Nature Methods 18(2):203-

11, 2021.  

17. Wang G, Li W, Aertsen M, Deprest J, Ourselin S, Vercauteren T. Aleatoric uncertainty 

estimation with test-time augmentation for medical image segmentation with convolutional 

neural networks. Neurocomputing 338:34-45, 2019. 

 

 
 

 

 


	1 Introduction
	2 Method
	2.1 Selective Dice Loss
	2.2 Optimization

	3 Experimental Results
	4 Conclusion
	Acknowledgements
	References

