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Abstract. One well established method of interactive image segmen-
tation is the random walker algorithm. Considerable research on this
family of segmentation methods has been continuously conducted in re-
cent years with numerous applications. These methods are common in
using a simple Gaussian weight function which depends on a parameter
that strongly influences the segmentation performance. In this work we
propose a general framework of deriving weight functions based on prob-
abilistic modeling. This framework can be concretized to cope with vir-
tually any well-defined noise model. It eliminates the critical parameter
and thus avoids time-consuming parameter search. We derive the specific
weight functions for common noise types and show their superior per-
formance on synthetic data as well as different biomedical image data
(MRI images from the NYU fastMRI dataset, larvae images acquired
with the FIM technique). Our framework can also be used in multiple
other applications, e.g., the graph cut algorithm and its extensions.

Keywords: random walker, image segmentation, pixel similarity mea-
sure, noise models

1 Introduction

Interactive image segmentation aims to segment the objects of interest with min-
imal user input. Despite the remarkable performance achieved by deep learning
techniques, interactive segmentation approaches remain attractive. Supervised
learning methods require accurate ground truth pixel-level training data, which
is often expensive and tedious to produce – a problem which interactive image
segmentation algorithms (as sophisticated labeling tools) help to mitigate. Su-
pervised learning methods also tend to perform poorly on unseen object classes.
Furthermore, in application fields like biomedicine one may also be confronted
with the problem of prohibitively small data sets. Therefore, considerable re-
search on interactive segmentation has been continuously conducted in recent
years [25,48,50,53].

Random walker is one of the most popular interactive segmentation fami-
lies [49] since its inception in Grady’s seminal work [16]. This method models a
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2D or higher dimensional image as a graph and achieves a multi-region segmen-
tation by calculating probabilities that each pixel is connected to the user pro-
vided class-specific seed pixels (seeds). Considerable recent developments have
been reported for this family of segmentation methods [11,12,17,21,40,47] and
numerous applications of random walker segmentation can be found in the litera-
ture [9,15,30,42]. In particular, it plays an important role in biomedical imaging.
For instance, the recent platform Biomedisa for biomedical image segmentation
[28] is fully based on random walker.

Besides user provided seeds, random walker also requires a well-defined weight
function for mapping the image information to a graph. Grady [16] used the sim-
ple Gaussian weight function, chosen for empirical reasons, which has become
common practice and has also been adopted by the recent developments of ran-
dom walker segmentation [11,12,17,21,40,47]. However, Bian et al. [4,5] showed
that the optimal choice for its configurable parameter β highly influences the
segmentation performance and depends on the image conditions. The optimal
value varies even within rather homogeneous datasets and different regions of
the same image. Instead of the simple definition, we propose in this work a
general framework of deriving weight functions based on probabilistic modeling.
This framework can be concretized to cope with virtually any well-defined noise
model. This approach avoids the critical parameter. While previous methods on
alternative weight functions work for specific noise models (additive Gaussian
noise [4] and multiplicative speckle noise [5]), solutions for other noise models
and in particular multi-channel images and noise are yet missing. Our work ex-
tends the application spectrum of adaptive random walker methods to many
domains (e.g., biomedical imaging, remote sensing), where imaging modalities
with different noise models are of high importance.

In summary, with this work we contribute the following: 1) A general frame-
work for deriving pixel similarity measures for a given noise model and its uti-
lization as a weight function (section 3). 2) Derivations of weight functions for
specific noise models using the framework, in particular for Poisson and mul-
tivariate Gaussian noise (section 4). 3) Demonstration of on-par or superior
performance compared to state of the art (section 5). 4) An implementation of
the presented work as an easy-to-use and open source python package available
online3.

2 Related Work

There is very little work on weight function for random walker image segmenta-
tion. Even most of the recent developments are based on the standard definition.
The variant in [43] includes a spatial term (difference of two neighbors) into the
weight function that has a minor influence. Freedman [14] proposes a weight
function based on per-class density in LUV color space estimated from the col-
ors of seed pixels. As a consequence, semantically different regions in the image

3 https://zivgitlab.uni-muenster.de/ag-pria/rw-noise-model

https://zivgitlab.uni-muenster.de/ag-pria/rw-noise-model
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are expected to have distinct colors, which is likely not compatible with many
(single channel) biomedical images. Cerrone et al. [7] propose a random walker
based method with end-to-end learned weight function. While very noteworthy
and interesting theoretically, the need for labeled training data drastically re-
duces the usefulness of this method in practice as this is in direct conflict with
the use as a labeling tool itself.

There are two major works we consider as direct prior work for noise model
incorporation into random walker weight functions [4,5]. In [4] additive Gaussian
noise with constant global variance is assumed and the PDF of the estimated lo-
cal means’ difference is applied as an adaptive weight function. In [5], the signal-
dependent local Gaussian model with variable regional variances is assumed for
the multiplicative speckle noise (with additive Gaussian noise and Loupas noise
as special cases). A statistical T-test based weight function is proposed.

Noise models have also been studied for image segmentation in other con-
texts. In [10,29] it is shown that the noise type has an impact in active contours
based image segmentation. The authors incorporate knowledge of the under-
lying noise model in an external energy to improve the results. A number of
variational approaches have utilized knowledge about the underlying noise. This
is done either by specifically designed data fidelity terms (e.g., for additive and
multiplicative noise [2], Poisson noise, additive Gaussian noise and multiplicative
speckle noise [8]) or variational frameworks [39,44] with concretization to partic-
ular noise models. Our work follows the general strategy of the latter approach
and develops such a general framework for random walker segmentation.

3 Framework

As discussed in the introduction, random walker segmentation as introduced by
Grady [16] is highly dependent on the choice of the parameter β. In this section
we present the general idea of the framework for random walker weight functions
(independent of a concrete noise model) that is independent of such parameter
usage. After a brief introduction to random walker segmentation this includes
the formulation of the weight function and a model for sampling concrete image
pixels from the neighborhood of an edge that will be used to define the weight.

3.1 Random Walker Segmentation

An image is defined as an undirected graph G(V,E), where V is the set of nodes
corresponding to pixels and E is the set of weighted edges connecting adjacent
nodes. The random walker algorithm assigns each unmarked node a per-class
probability, corresponding to the probability that a random walker starting in
a marked seed reaches this node first. The class with the highest probability is
assigned to the node. By partitioning the nodes into VM (marked seed nodes)
and VU (unmarked nodes), the probabilities P (VU ) for one class can be solved
as a combinatorial Dirichlet problem with boundary conditions:

P (VU ) = −(LU )−1BTP (VM ); with components from L =

[
LM B
BT LU

]
(1)
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where L is the Laplacian matrix with LXY , X 6= Y, equal to weight −wXY for
each edge,

∑
Y wXY for diagonal elements LXX , and 0 otherwise. A Gaussian

weight function (with x/y being the intensity in X/Y): wXY = exp(−β(x− y)
2
)

measuring pixel intensity difference with parameter β is applied. The probabili-
ties P (VM ) are set to 1 for the seeds of a particular label and 0 for the rest. This
procedure is repeated for each label to obtain the corresponding probabilities
P (VU ). Finally, each unmarked node from VU receives the label with the highest
probability among all labels.

3.2 Weight Function

In general, the edge weight function wXY should express a similarity of the two
adjacent pixels X and Y. For this we model the value of a pixel X as a probability
distribution p(x|κX ) with parameters κX . The actual pixel values in an image
are thus assumed to be drawn from the (per-pixel) distribution. Let X and Y be
multi-sets of n samples each, drawn from the distributions of the adjacent pixels
X and Y. Since we only have one sample per pixel (i.e., the actual image value)
we assume that pixels in the neighborhood are from the same distribution. This
assumption is also made in previous work [4,5]. subsection 3.3 is concerned with
the construction of these neighborhoods. We can estimate the distribution of the
parameters κX given X (and κY given Y accordingly) via Bayesian estimation:

p(κX |X) =
p(X|κX )p(κX )∫
Pκ
p(X|κ)p(κ)dκ

=
p(κX )

∏
x∈X p(x|κX )∫

Pκ
p(κ)

∏
x∈X p(x|κ)dκ

=

∏
x∈X p(x|κX )∫

Pκ

∏
x∈X p(x|κ)dκ

(2)
Here, we first applied Bayes’ theorem and then used the fact that all samples in
X are independent. In the last step we assumed that κ is uniformly distributed in
Pκ, i.e., we assume no further prior knowledge about its distribution within Pκ.
In this form, p(κX |X) is easy to apply to many noise models since it only depends
on the PDF p(x|κ). Given X and Y , we can then define wXY := S(p(·|X), p(·|Y ))
using a similarity measure S between probability distributions. In this paper, we
use the Bhattacharyya coefficient [3] BC(p(·), q(·)) =

∫
P

√
p(r)q(r)dr, which is a

closed form similarity measure of probability distributions based on their PDF.
As illustrated in Figure 1 it is 0 for non-overlapping PDFs and increases with
the amount of overlap up to a value of 1. It thus enables graphical interpretation
of the weight function and it is easily applicable to any noise model that has a
PDF. Using Equation 2 it allows for simplifications:

wXY = BC(p(·|X), p(·|Y )) =

∫
Pκ

√
p(κ|X)p(κ|Y )dκ

=

∫
Pκ

√ ∏
x∈X p(x|κ)

∏
y∈Y p(y|κ)∫

Pκ

∏
x∈X p(x|κ̃)dκ̃

∫
Pκ

∏
y∈Y p(y|κ̃)dκ̃

dκ

=

∫
Pκ

√∏
x∈X p(x|κ)

∏
y∈Y p(y|κ)dκ√∫

Pκ

∏
x∈X p(x|κ)dκ

∫
Pκ

∏
y∈Y p(y|κ)dκ

(3)
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Fig. 1. Illustration of the behavior of the Bhattacharyya coefficient as a similarity
measure for weight function applied to two measurement sets under Poisson noise.

The final result is only dependent on the pixel-value PDF of the noise model.
The integrals in the numerator and denominator are quite similar and can be
solved in similar fashion in practice (see section 4).

3.3 Neighborhood

In this section we describe how to determine a fitting neighborhood as needed in
subsection 3.2. In [5] Bian et al. proposes a variation of a well proven (e.g., [51])
optimal neighborhood selection schema which we also adopt here: To determine
the optimal neighborhood of X , let X1, . . . , X(2k+1)2 be the (2k+ 1)2 quadratic
neighborhoods including X as shown in Figure 2. The optimal neighborhood
can now be found as the neighborhood that maximizes the probability of having
sampled the pixel value x of X . Formally, this is described as:

X = argmax
N∈{X1,...,X(2k+1)2}

p(x|N), (4)

where p(·|N) is the PDF of the assumed noise model with parameters estimated
from the pixel intensities in N . It should be noted that the neighborhoods X
and Y of pixels X and Y can overlap. In order to ensure statistical independence
of samples in X and Y , pixels in the overlap have to be assigned to either X or
Y . In [5] it is proposed to assign pixels from the overlap based on the Euclidean
distance to one of the center pixels. However, this ultimately leads to a non-
symmetric weight function. Instead, we sort and divide using the difference of
the Euclidean distances to both center pixels, which results in a dividing line
orthogonal to the graph edge (see Figure 3). Ties are resolved deterministically.

4 Application to Concrete Noise Models

In this section we apply the framework presented in section 3 to three noise
models relevant to various imaging modalities and obtain closed form solutions.
We choose Poisson noise as it is very common in biology [37,45], as well as
Gaussian noise - with two different configurations: fixed variance over the whole
image and variable variance per image region - which is common in many images
including medically relevant techniques like MRI and CT. For Poisson noise this
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C1 C2 C3

C4 C5 C6

C7 C8 C9

Fig. 2. For every pixel, select neighbor-
hood of highest probability with Equa-
tion 4. Only 3 out of 9 = (2k+1)2, with
k = 1, (with centers C1, . . . , C9) possi-
ble neighborhoods are drawn here.

𝓧 𝓨

Fig. 3. Solve overlap of neighborhoods by
sorting and dividing by difference of Eu-
clidean distance to both pixels. Pixels X , Y
are to be compared, blue/red dashed lines
show respective selected neighborhoods.

is the first derivation of a noise model specific weight function for random walker,
whereas the two versions of Gaussian noise model have been considered in [4,5],
respectively. See Appendix section C for derivations in more detail.

4.1 Poisson Noise

In this subsection we assume an image that is affected by Poisson noise (also
called “shot noise“), which occurs, for example, as an effect of photon or electron
counting in imaging systems (e.g., fluorescence microscopy [45], positron emission
tomography [41], low dose CT [26]). In this model the measured pixel values
x, y ∈ N are drawn from a Poisson distribution with unknown parameter κ = λ,
which corresponds to the true pixel value. We assume the prior distribution of λ
to be uniform in P = (0, a) for some sufficiently large value a. For convenience,
we define X̃ =

∑
x∈X x and Ỹ =

∑
y∈Y y. Then, using Equation 3, we obtain:

wXY = BC(p(·|X), p(·|Y )) =

√∫
P

∏
x∈X

e−λλx

x!

∏
y∈Y

e−λλy

y! dλ√∫
P

∏
x∈X

e−λλx

x! dλ
∫
P

∏
y∈Y

e−λλy

y! dλ

=
Γ ( X̃+Ỹ

2 + 1)√
Γ (X̃ + 1)Γ (Ỹ + 1)

(5)

Strictly speaking, Equation 5 only holds asymptotically for a → ∞. Since we
assume no prior knowledge about the distribution of λ, we can let a tend to
infinity to use Equation 5 as the weight function. The convergence of Equation 5
is discussed in more detail in the Appendix subsection C.1.

4.2 Multivariate Gaussian Noise with Constant Covariance

In this subsection we assume an m-channel image with concrete pixel values
x, y ∈ Rm. The true image values are perturbed by additive Gaussian noise and
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are thus modeled by a Gaussian PDF with (unknown) parameter κ = µ ∈ Rm,
which also corresponds to the true pixel value. This noise model applies, for
example, in complex valued MRI images [19]. Further, we assume that µ is
priorly uniformly distributed in P = (−a, a)m for some sufficiently large value
a. The covariance matrix C is assumed to be constant for the whole image. It
should be noted that the special case m = 1 is the setting that is assumed in
prior work [4]. Starting from Equation 2 we obtain:

p(µ|X) =

∏
x∈X

1√
(2π)m det(C)

exp(− 1
2 (x− µ)TC−1(x− µ))∫

P

∏
x∈X

1√
(2π)m det(C)

exp(− 1
2 (x− µ̃)TC−1(x− µ̃))dµ̃

=
exp(− 1

2

∑
x∈X(x− µ)TC−1(x− µ))∫

P
exp(− 1

2

∑
x∈X(x− µ̃)TC−1(x− µ̃))dµ̃

=
1√

(2π)m det(Cn )
exp

(
− 1

2

(
µ−

∑
x∈X

x

n

)T (C
n

)−1 (
µ−

∑
x∈X

x

n

))
(6)

Similar to Equation 5, this equation only holds asymptotically for a → ∞,
but we can choose a large enough for arbitrary precision. Equation 6 shows
that p(µ|X) is simply the density function of a normal distribution with mean∑
x∈X

x
n =: X̄ and covariance matrix C

n (and p(µ|Y ) accordingly). As shown in
[34] the Bhattacharyya coefficient is then:

wXY = BC(p(·|X), p(·|Y )) ∝ exp

(
− 1

8
(X̄ − Ȳ )T

(
C

n

)−1
(X̄ − Ȳ )

)
(7)

4.3 Gaussian Noise with Signal-Dependent Variance

In this subsection we assume additive Gaussian noise on single channel images
where, however, σ2 differs between image regions (in contrast to subsection 4.2
which assumes a global, constant C = σ2 for m=1). Thus, pixel values are
modeled by x = µX+N (0, σ2

X ). A special case is Loupas noise, where σ2
X = µXσ

2

for some fixed (global) σ2. It applies, for example, to speckled SAR and medical
ultrasound images [5,44] Thus, we have to estimate µ and σ2 simultaneously and
set κ from Equation 3 to be (µ, σ2).

To solve Equation 3 we set Pa := (0, a)× (−a, a) (again, a sufficiently large)
and assume the prior distribution of (µ, σ2) to be uniform. We then have to
calculate the integrals in the enumerator and denominator of Equation 3, which
can be reformulated to a similar form and then can be calculated analogously:∫

P

(
1√

2πσ2

)n
exp

(
− 1

2σ2

∑
x∈X

(x− µ)2)

)
d(µ, σ2)

=
1√
n

(
1

2π

)n−1
Γ

(
n− 3

2

) 1

4n

∑
x1,x2∈X

(x1 − x2)2


−n+3

2

(8)
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∫
P

(
1√

2πσ2

)n
exp

(
− 1

4σ2

∑
z∈X∪Y

(z − µ)2)

)
d(µ, σ2)

=
1√
n

(
1

2π

)n−1
Γ

(
n− 3

2

) 1

16n

∑
z1,z2∈X∪Y

(z1 − z2)2


−n+3

2

(9)

Inserting these equations into Equation 3 and canceling the fraction yields:

wXY = BC(p(·|X), p(·|Y )) =

4

√∑
x1,x2∈X(x1 − x2)2

∑
y1,y2∈Y (y1 − y2)2∑

z1,z2∈X∪Y (z1 − z2)2


n−3
2

=

(√
V ar(X)V ar(Y )

V ar(X ∪ Y )

)n−3
2

(10)

5 Experimental Results

We conduct three experiments to compare our suitable methods with Grady [16]
and the noise model based approaches of Bian et al. [4,5]: We demonstrate
differences in seed propagation on synthetic data under different noise conditions
and report results on real world image data (FIM [37] and MRI [23]). To compare
to Grady [16], we use two approaches: 1) We search for the on average best β over
the whole dataset. This mimics the behavior of a user determining a “good” value
for β initially on a some images. 2) We also report the results where β is tuned
optimally for every single image and label configuration, which is unrealistic,
but serves as a performance upper bound.

5.1 Results on Synthetic Data

To evaluate how class probabilities propagate from an initial seed under noisy
conditions, we follow Grady’s idea [16] and generate a spiral structure, see Fig-
ure 4. For scalar images, the two regions simply differ in intensity. For the (2D)
vector-valued image the two regions correspond to vector fields defining a flow
into and out of the spiral, respectively. The magnitude of all vectors is unity.
For both regions, one seed is placed at the central start of the spiral. In a total
of three noise scenarios, the base images are perturbed by Poisson and Loupas
noise (scalar) as well as uncorrelated, symmetric 2D-multivariate Gaussian noise
(vector image) which can also be interpreted as complex Gaussian noise as it
would be present in MRI images. For each of the three scenarios, applicable
weight functions are applied and 100 realizations of the random noise for each
noise type and each noise level were evaluated. For Poisson noise, we modulate
the noise level by decreasing the mean intensity of the two image regions (λ0, λ1)
from (256, 512) to (8, 16), which reduces the signal-to-noise ratio. For Loupas
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(a)

(b)

Poisson Loupas 2D Gaussian

G
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[1
6
]
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]

(Not applicable)

O
u
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Fig. 4. Illustration of behavior on spiral synthetic data with mediocre noise level
(λ0/λ1 = 32/64, σ = 0.2 (Loupas), σ = 0.3 (Gaussian)). (a) Ground truth image for
all cases; (b) Phase of the uncorrupted 2D vector-valued image, discontinuities are due
to phase wraps, the magnitude was set to be constant at 1.
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Fig. 5. Accuracy of applicable methods on synthetic image for Poisson/Loupas/2D
Gaussian noise (left/center/right). Lines show mean, shadows show standard deviation.

noise, the region intensity were set to 0.1 and 1 and σ varied between 0.1 and
0.5. For the vector images the uncorrelated, symmetric 2D-multivariate Gaussian
noise σ was set in [0, 1]. Figure 4 examplarily shows the results on images with
intermediate noise levels, while Figure 5 shows quantitative results. Accuracy is
a suitable measure in this scenario since the two classes are of equal size.

All three scenarios show that our method with the suitable noise model leads
to superior performance, which gets beat substantially only in one scenario ([16]
for low level of multivariate Gaussian noise). This however still has the drawback
of having to choose the correct parameter β and it drops off at a noise level of
roughly σ = 0.3. For Poisson noise, the hardest competitors are [5] and our
method for variable Gaussian noise, which is unsurprising, since Poisson noise
can be approximated by Gaussian noise with signal-dependent σ. [5] also works
well for strong Loupas noise, which is also the noise model it was designed for,
however still falls short to the proposed method at all noise levels.
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Fig. 6. FIM Larvae dataset experiments: Mean VOI/ARAND scores after placing n
additional seeds (top) and median number of additional seeds required to achieve a
specific VOI/ARAND score (bottom). Seeds were set as explained in subsection 5.2.

5.2 Results on Real World Data

For the following real world data evaluation we employ an automatic incremental
seed placement strategy [31]: Initially, all connected components of individual
classes are assigned a first seed point at their center. Then, based on an inter-
mediate result of the method to be evaluated, additional seeds are placed for the
class with the worst Dice score in the largest misclassified region. This allows
observation of 1) mean segmentation quality for a given number of seeds and 2)
the required number of seeds to achieve a specific quality. Quality measurement
for the following multi-class problems is done using the Variation of Informa-
tion (VOI) [32] and Adapted Rand Error (ARAND). Both produce good results
even in the presence of class imbalance. VOI measures the mutual information
of the two multi-class segmentations with 0 describing full and 1 no agreement.
ARAND is defined as one minus the Adjusted Rand Index(ARI) [36], which mea-
sures if pixel pairs are labeled accordingly in the segmentations. It is normalized
to be 0 for random and 1 for perfectly matching segmentations, meaning ARI
< 0 (⇒ ARAND > 1) is possible for worse-than-random segmentations. For
intuition on the scores see the examples in Figure 7 and Figure 8.

FIM larvae images. The FIM larvae dataset consists of 21 images of Drosophila
Melanogaster larvae acquired by the FIM technique [37] where Poisson noise can
be assumed. The hand labeled ground truth masks consist of the background
and up to five foreground classes: one per larva. The images and corresponding
ground truth masks are available online 4.

4 https://uni-muenster.sciebo.de/s/DK9F0f6p5ppsWXC

https://uni-muenster.sciebo.de/s/DK9F0f6p5ppsWXC
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Image & seeds GT Grady [16] Bian [5] Ours, var. σ Ours, Poisson

Grady [16] Bian [5] Ours (var. σ) Ours (Poisson)

VOI 0.013 0.039 0.025 0.010

ARAND 0.038 0.185 0.075 0.026

Fig. 7. Qualitative results of FIM Larvae dataset experiments with initial seeds and
class maps overlaid on top of the original image. Quantitative results for the shown
images are reported in table. For Grady the best β for this image was selected.

Image & seeds GT Grady [16] Bian [4] Ours, const. σ Ours, const. σ
on || · ||2 on || · ||2 on || · ||2 on 2D

Grady [16], || · ||2 Bian [4], || · ||2 Ours (const. σ, || · ||2) Ours (const. σ, 2D)

VOI 0.48 0.37 0.30 0.26

ARAND 0.11 0.079 0.063 0.051

Fig. 8. Qualitative results of fastMRI dataset experiments with ten additional seeds
and class maps overlaid on top of the original image. Quantitative results for the shown
images are reported in table. For Grady the best β for this image was selected.

The results in Figure 6 show that the proposed weight function under the
Poisson model outperforms all competitor methods. Notably, it shows better
scores without additional seeds than other methods achieve even with up to 10
additional seeds (see bottom row). Other weight functions tend to either under-
segment (Grady [16], Bian et al. [5]) or over-segment (ours with variable variance
Gaussian model) the larvae (see example in Figure 7).

FastMRI dataset. Image data for this dataset were obtained from the NYU
fastMRI Initiative database [23,52] (publicly available at: fastmri.med.nyu.edu),
where a listing of NYU fastMRI investigators, which provided data but did not
contribute to the work in any other way, can also be found. The complex valued
k-space single coil knee data was converted into the complex image space by
inverse Fourier transform. 100 images were hand labeled into four classes: upper
bone, lower bone, knee tissue, and background. The masks are available online5.

5 https://uni-muenster.sciebo.de/s/DK9F0f6p5ppsWXC

https://uni-muenster.sciebo.de/s/DK9F0f6p5ppsWXC
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Fig. 9. fastMRI dataset experiments: Mean VOI/ARAND scores after placing n addi-
tional seeds (top) and median number of additional seeds required to achieve a specific
VOI/ARAND score (bottom). Seeds were set as explained in subsection 5.2.

The resulting complex image (isomorphic to 2D vector image) can be processed
as-is by Grady’s method and the proposed weight function for the multivariate
Gaussian case. Bian’s methods, that only operate on scalar value images, are
applied to the magnitude images.

Overall, the mean scores imply that in this specific case the proposed method
for the appropriate image model (2D Gaussian noise) performs roughly on par
with competing methods by Bian et al. [4,5] operating on the magnitude im-
age (Figure 9), which suggests that the practice of approximating the Rician
distribution in MRI magnitude images with a Gaussian [1] works well in prac-
tice. Notably, our method benefits from the 2D information compared to the
magnitude-variant, while Grady’s method benefits only in some cases and per-
forms considerably worse overall.

6 Conclusion

We have presented a general framework to derive noise model specific weight
functions for random walker segmentation. Under the assumption of a known
noise model, our framework enables the derivation of a weight function based
on the Bhattacharyya coefficient, which takes the pixel distribution into account
and is thus robust against noise. We have derived the specific weight functions
for Poisson and Gaussian noise with global and region-specific variance and show
their suitability in the segmentation of synthetic as well as real world data.

Our method may further be applied to other domains by computing the
explicit weight functions in Equation 3. Examples include magnitude images with
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Rician noise [1], raw images of digital imaging sensors with Poissonian-Gaussian
noise [13], SAR images with speckle noise modeled by Gamma, Weibull or Fisher
distributions [27,46]. Additionally, extensions of the random walker algorithm
(e.g. random walker with restarts [17,22], non-local random walker [47]) can
easily be incorporated into our framework. Applications beyond segmentation
could also benefit from the improved weight function, such as random walker for
visual tracking [24], target detection [35], and saliency detection [20].

Since the main contribution of this work is the definition and derivation of
a similarity measure for pixel values in the presence of noise, this similarity
measure and the related Hellinger distance function [18] can be used in other
methods, e.g. graph cut algorithm [6], live wire segmentation [33] and extensions.
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on level set active contour segmentation. IEEE Trans. on PAMI 26(6), 799–803
(2004)



A Framework for Noise Model-Aware Random Walker Image Segmentation 15

30. Mathewlynn, S., Collins, S.: Volume and vascularity: Using ultrasound to unlock
the secrets of the first trimester placenta. Placenta 84, 32–36 (2019)

31. McGuinness, K., O’Connor, N.E.: Toward automated evaluation of interactive seg-
mentation. Computer Vision Image Understanding 115(6), 868–884 (2011)

32. Meila, M.: Comparing clusterings by the variation of information. In: Proc. of 16th
Annual Conf. on Computational Learning Theory and 7th Kernel Workshop. pp.
173–187. Springer (2003)

33. Mortensen, E.N., Morse, B., Barrett, W., Udupa, J.: Adaptive boundary detection
using” live-wire” two-dimensional dynamic programming. Computers in Cardiol-
ogy pp. 635–635 (1992)

34. Nielsen, F., Boltz, S.: The Burbea-Rao and Bhattacharyya centroids. IEEE Trans.
on Information Theory 57(8), 5455–5466 (2011)

35. Qin, Y., Bruzzone, L., Gao, C., Li, B.: Infrared small target detection based on
facet kernel and random walker. IEEE Trans. on Geoscience and Remote Sensing
57(9), 7104–7118 (2019)

36. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association 66(336), 846–850 (1971)
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Appendix

This Appendix briefly describes the code of the python library (section A) and
data used for evaluation (section B) before providing a more detailed version
of section 4 in section C of the appendix. All contents presented here, i.e. the
python library, the Data including annotations and the detailed derivations, are
publicly available.

A Python Library

We provide the python library that implements the random walker method in
combination with the presented weight functions (in addition to the weight func-
tions by Grady [16] and Bian et al. [4,5]) online6. In addition to the library code
itself, all scripts used to generate quantitative and qualitative results in the pa-
per are also provided in the sub folder evaluation. Please refer to the provided
Readme.md files in the repository for details about compilation and usage.

B Data Used for Evaluation

In order to facilitate reproducibility of the reported results, we also make the data
that was used for quantitative and qualitative evaluation available online7. This
includes the FIM [37] larvae images with corresponding pixel-wise ground truth
class labels and the pixel-wise class labels for images from the FastMRI [23]
dataset. Due to restrictions imposed by the creators of the FastMRI dataset,
we are unable redistribute the reconstructed MRI files directly, but we provide
detailed a description of how to create the used images in the Readme.md file in
the evaluation sub folder in the code repository (see above).

C Detailed Derivations for Concrete Noise Models

In this section, we derive all the equations in more detail. For the sake of read-
ability and to avoid having to jump between the two documents while reading,
we provide all content from section 4 from the main paper here again, but also
reference the main paper when necessary. The equations are numbered contin-
uously, which means that equations (1)-(10) are in the main paper and this
Appendix starts from equation (11).

In this section we apply the framework presented in section 3 of the main
paper to three noise models relevant to various imaging modalities and obtain
closed form solutions. We choose Poisson noise as it is very common in biology
[37,45], as well as Gaussian noise - with two different configurations: fixed vari-
ance over the whole image and variable variance per image region - which is

6 https://zivgitlab.uni-muenster.de/ag-pria/rw-noise-model
7 https://uni-muenster.sciebo.de/s/DK9F0f6p5ppsWXC

https://zivgitlab.uni-muenster.de/ag-pria/rw-noise-model
https://uni-muenster.sciebo.de/s/DK9F0f6p5ppsWXC
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common in many images including medically relevant techniques like MRI and
CT. For Poisson noise this is the first derivation of a noise model specific weight
function for random walker, whereas the two versions of Gaussian noise model
have been considered in [4,5], respectively.

C.1 Poisson Noise

In this subsection we assume an image that is affected by Poisson noise (also
called “shot noise“), which occurs, for example, as an effect of photon or electron
counting in imaging systems (e.g., fluorescence microscopy [45], positron emission
tomography [41], low dose CT [26]). In this model the measured pixel values
x, y ∈ N are drawn from a Poisson distribution with unknown parameter κ = λ,
which corresponds to the true pixel value. We assume the prior distribution of λ
to be uniform in P = (0, a) for some sufficiently large value a. For convenience,
we define X̃ =

∑
x∈X x and Ỹ =

∑
y∈Y y. The following calculations give a

detailed version of Equation 5 from the main paper.

wXY = BC(p(·|X), p(·|Y )) =

∫
Pκ

√∏
x∈X p(x|κ)

∏
y∈Y p(y|κ)dκ√∫

Pκ

∏
x∈X p(x|κ)dκ

∫
Pκ

∏
y∈Y p(y|κ)dκ

(11)

=

√∫
P

∏
x∈X

e−λλx

x!

∏
y∈Y

e−λλy

y! dλ√∫
P

∏
x∈X

e−λλx

x! dλ
∫
P

∏
y∈Y

e−λλy

y! dλ
(12)

=

∫
P

√∏
x∈X e

−λλxe−λ
∏
y∈Y λ

ydλ√∫
P

∏
x∈X e

−λλxdλ
∫
P

∏
y∈Y e

−λλydλ
(13)

=

∫
P

√
e−nλλ

∑
x∈X xe−nλλ

∑
y∈Y yidλ√∫

P
e−nλλ

∑
x∈X xdλ

∫
P
e−nλλ

∑
y∈Y ydλ

(14)

=

∫
P
e−nλλ

X̃+Ỹ
2 dλ√∫

P
e−nλλX̃dλ

∫
P
e−nλλỸ dλ

(15)

=

∫
P
e−nλλ

X̃+Ỹ
2 dλ√∫

P
e−nλλX̃dλ

∫
P
e−nλλỸ dλ

n
X̃+Ỹ

2√
nXnỸ

(16)

=

∫
Pa
e−nλ(nλ)

X̃+Ỹ
2 dλ√∫

Pa
e−nλ(nλ)X̃dλ

∫
Pa
e−nλ(nλ)Ỹ dλ

(17)
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L:=nλ
=

∫
Pna

e−LL
X̃+Ỹ

2
1
ndL√∫

Pna
e−LLX̃ 1

ndL
∫
Pna

e−LLỸ 1
ndL

(18)

→
a→∞

∫∞
0
e−LL

X̃+Ỹ
2 dL√∫∞

0
e−LLX̃dL

∫∞
0
e−LLỸ dL

(19)

=
Γ ( X̃+Ỹ

2 + 1)√
Γ (X̃ + 1)Γ (Ỹ + 1)

(20)

After inserting the definition of the Poisson PDF into Equation 3 simple calcu-
lations lead to the equation in Equation 17. Then a substitution of L := nλ is
used. Afterwards we let a tend to infinity (see below for discussion on the con-
vergence) and in the last line, the (integral) definition of the Gamma function
is used.

About the convergence in Equation 19: Since we cannot a priori set a =∞,
because there is no uniform distribution on R, the resulting formula in Equation 5
does not equal the fraction of Gamma functions, but some approximation of
that. Since however, the exponential function e−L decreases very fast, even in

comparison to the polynomial term LX̃ (and according polynomial terms in
the other integrals), the precision for large enough a is good enough to assume
equality in numerical computations.

In practice, the lgamma function (i.e., the logarithm of gamma function, pro-
vided in standard python and c++ libraries) should be used to avoid numerical
overflows:

wXY = exp

(
lgamma

(
X̃ + Ỹ

2
+ 1

)
− lgamma(X̃ + 1) + lgamma(Ỹ + 1)

2

)
(21)

If this function is unavailable, one can also use the approximation wXY =

exp(− 1
2 (
√
X̃ −

√
Ỹ )2), which is the Bhattacharyya-coefficient for two Poisson

probability density functions [34] with λ1 = X̃ and λ2 = Ỹ , respectively. Ex-
periments suggest that the absolute difference between this approximation and
Equation 20 is below 0.05 for X̃, Ỹ > 2.

C.2 Multivariate Gaussian Noise with Constant Covariance

In this subsection we assume an m-channel image with concrete pixel values
x, y ∈ Rm. The true image values are perturbed by additive Gaussian noise and
are thus modeled by a Gaussian PDF with (unknown) parameter κ = µ ∈ Rm,
which also corresponds to the true pixel value. This noise model applies, for
example, in complex valued MRI images [19]. Further, we assume that µ is
priorly uniformly distributed in P = (−a, a)m for some sufficiently large value
a. The covariance matrix C is assumed to be constant for the whole image. It
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should be noted that the special case m = 1 is the setting that is assumed in
prior work [4]. Starting from Equation 2 we obtain:

p(µ|X) =

∏
x∈X p(x|µ)∫

P

∏
x∈X p(x|µ̃)dµ̃

(22)

=

∏
x∈X

1√
(2π)m det(C)

exp(− 1
2 (x− µ)TC−1(x− µ))∫

P

∏
x∈X

1√
(2π)m det(C)

exp(− 1
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(23)

=

∏
x∈X exp(− 1
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P

∏
x∈X exp(− 1
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(24)

=
exp(− 1

2
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x∈X(x− µ)TC−1(x− µ))∫

P
exp(− 1

2
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x∈X(x− µ̃)TC−1(x− µ̃))dµ̃

(25)

We consider the sum term in the exponents separately first:

∑
x∈X

(x− µ)TC−1(x− µ)

=
∑
x∈X

xTC−1x−
∑
x∈X

xTC−1µ−
∑
x∈X

µTC−1x+ nµTC−1µ (26)

=
∑
x∈X

xTC−1x− n

(∑
x∈X

xT

n
C−1µ−

∑
x∈X

µTC−1
x

n
+ µTC−1µ

)
(27)

=
∑
x∈X

xTC−1x− n(
∑
x∈X

x

n
)TC−1(

∑
x∈X

x

n
) + n(

∑
x∈X

x

n
)TC−1(

∑
x∈X

x

n
) (28)

− n

(∑
x∈X

x

n

T
C−1µ−

∑
x∈X

µTC−1
x

n
+ µTC−1µ

)
(29)

=
∑
x∈X

xTC−1x− 1

n
(
∑
x∈X

x)TC−1(
∑
x∈X

x) + (
∑
x∈X

x

n
− µ)TC−1(

∑
x∈X

x

n
− µ))

(30)

=:OS + (
∑
x∈X

x

n
− µ)T

(
C

n

)−1
(
∑
x∈X

x

n
− µ) (31)

It should be noted that the first two summands of Equation 30 is defined as
OS , which is independent of µ. Inserting this into Equation 25 we can simplify
further:
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p(µ|X) =
exp(− 1

2

∑
x∈X(x− µ)TC−1(x− µ))∫

P
exp(− 1

2

∑
x∈X(x− µ̃)TC−1(x− µ̃))dµ̃

(32)

=
exp(− 1

2 (OS + (
∑
x∈X

x
n − µ)T

(
C
n

)−1
(
∑
x∈X

x
n − µ))∫

P
exp(− 1

2 (OS + (
∑
x∈X

x
n − µ̃)T

(
C
n

)−1
(
∑
x∈X

x
n − µ̃))dµ̃

(33)

=
exp(− 1

2OS) exp(− 1
2 (
∑
x∈X

x
n − µ)T

(
C
n

)−1
(
∑
x∈X

x
n − µ))∫

P
exp(− 1

2OS) exp(− 1
2 (
∑
x∈X

x
n − µ̃)T

(
C
n

)−1
(
∑
x∈X

x
n − µ̃))dµ̃

(34)

=
exp(− 1

2 (
∑
x∈X

x
n − µ)T

(
C
n

)−1
(
∑
x∈X

x
n − µ))∫

P
exp(− 1

2 (
∑
x∈X

x
n − µ̃)T

(
C
n

)−1
(
∑
x∈X

x
n − µ̃))dµ̃

(35)

=

1√
(2π)m det(Cn )

exp(− 1
2 (
∑
x∈X

x
n − µ)T

(
C
n

)−1
(
∑
x∈X

x
n − µ))∫

P
1√

(2π)m det(Cn )
exp(− 1

2 (
∑
x∈X

x
n − µ̃)T

(
C
n

)−1
(
∑
x∈X

x
n − µ̃))dµ̃

(36)

a→∞→
1√

(2π)m det(Cn )
exp(− 1

2 (
∑
x∈X

x
n − µ)T

(
C
n

)−1
(
∑
x∈X

x
n − µ))∫

Rm
1√

(2π)m det(Cn )
exp(− 1

2 (
∑
x∈X

x
n − µ̃)T

(
C
n

)−1
(
∑
x∈X

x
n − µ̃))dµ̃

(37)

=
1√

(2π)m det(Cn )
exp

(
−1

2
(µ−

∑
x∈X

x

n
)T
(
C

n

)−1
(µ−

∑
x∈X

x

n
)

)
(38)

In the last step, we make use of the fact that the denominator is the integral
over the density of a Gaussian distribution, which is 1. About the convergence
in Equation 37: Since we can not a priori set a =∞, because there is no uniform
distribution on Rm, the resulting distribution will not exactly be Gaussian, but
Gaussian, where the density is ”cut off” in all directions at −a and a (and scaled
accordingly). Since we have that this density function converges point wise to
the density function of a Gaussian distribution, we also have Convergence in
Distribution for the according random variables (with Scheffés Lemma).

Equation 38 shows that p(µ|X) is simply the density function of a normal
distribution with mean

∑
x∈X

x
n =: X̄ and covariance matrix C

n (and p(µ|Y )
accordingly). As shown in [34] the Bhattacharyya coefficient is then:

wXY = BC(p(·|X), p(·|Y )) (39)

= exp

(
− 1

8
(X̄ − Ȳ )T

(
C

n

)−1
(X̄ − Ȳ )

)
(40)

It should be noted that in [34] a square root is missing in the denominator of
the second summand of the respective formula in Table 1.
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C.3 Gaussian Noise with Signal-Dependent Variance

In this subsection we assume additive Gaussian noise on single channel images
where, however, σ2 differs between image regions (in contrast to subsection 4.2 in
the main paper which assumes a global, constant C = σ2 for m=1). Thus, pixel
values are modeled by x = µX +N (0, σ2

X ). A special case is Loupas noise, where
σ2
X =

√
µXσ

2 for some fixed (global) σ2. It applies, for example, to speckled
SAR and medical ultrasound images [5,44] Thus, we have to estimate µ and σ2

simultaneously and set κ from Equation 3 to be (µ, σ2).

Before go into solving Equation 3 for this case, we calculate the general form
of an integral that will be used later:

(
1

2π

)m−1 ∫
(0,∞)

y
−(m−1)

2 exp

−1

y

1

4m

m∑
i,j=1

(xi − xj)2
 dy (41)

=

(
1

2π

)m−1 ∫
(0,∞)

y
3
2 (m−1)

∣∣−3y−4
∣∣ exp

−y3 1

4m

m∑
i,j=1

(xi − xj)2
 dy (42)

=3

(
1

2π

)m−1 ∫
(0,∞)

y
3m−11

2 exp

−y3 1

4m

m∑
i,j=1

(xi − xj)2
 dy (43)

=3

(
1

2π

)m−1
1

3

 1

4m

m∑
i,j=1

(xi − xj)2

−m+3

2

Γ

(
m− 3

2

)
(44)

=

(
1

2π

)m−1
Γ

(
m− 3

2

) 1

4m

m∑
i,j=1

(xi − xj)2

−m+3

2

(45)

We used:

1. In Equation 42: Substitution of integration variable with y 7→ y−3, with
substitution derivative −3y−4.

2. In Equation 44: Formula from the collection of integrals, series and products
[38], where m ≥ 4 is required, which does not matter in practice, since m will
be the size of the neighborhood, where the smallest realistic size is 3×3 = 9.

To solve Equation 3 we set Pa := (0, a) × (−a, a) (again, a sufficiently large)
and assume the prior distribution of (µ, σ2) to be uniform. We then have to
calculate the integrals in the enumerator and denominator of Equation 3, which
can be reformulated to a similar form as Equation 41 and then can be calculated
analogously. It should be noted that in the following derivation, the terms from



A Framework for Noise Model-Aware Random Walker Image Segmentation 23

the third row on span two lines each.

BC(p(·|X), p(·|Y ))

=

∫
P

∏
x∈X

√
p(x|(µ, σ2))p(y|(µ, σ2))d(µ, σ2)√∫

P

∏
x∈X p(x|(µ, σ2))d(µ, σ2)

∫
P

∏
x∈X p(y|(µ, σ2))d(µ, σ2)

(46)

=

∫
P

∏
z∈X∪Y

√
p(z|(µ, σ2))d(µ, σ2)√∫

P

∏
x∈X p(x|(µ, σ2))d(µ, σ2)

∫
P

∏
y∈Y p(y|(µ, σ2))d(µ, σ2)

(47)

=

∫
P

∏
z∈X∪Y

√
1√

2πσ2
exp(− 1

2σ2 (z − µ)2)d(µ, σ2)√∫
P

∏
x∈X

1√
2πσ2

exp(− 1
2σ2 (x− µ)2))d(µ, σ2)

1√∫
P

∏
y∈Y

1√
2πσ2

exp(− 1
2σ2 (y − µ)2))d(µ, σ2)

(48)

=

∫
P

1√
2πσ2

n
√

exp(− 1
2σ2

∑
z∈X∪Y (z − µ)2)d(µ, σ2)√∫

P
1√

2πσ2

n
exp(− 1

2σ2

∑
x∈X(x− µ)2)d(µ, σ2)

1√∫
P

1√
2πσ2

n
exp(− 1

2σ2

∑
y∈Y (y − µ)2)d(µ, σ2)

(49)

=

∫
P

1√
2πσ2

n
exp(− 1

4σ2

∑
z∈X∪Y (z − µ)2)d(µ, σ2)√∫

P
1√

2πσ2

n
exp(− 1

2σ2

∑
x∈X(x− µ)2))d(µ, σ2)

1√∫
P

1√
2πσ2

n
exp(− 1

2σ2

∑
y∈Y (y − µ)2))d(µ, σ2)

(50)

We again first calculate the exponent, to get to the form of Equation 41. The
first equation follows in similar fashion as Equation 31.∑
x1∈X

(x1 − µ)2 = n(
1

n

∑
x1∈X

x1 − µ)2 +
∑
x1∈X

x21 −
1

n
(
∑
x1∈X

x1)2 (51)

= n(
1

n

∑
x1∈X

x1 − µ)2 +
∑
x1∈X

x21 −
1

n

∑
x1∈X

∑
x2∈X

x1x2 (52)

= n(
1

n

∑
x1∈X

x1 − µ)2 +
1

2n
(n
∑
x1∈X

x21 + n
∑
x2∈X

x22 −
∑
x1∈X

∑
x2∈X

2x1x2)

(53)

= n(
1

n

∑
x1∈X

x1 − µ)2 +
1

2n
(
∑
x1∈X

∑
x2∈X

x21 + x22 − 2x1x2) (54)

= n(
1

n

∑
x1∈X

x1 − µ)2 +
1

2n

∑
x1∈X

∑
x2∈X

(x1 − x2)2 (55)
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Using Equation 55 we can further simplify Equation 50. We first advance
with one factor of the denominator of equation Equation 50:

∫
P

1√
2πσ2

n

exp

(
− 1

2σ2

∑
x1∈X

(x1 − µ)2

)
d(µ, σ2)

=

∫
P

1√
2πσ2

n

exp

(
− n

2σ2
(

1

n

∑
x1∈X

x1 − µ)2 − 1

2σ2

1

2n

∑
x1∈X

∑
x2∈X

(x1 − x2)2

)
d(µ, σ2)

(56)

=

∫
(0,a)

1√
2πσ2

n−1
exp

(
− 1

4σ2n

∑
x1∈X

∑
x2∈X

(x1 − x2)2

)
∫
(−a,a)

1√
2πσ2

exp

− n

2σ2

(
1

n

∑
x1∈X

x1 − µ

)2
 dµ dσ2 (57)

=

∫
(0,a)

1√
2πσ2

n−1
exp

(
− 1

4σ2n

∑
x1∈X

∑
x2∈X

(x1 − x2)2

)
∫
(−a,a)

1√
n

1√
2π σ

2

n

exp

− 1

2σ
2

n

(
1

n

∑
x1∈X

x1 − µ

)2
 dµ dσ2 (58)

→
a→∞

∫
(0,∞)

1√
2πσ2

n−1
exp

(
− 1

4σ2n

∑
x1∈X

∑
x2∈X

(x1 − x2)2

)

1√
n

∫
(−∞,∞)

1√
2π σ

2

n

exp

− 1

2σ
2

n

(
1

n

∑
x1∈X

x1 − µ

)2
 dµ dσ2 (59)

=
1√
n

∫
(0,∞)

1√
2πσ2

n−1
exp

(
− 1

4σ2n

∑
x1∈X

∑
x2∈X

(x1 − x2)2

)
dσ2 (60)

=
1√
n

(
1

2π

)n−1
Γ

(
n− 3

2

) 1

4n

∑
x1,x2∈X

(x1 − x2)2


−n+3

2

(61)

Here we used that the inner Integral in Equation 60 is the density function of

a Gaussian distribution with Variance σ2

n and expected value 1
n

∑n
i=1 xi (note,

we are integrating by µ), which integrates to 1. In Equation 61 we make use of
Equation 45.
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The last remaining step is to apply equations leading to Equation 61 to the
nominator and denominator in Equation 50. We get∫

P

1√
2πσ2

n

exp

(
− 1

2σ2

∑
x∈X

(x− µ)2)

)
d(µ, σ2)

=
1√
n

(
1

2π

)n−1
Γ

(
n− 3

2

) 1

4n

n∑
x1,x2∈X

(x1 − x2)2


−n+3

2

and (62)

∫
P

1√
2πσ2

n

exp

(
− 1

4σ2

∑
z∈X∪Y

(z − µ)2)

)
d(µ, σ2)

=
1√
n

(
1

2π

)n−1
Γ

(
n− 3

2

) 1

16n

∑
z1,z2∈X∪Y

(z1 − z2)2


−n+3

2

(63)

The full fraction then reads:

1√
n

(
1
2π

)n−1
Γ
(
n−3
2

) (
1

16n

∑
z1,z2∈X∪Y (z1 − z2)2

)−n+3
2√(

1√
n

(
1
2π

)n−1
Γ
(
n−3
2

))2 (
1
4n

∑
x1,x2∈X(x1 − x2)2 1

4n

∑
y1,y2∈Y (y1 − y2)2

)−n+3
2

(64)

Canceling the fraction yields the result:

BC(p(·|X), p(·|Y ) =

4

√∑
x1,x2∈X(x1 − x2)2

∑
y1,y2∈Y (y1 − y2)2∑

z1,z2∈Z(z1 − z2)2


n−3
2

(65)

The quadratic terms can be simplified individually:

∑
x1,x2∈X

(x1 − x2)
2

=
∑
x1∈X

(
2nx21 − 2

∑
x2∈X

x1x2

)
(66)

=2n
∑
x1∈X

x21 − 2
∑
x1∈X

x1
∑
x2∈X

x2 (67)

=2n

(∑
x1∈X

x21 − n

(
1

n

∑
x1∈X

x1

)(
1

n

∑
x1∈X

x1

))
(68)

=2n
(
nE
(
X2
)
− nE (X)

2
)

(69)

=2n2V ar (X) (70)

Note, that we used the biased estimator of the variance: V ar(X) = 1
n

∑
x∈X(x−

E(X))2. Using the unbiased estimator would imply a factor of n
n−1 . Since that
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is just a stylistic change, we decided to use this version to improve readability.
The simplification for the other quadratic terms work accordingly. Inserting into
Equation 65 and further simplifications yield:

BC(p(·|X), p(·|Y ) =

(
4

√
2n2V ar(X)2n2V ar(Y )

2(2n)2V ar(X ∪ Y )

)n−3
2

(71)

=

(√
V ar(X)V ar(Y )

V ar(X ∪ Y )

)n−3
2

(72)

Since this is a very compact representation, we decided to display this version
in the paper. We can however further transform the equation, to get a represen-
tation that has further advantages for numerical computations.

To do so, we use the following equality for the denominator:

V ar(X ∪ Y ) =
1

2n

∑
z1∈X∪Y

(
z1 −

1

2n

∑
z2∈X∪Y

z2

)2

(73)

=
1

2

 1

n

∑
x∈X

(
x− 1

2n

∑
z∈X∪Y

z

)2

+
1

n

∑
y∈Y

(
y − 1

2n

∑
z∈X∪Y

z

)2


(74)

We can now analogously transform both summands like shown here for the
first summand:

1

n

∑
x∈X

(
x− 1

2n

∑
z∈X∪Y

z

)2

(75)

=
1

n

∑
x∈X

(
x− 1

n

∑
x2∈X

x2 +
1

n

∑
x2∈X

x2 −
1

2n

∑
z∈X∪Y

z

)2

(76)

=
1

n

∑
x∈X

((
x− 1

n

∑
x2∈X

x2

)2

+ 2

(
x− 1

n

∑
x2∈X

x2

)(
1

n

∑
x2∈X

x2 −
1

2n

∑
z∈X∪Y

z

)

+

(
1

n

∑
x2∈X

x2 −
1

2n

∑
z∈X∪Y

z

)2)
(77)

=
1

n

∑
x∈X

(
x− 1

n

∑
x2∈X

x2

)2

+ 2

(
1

n

∑
x∈X

x− 1

n

∑
x2∈X

x2

)(
1

n

∑
x2∈X

x2 −
1

2n

∑
z∈X∪Y

z

)

+
1

n

∑
x∈X

(
1

n

∑
x2∈X

x2 −
1

2n

∑
z∈X∪Y

z

)2

(78)

=V ar(X) + (E(X)− E(X ∪ Y ))2 (79)
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where we used for the last equation, that the first factor of the second summand
in Equation 78 is 0 and that the inner summands of the third summand do not
depend on x. Next, we calculate

E(X)− E(X ∪ Y ) = E(X)− E(X) + E(Y )

2
=

E(X)− E(Y )

2
(80)

Applying this to both summands in Equation 74 gives us

V ar(X ∪ Y ) =
1

2

(
V ar(X) + V ar(Y ) +

(
E(X)− E(Y )

2

)2

+

(
E(X)− E(Y )

2

)2
)

(81)

=
V ar(X) + V ar(Y )

2
+

(
E(X)− E(Y )

2

)2

(82)

The whole equation for the BC distance then reads

BC(p(·|X), p(·|Y ) =

 √
V ar(X)V ar(Y )

V ar(X)+V ar(Y )
2 +

(
E(X)−E(Y )

2

)2


n−3
2

(83)

This formulation is preferable for numerical computations, since we do not have
to calculate V ar(X ∪ Y ), which is time saving.


	A Bhattacharyya Coefficient-Based Framework for Noise Model-Aware Random Walker Image Segmentation

