
D-InLoc++: Indoor Localization in Dynamic
Environments

Martina Dubenova[0000−0002−9936−292X], Anna
Zderadickova[0000−0001−6661−3078], Ondrej Kafka[0000−0003−4345−2309], Tomas

Pajdla[0000−0001−6325−0072], and Michal Polic[0000−0003−3993−337X]

CIIRC - Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical
University in Prague, Visual Recognition Group, Faculty of Electrical Engineering,

Czech Technical University in Prague. dubenma1@fel.cvut.cz

Abstract. Most state-of-the-art localization algorithms rely on robust
relative pose estimation and geometry verification to obtain moving ob-
ject agnostic camera poses in complex indoor environments. However,
this approach is prone to mistakes if a scene contains repetitive struc-
tures, e.g., desks, tables, boxes, or moving people. We show that the mov-
able objects incorporate non-negligible localization error and present a
new straightforward method to predict the six-degree-of-freedom (6DoF)
pose more robustly. We equipped the localization pipeline InLoc with
real-time instance segmentation network YOLACT++. The masks of
dynamic objects are employed in the relative pose estimation step and
in the final sorting of camera pose proposal. At first, we filter out the
matches laying on masks of the dynamic objects. Second, we skip the
comparison of query and synthetic images on the area related to the mov-
ing object. This procedure leads to a more robust localization. Lastly,
we describe and improve the mistakes caused by gradient-based compar-
ison between synthetic and query images and publish a new pipeline for
simulation of environments with movable objects from the Matterport
scans. All the codes are available on github.com/dubenma/D-InLocpp.

Keywords: visual localization · dynamic environments · robot naviga-
tion

1 Introduction

Accurate camera pose is required for many applications, such as self-driving
cars [10], navigation of mobile robots [13], or augmented reality [57]. The global
navigation satellite systems (GNSS) provide camera position within 4.9m for
GPS [47] and 4m for Galileo [7] while camera rotation remains unknown. The
accuracy of localization from Wi-Fi [37], or Bluetooth [33], based on the signal
strength varies a lot depending on the number and distance from signal broad-
casters. Moreover, these methods provide the camera position only. The inertial
measurement unit (IMU) allows camera pose tracking but cannot be employed
for 6DoF localization. The last and most popular approach is visual localization,

ar
X

iv
:2

20
9.

10
18

5v
1

 [
cs

.C
V

]
 2

1
Se

p
20

22

github.com/dubenma/D-InLocpp

2 M. Dubenova et al.

i.e., estimation of camera pose (i.e., position and orientation) given an RGB im-
age.

Visual localization [51,43,22] is a challenging task since even small changes in
camera pose lead to significant 3D mapping or navigation errors. In addition, the
indoor environment is often repetitive [55]. Moreover, many plain walls, windows,
or mirrors do not provide helpful information for localization. Another challenge
is that the environment is only rarely static and often contains a lot of movable
objects.

The main goal of this paper is to improve the visual localization so that it
becomes more robust in dynamic environments, i.e., environments with mov-
ing objects. The motivation for this step is that moving objects often lead to
significant changes in the scene, which make the localization algorithm work
inaccurately. Also, dynamic environments are more common in the real world,
making this improvement even more critical. We demonstrate a new method by
improving the state-of-the-art localization pipeline InLoc [51].

2 Related Work

The recently published localization pipelines show remarkable performance in
indoor spaces and urban environments [22,43,45]. The recent state-of-the-art
algorithms follow a common scheme:

– Image retrieval step describes query image by feature vector and finds the
most similar images in the database [8,38,39,21].

– Relative pose step finds local correspondences [31,17,18,40,49,27] between
the query image and the k most similar images selected in the image retrieval
step. Furthermore, the correspondences are verified by a robust model esti-
mator [58,50,15], [16,11,12,53,44] using a suitable relative pose solver [20,24,25].

– Absolute pose step constructs 2D-3D correspondences from 2D-2D corre-
spondences found in previous step. The correspondences are calculated for t
database images with the most inliers. Further, an absolute pose solver [28]
in a robust model estimator provides a camera pose proposals.

– Pose correction step optimizes [22,29,56] the camera pose proposals.
– Pose selection step evaluates the camera pose proposals by photometric

consistency and selects the most fitting candidate [6,9,30].

The last two steps are not included in run-time methods, e.g., [43]. Recently
published localization algorithms focus on improving specific modules while the
general scheme remains the same.

The images are usually described by NetVLAD [8] but several extensions, e.g.,
GeM [38], AP-GeM [39] and i-GeM [21] were published. Relative pose estimation
has experienced the largest evolution in recent years [23].

Key point detectors evolved from handcrafted, e.g., SIFT [31], to the learned
ones, e.g., SuperPoint [17], D2-Net [18], R2D2 [40], LoFTR [49] or a Key.Net [27]
paired with HardNet or SOSNet descriptors. The matching can start by Context

D-InLoc++: Indoor Localization in Dynamic Environments 3

Networks (CNe) [58,50] to pre-filter the outliers followed by RANSAC based (Lo-
RANCAS [15], DEGNSAC [16], GC-RANSAC [11], MAGSASC++ [12] or Deep-
MAGSAC [53]) or neural-network based (e.g., SuperGlue [44]) matches verifier.
There are also the end-to-end detectors + matchers, e.g., Sparse-NCNet [41] or
Patch2Pix [59]. Moreover, a list of relative pose solvers employed in the scope
of RANSAC-based algorithm, e.g., H4P [20], E5P [24], F7P [20] or F10e [25],
is available. Each combination of listed relative pose algorithms lead to differ-
ent camera pose accuracy and robustness. The most common among learned
key-point detectors is the SuperPoint [17] and the matching algorithm is the Su-
perGlue [44]. As far as we know, the latest approaches for detection and matching
of keypoints [23,27,53] were not published in a localization pipeline yet.

The absolute pose step estimates the camera pose by robust model estimator
(usually the Lo-RANSAC [15]). The constraints on a camera define the minimal
solver used, e.g., P3P, P4Pf [28] or PnP [20].

The pose correction step optimizes previously estimated camera poses. The
optimization requires additional time to run and improves the results mainly
in sparsely mapped indoor environments with texture-less areas, e.g., in the
InLoc [51] dataset. Therefore, it is employed mainly for offline indoor localiza-
tion. The Pixel-Perfect-SfM [29] adjusts keypoints by featuremetric refinement
followed by the featuremetric Bundle Adjustment (BA) [56]. The PCLoc [22]
generates ”artificial images” close to the camera pose proposal composed of re-
projected feature points. Further, the relative and absolute pose step runs again
to calculate camera pose from generated artificial image. As far as we know, the
combination of both mentioned methods was not published yet.

The last step of this standard scheme is the photometric verification of the
camera pose proposals. The online algorithms, e.g., the Hierarchical Localiza-
tion [43], do select the camera pose with the most inliers after the absolute pose
estimation step. The photometric verification requires a 3D model of the environ-
ment and appears beneficial in indoor spaces [51]. The idea is to render synthetic
images for the t camera pose proposals and compare them by pixel-wise patch
descriptors, e.g., DenseRootSIFT [9,30], with the query image. The rendering
can be done either by standard software as Pyrender [6] (implemented on In-
Loc), or Neural Rerendering in the Wild [34], or the NeRF in the Wild [34] to
obtain realistically looking synthetic images. As far as we know, the NeRF-based
approaches were not published in a localization pipeline yet.

As mentioned in the previous paragraph, the map format plays an important
role. The photometric verification cannot run if the 3D model of the environment
is unknown. The paper Torii et al. [54] shows that more database images in
the map lead to more accurate and robust localization. In the case of dynamic
environment, the map can be composed by [42,36].

The last direction of the research focuses on localization from a sequence of
images. Having a set of pictures with known poses in the local coordinate sys-
tem and the 2D-3D correspondences, we can utilize the generalized absolute pose
solver, e.g., gp3p or gp4ps [26], to get the global pose of the sequence of images.
The 2D keypoints are converted to 3D rays and aligned with 3D points from the

4 M. Dubenova et al.

map by Euclidean transformation. This approach was published in Stenborg et
al. [48].

Generally, there exists a number of extensions [23,53,25,34,29] that can be
used to improve individual modules of the state-of-the-art localization [19]. How-
ever, we would like to avoid mechanical replacement of particular methods and
open new unexplored yet important topics. As far as we know, the scenes with
movable objects were not addressed in detail yet. Our contributions are:

– the evaluation of localization accuracy in the environment with movable
objects

– implementation of D-InLoc++ that is robust against the mismatches caused
by movable objects

– new approach to comparing the synthetic and query images
– automated pipeline for testing the localization w.r.t. movable objects

The rest of the paper is organized as follows. The following section describes the
moving object filtering during the localization process. Further on, we show the
challenges related to the usage of DenseRootSIFT and propose a new solution
for comparing synthetic and query images. The fifth section describes a new
pipeline for generating synthetic datasets with movable objects. The last section
evaluates dynamic object filtering on the published datasets.

3 Dynamic Object Filtering

We propose a simple yet effective approach to dealing with movable objects. The
pseudocode of the algorithm is shown in Algorithm 1. Let us assume that we
have a static map realized as in the InLoc dataset [51]. The map consists of N
RGB-D images I = {I1, . . . , IN} with known camera poses Pi = {Ri, ti}, i.e., the
rotation Ri ∈ R3×3 and translation ti ∈ R3. Without loss of generality, we assume
no radial distortion and images are captured by the same camera. The camera
intrinsic parameters are the focal length f ∈ R and principal point p ∈ R2. The
depth images in the map are converted into meshMI by the Truncated Signed
Distance Function (TSDF) algorithm. The set of M query images is denoted by
Q = {Q1, . . . , QM}. If the same camera does not capture the query images and
the database images in the map, the resolution is adjusted in advance. Let us
assume that the query images Q already match the resolution of images I in the
database.

At first we add a preprocessing step, i.e., we extend the map with the cor-
respondences between the pairs of database images. The database images are
described by feature vectors (e.g., by NetVLAD) and keypoints (e.g., by Super-
Point). For the top k closest database images (computed as dot product between
feature vectors) are found tentative matches (e.g., by SuperGlue). Next, we verify
the tentative matches by relative pose constrains extracted from known camera
poses.

D-InLoc++: Indoor Localization in Dynamic Environments 5

Algorithm 1 The pseudo-code of D-InLoc++

1: Inputs: set of query images Q; map: RGB-D images I and camera poses PI ;
epipolar error threshold T , min. mask size γ, moving object criterion threshold δ

2: Outputs: camera poses PQ for query images Q;
3:
4: Pre-process the map (offline):
5: Mesh MI ← TSDF(I, PI);
6: Keypoints u(I), Visibility ids set YI , Points X I ← sparse reconstruction(I,PI)
7: Masks SI , DI , UI ← instance segmentation(I)
8: Masks SI , UI ← reassign small masks(γ, SI , UI)
9:

10: Localize query images (online):
11: PQ ← []
12: for each Qj ∈ Q do
13: Masks SQj , DQj , UQj ← instance segmentation(Qj)
14: Masks SQj , UQj ← reassign small masks(γ, SQj , UQj)

15: u(Qj) ← compute keypoints(Qj)
16: {T1, . . . , Tk} ∈ I ← find closest images(k, Qj , I)
17: PQj ← []
18: LQj ← []
19: for each T ∈ {T1, . . . , Tk} do
20: YQj ,T ← find correspondences 2D3D(compute matches(u(Qj), u(T), D(Ti),
D(Qi)), YI)

21: βT ← calculate moving object criteria((YQj ,T ∪ YI), u(Qj), UT)

22: βQj ← calculate moving object criteria((YQj ,T ∪ YI), u(Qj), UQj)
23: S∗T , D∗T ← reassign unknown masks(ST , DT , UT , (βT < δ))
24: S∗Qj

, D∗Qj
← reassign unknown masks(SQj , DQj , UQj , (βQj < δ))

25: Y∗Qj ,T
← filter moving objects matches(YQj ,T , D∗T , D∗Qj

)

26: PQj ,T , Y
+
Qj ,T

← estimate absolute pose((uI ∪ u(Qj)), X I , Y∗Qj ,T
)

27: LQj ← [LQj , count number of inliers(Y+
Qj ,T

)]

28: PQj ← [PQj , PQj ,T]
29: end for
30: P̄Qj ← sort poses descending(LQj , PQj)
31: L̄Qj ← []
32: for each p ∈ {1, . . . , l} do
33: Q̄j,p ← render image(P̄Q,p, MI)
34: L̄Qj ← [L̄Qj , compare synth and query image(Q̄j,p, Qj)]
35: end for
36: P̃Qj ← sort poses ascending(L̄Qj , P̄Qj)

37: PQ ← [PQ, P̃Qj ,1]
38: end for
39: return PQ;

6 M. Dubenova et al.

Let us define the calibration matrix K and camera center Ci as

K =

f 0 p1
0 f p2
0 0 1

 and Ci = −R>i t. (1)

We assume the Fundamental matrix F to equal

F = K−>R2[C2 −C1]×R
>
1 K
−1, (2)

and epipolar constrains for keypoint
[
u
(i)
1 u

(i)
2 1
]>

in the i-th and
[
u
(j)
1 u

(j)
2 1

]>
in the j-th image: [

u
(j)
1 u

(j)
2 1

]
F

u(i)1

u
(i)
2

1

 < T . (3)

The value T represents the threshold. If the equation 3 holds, the correspondence
{u(i),u(j)} is assumed to be correct (i.e., inlier) and stored in the map. All key-
points detected on database images are called u(I). The map is further extended
with points X I and the index set (i, j) ∈ YI storing the information that j-th
point Xj ∈ R3 is visible in i-th image Ii. This step is done by the function
sparse reconstruction(I,PI) on line 6 in the pseudocode of Algorithm 1.

Further, in the case of moving objects in the map, we run the instance seg-
mentation on database images I to have the object masks in advance. This
method separates the background from possibly movable instances of the ob-
jects. We assume three classes of objects, the static one CS , dynamic (moving)
one CD and movable (unknown) CU . Related masks in the image i are called Si,
Di, and Ui. The background is an example of static class CS . People and cars
are an example of CD and the rest of objects where we cannot decide in advance
is in CU .

The online localization process starts with segmentation of the images Q
by a real-time instance segmentation (e.g., the YOLACT++). We assume the
same classes for the objects as for the database images. The masks for single
query image Qj are called SQj for static, DQj for dynamic, and UQj for movable
objects. The image retrieval module extracts the feature vectors and finds the k
most similar images {T1, . . . , Tk} in the database, function find closest images(k,
Qj , I). Next, the algorithm calculates keypoints u(Qj), matches, and 2D-3D
correspondences YQj ,T between Qj and the database image T . All the keypoints
laying inside DT and DQj

masks are not assumed for computation of matches.
Next, we propose a simple criterion to decide which image areas out of UT and
UQj will be utilised further. At first, we check the instance segmentation masks
and all that are small enough, i.e., smaller than γ, are reassigned to ST or SQj

.
For the rest of object masks in UT and UQj

we calculate

βTs
= g(uTs

)− num px(uTs
) (4)

D-InLoc++: Indoor Localization in Dynamic Environments 7

Fig. 1. The images from left to right correspond to: the query image, the first and the
second most similar synthetic images sorted by the DenseRootSIFT criterion. It can
be seen that a completely wrong image has a better score because the gradient of the
background is almost identical to the gradient of the wall and pillar.

where g gives the number of observations with tracks of length ≥ 3 and a cor-
respondence in Qj that are laying in s-th object mask uTs ∈ UT . The vector for
all the masks is called βT for T image and βQj for Qj image. In other words,
we count the number of observations that have our query image in the track,
and the track has a length larger than three, i.e., the point in 3D is visible in
more than two views. Such tracks should appear if the object is static. Large
masks should contain more tracks fulfilling this condition. The num px func-
tion counts the number of pixels in some object mask, e.g., uTs . All the object
masks with βT > δ are reassigned to ST and βQj > δ to SQj . Remaining masks
are reassigned to DT or DQj

. This step creates masks S∗T , S∗Qj
for each pair of

query-database images. Only the keypoints and matches found in S∗T , S∗Qj
are

utilised in the next absolute pose estimation module.
Further, the algorithm follows the standard localization scheme, see Section 2.

The absolute pose module estimates the camera pose in the global coordinate
system. The pose correction module is skipped in our reference algorithm In-
Loc [51], and we do not assume it either. The last module of this scheme is
related to pose selection out of the proposals, and we discuss it in the following
section.

4 Image Selection Step

This step of the localization process selects the most appropriate pose among
all the proposals and, therefore, directly influences the results of the rest of
the pipeline. The standard approach to comparing the synthetic and real im-
ages starts with applying a path descriptor (e.g., the DenseRootSIFT) to all the
patches in both images. This provides a feature vector that describes the sur-
rounding area of each pixel. Then a median of the norms of related feature vector
differences is taken. Smaller values indicate greater similarity. This approach is
used in many algorithms, such as [51,22], for photometric comparison of a pair
of images.

However, this approach leads to several issues, as can be seen in Figure 1.
The first issue is that the gradient-based comparison of images does not take

8 M. Dubenova et al.

into account the colors. For example, the flat white walls have almost zero error
w.r.t. the background of the synthetic image. This is caused by lack of gradient
on both areas. If the indoor space consists of textureless corridors or rooms, the
poses looking outside the mapped area have a small error and may be selected.
Second, this approach does not consider movable objects and assumes the same
weight for all the pixels. An example of such objects can be people, chairs, doors,
and other equipment that is usually not static w.r.t. the walls, pillars, etc..

Because the starting position for the image selection step is several images, for
which similarity is to be pair-wisely compared, the first considered approach was
to use some already published learnable methods for relative pose estimation.
Various approaches also utilizing convolutional neural networks (CNN) for this
task were examined in [46]. Remarkable results regarding this issue were achieved
in [14]. However, in our case, we found it too narrowly focused on pose estimation.
So for our task, we opted for a more general approach similar to the one adopted
in [35]. Therefore, the foundation of our method is a CNN used as an image
encoder, EfficientNet [52]. This part of our method is a representational part,
i.e., it outputs a vector representation of what is in the images. This part is then
followed by a regression part - a fully connected layer.

To be more specific, the algorithm itself works as follows. Input is a set of
the top k proposed images Ik ⊆ I and query image Qi ∈ Q.

Inputs to our network are then all k pairs of images (Qi, Ij), where Ij ∈ Ik.
If rescaling is needed, both Qi and all Ij are reshaped to fit the CNN input
dimensions. Then instance segmentation masks and masks of the moving objects
in query image allow to select compared areas, by setting the pixels to white.

These pairs are then sequentially processed by the representational part, pro-
ducing feature vectors fi, fj ∈ R1280×l1×l2 . These are then fed into the regression
part and output score s ∈ R.

The value of s was trained to represent a measure of similarity of the images.
The ground truth values (targets) from the training dataset were computed as
min(1, (θ+ 10t)/50), the result of which is a value for each training pair ranging
in the interval from 0 to 1. The formula provides a value of 1 for everything that
exceeds the threshold of similarity, that is θ + 10t = 50, where θ is the angu-
lar difference between the two images and t distance between camera positions
ti, tj ∈ R3 computed as

θ = arccos

(
1

2
(trace(R)− 1)

)
, t = |ti − tj|, (5)

where R ∈ R3×3 is a rotation matrix representing rotation between cameras
corresponding to Qi and Ij , and ti, tj ∈ R3 are vectors of camera positions. The
parameter 10 in the mentioned formula was empirically set to balance the range
of values θ and t.

Finally, the comparison of our CNN-based approach (combined with Dense-
RootSIFT - the CNN serves as guidance for DSIFT as to which images to con-
sider) with other methods is in the Figure 5. These results were obtained on 180
query images and show the percentage of the cases when the chosen image pose
was within the thresholds shown in the figure.

D-InLoc++: Indoor Localization in Dynamic Environments 9

5 Dynamic Dataset Generation

Most of the current localization datasets [2] include entities such as people, doors,
and chairs that are seldom static. However, the masks of stationary and moving
objects are missing because manual labeling is time-consuming. We propose a
new pipeline that takes as input standard mapping technology with additional
models of movable objects. Our method generates camera poses and the RGB-D
images with masks of movable objects.

We chose the services provided by Matterport [3] as the scanning technol-
ogy of indoor spaces. To create the 3D model of the environment, the customer
can use a user-friendly application and a reasonably expensive scanner. The
scanner captures 360 degrees RGB-D images aligned to a single coordinate sys-
tem. However, these scans are not directly available as the RGB-D panoramic
images. We provide the script for downloading camera poses from the Matter-
port API endpoint. Further, Matterport API provides six square pictures of the
panoramic image projected onto the shape of a cube. These images follow the
global coordinate system, and we projected them back into panoramic images
by cube2sphere [1] library. Each panoramic image is projected into 36 RGB per-
spective images. These images are called cutouts [51]. The related depth images
are obtained by rendering the mesh in the AI Habitat [32] simulator.

In this way, we acquire a dataset representing a scene without any moving
objects. The simplest way to add moving objects to queries is by adding artificial
textures of the moving objects in the query images.

To have consistent data for the localization of RGB-D image sequences, we
propose to add the movable objects directly into the 3D model of the environ-
ment to preserve the geometry. AI Habitat renders the depth, semantic masks,
and RGB images. However, the RGB cutouts channels have higher quality than
rendered images. Therefore, the script replaces any image data outside the masks
of movable objects with original cutouts projected from panoramic images. An
example of such an image can be seen in Figure 3.

Published codes simplify the creation of datasets with movable objects and
speed up further development.

6 Experimental Evaluation

This section compares the original localization pipeline and the adjusted method
by robust filtering of movable objects. A new dynamic localization dataset gen-
erator produced all the data utilized here.

6.1 Composition of Test Datasets

As far as we know, datasets with ground truth semantic masks for movable
and static objects were not published yet [19]. We provide such a dataset. We
recorded a real environment, i.e., the Hospital space. An example of recon-
structed space is in Figure 2. For recording, we used the device the Matterport

10 M. Dubenova et al.

Fig. 2. The visualization of the Hospital space. Purple dots show the positions of
Matterport scans that are in Matterport terminology referred to as sweeps. The sweeps
that are used to generate query images are highlighted by showing their coordinate
systems.

Pro 3D Camera [4]. We aimed to have around 1.5 meters between the camera
locations and cover the whole space during the capturing. The Hospital space
contains 116 scans. It resulted in 696 images of skyboxes, i.e., images projected
into cube faces, provided by Matterport API. These images have a resolution
of 2048x2048 pixels. We used them to compose 116 panoramic images with a
resolution of 8192x4096 pixels. Next, we downloaded the dense reconstruction
model. To generate the cutouts, we adopted the same strategy as presented in
InLoc [51], i.e., generated 36 images out of one panoramic image using a sam-
pling of 30 degrees in yaw and ±30 degrees in pitch angles. This gave us 4176
cutouts in total. To project the panoramic images into the perspective ones, we
have chosen the HoloLens photometric camera intrinsic parameters, i.e., the focal
length f = 1034, principal point p = [672, 378] and images resolution 1344× 756
pixels. Anyone can adjust these parameters in the dataset generation pipeline.

Further, we randomly added objects inside the reconstructed area. We manu-
ally checked if the object collided with any other meshes and moved such objects
to a new location. The rendering of the mesh with moving objects is implemented
in AI Habitat and takes about 0.35 seconds/image on a personal laptop. AI Habi-
tat requires the input in the .glb format. The script employs obj2gltf [5] library
for the conversion of all the models (i.e., objects, and the environment). The AI
Habitat generates the synthetic images and masks for static and movable objects
in a way that they correspond to each cutout. In the case of dynamic datasets,
the rendered texture of moving objects replaces related areas in the cutouts of
query images. The resulting image can be seen in Figure 3. The database images
do not contain any moving objects.

Generally, we created two datasets: static and dynamic. The dataset without
any dynamic objects is called a static dataset. The dynamic dataset has the
objects placed on the ground with the average area of the objects masking 20.63%
of the whole query image for ground truth masks and 13.09% from proposed
instance segmentation. We used 15 of the Matterport scans to generate query

D-InLoc++: Indoor Localization in Dynamic Environments 11

images that all face only the horizontal direction to simulate a camera on a
robot, i.e., 180 queries for the Hospital scene. The rest of the images is utilized
for creating the localization map.

6.2 Evaluation

The main part of this paper is to show the influence of movable objects appearing
in the localization dataset. We compared four main scenarios, i.e., running

1. original Inloc,
2. improvement with neural network (InLoc++),
3. improvement with filtering of matches (D-InLoc),
4. improvement with combination of 2) and 3) (D-InLoc++).

Ablation Study The localization pipelines follow common steps, such as rel-
ative and absolute pose estimation. These algorithms are, in general, prone to
errors. A common issue is that a subset of outliers is marked as inliers. The
pose is then optimized to minimize the error w.r.t. the outliers. Let us show an
example of how the semantic masks work on a query image (see Figure 3).

Fig. 3. The example of the query image and masks. The top left image is a query
image without any moving objects. The top right image is a dynamic query with added
objects. The bottom left image shows the ground truth masks of the added objects.
The bottom right image shows the result of our instance segmentation using YOLACT.

The relative pose correspondences are filtered according to YOLACT masks
(Figure 3) because of laying on movable objects. It can be seen that a significant

12 M. Dubenova et al.

part of the correspondences would distort the relative pose estimation step and
allow further propagation of mismatches. The image selection step (i.e., the
EfficientNet B3 + fully connected layer projection head outputting one number)
was trained using 20k image pairs, with 5% employed as test set and the rest
as the training set; Adam optimizer with learning rate 0.0001; MSE loss; batch
size of 16.

Fig. 4. The query image at left and its corresponding rendered synthetic images. The
center image shows the best pose candidate using DSIFT only. The right one is using
a combination of DSIFT and CNN.

Quantitative Evaluation This part shows the performance of the localization
with and without filtering moving objects. Our map Dynamic Broca gathers
3636 RGB-D images with known camera poses. We further assume a set of 180
query images. The dataset has 20.63% of the mean query images occupied by
moving objects. The details about the dataset are in Section 6.1.

The comparison is shown in Figure 5. In our experiments, we assumed YOLACT
classes background, TV and refrigerator as static and the class person as dy-
namic object classes. It leads to the 86.9% accuracy of the moving objects masks
compared to ground truth masks. The moving object criterion threshold was
δ = 10−9. We can see that the proposed straightforward solution for filtering
moving objects improves the localization on the dynamic dataset and is further
improved with the use of convolutional neural network.

Conclusion This paper opens the essential and not fully explored topic of
movable object filtering in the scope of visual localization. We publish a new
simple algorithm that detects moving objects based on the query and database
images’ track lengths and instance segmentation masks. The instance segmenta-
tion masks are categorized into moving and static classes and utilized to avoid
the propagation of the outliers through the localization process. Mainly, the
propagation of the outliers that are close to correct matches and influences the
accuracy of camera poses. The results show non-negligible improvement, i.e.,
we reach approximately 7% more camera poses within the threshold of 1m for
a dataset where movable objects occupy 20.63% of query images. The second
contribution of this paper is that we list the common mistakes of gradient-based
image comparison and propose to select the most suitable camera pose by convo-
lutional neural network instead of handcrafted DenseRootSIFT. Lastly, to speed

D-InLoc++: Indoor Localization in Dynamic Environments 13

up this area’s development, we introduce a new generator of localization datasets
with moving objects.

Fig. 5. The comparison of original InLoc (blue dashed), InLoc++ (red), D-InLoc (yel-
low) and D-InLoc++ (purple) on Dynamic Broca dataset. The rotation error threshold
is 10% degrees. We show the localization improvement on images with moving objects
occupancy of more than 30% of the image. The filtering of moving objects (D-InLoc++)
improves the overall localization accuracy in comparison with original InLoc algorithm.

Acknowledgements. This research was supported by the European Regional
Development Fund under IMPACT No. CZ.02.1.01/0.0/0.0/15 003/0000468, EU
H2020 ARtwin No. 856994, and EU H2020 SPRING No. 871245 Projects.

14 M. Dubenova et al.

References

1. cube2sphere 0.2.1. https://pypi.org/project/cube2sphere/, accessed: 2022-5-11
2. Localization datasets. https://www.visuallocalization.net/datasets/, accessed:

2022-5-31
3. Matterport. https://matterport.com/, accessed: 2022-5-20
4. Mattreport Pro 3D Camera. https://matterport.com/cameras/pro2-3D-camera,

accessed: 2022-5-20
5. obj2gltf github repository. https://github.com/CesiumGS/obj2gltf, accessed:

2022-5-20
6. Pyrender. https://pyrender.readthedocs.io/en/latest/, accessed: 2022-5-14
7. Agency, E.S.: Galileo (2021), https://gssc.esa.int/navipedia/index.php/Galileo

Performances
8. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: Netvlad: Cnn ar-

chitecture for weakly supervised place recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5297–5307 (2016)

9. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve
object retrieval. In: 2012 IEEE conference on computer vision and pattern recog-
nition. pp. 2911–2918. IEEE (2012)

10. Badue, C., Guidolini, R., Carneiro, R.V., Azevedo, P., Cardoso, V.B., Forechi, A.,
Jesus, L., Berriel, R., Paixao, T.M., Mutz, F., et al.: Self-driving cars: A survey.
Expert Systems with Applications 165, 113816 (2021)

11. Barath, D., Matas, J.: Graph-cut ransac. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 6733–6741 (2018)

12. Barath, D., Noskova, J., Ivashechkin, M., Matas, J.: Magsac++, a fast, reliable
and accurate robust estimator. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 1304–1312 (2020)

13. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: A survey.
Journal of intelligent and robotic systems 53(3), 263–296 (2008)

14. Chen, K., Snavely, N., Makadia, A.: Wide-baseline relative camera pose estima-
tion with directional learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 3258–3268 (2021)

15. Chum, O., Matas, J., Kittler, J.: Locally optimized ransac. In: Joint Pattern Recog-
nition Symposium. pp. 236–243. Springer (2003)

16. Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a
dominant plane. In: 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05). vol. 1, pp. 772–779. IEEE (2005)

17. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: Self-supervised interest
point detection and description. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops. pp. 224–236 (2018)

18. Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., Sattler, T.:
D2-net: A trainable cnn for joint description and detection of local features. In:
Proceedings of the IEEE/cvf conference on computer vision and pattern recogni-
tion. pp. 8092–8101 (2019)

19. Hammarstrand, L., Kahl, F., Maddern, W., Pajdla, T., Pollefeys, M., Sattler,
T., Sivic, J., Stenborg, E., Toft, C., Torii, A.: Workshop on long-term visual lo-
calization under changing conditions (2020), https://www.visuallocalization.net/
workshop/eccv/2020/

20. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge
university press (2003)

https://pypi.org/project/cube2sphere/
https://www.visuallocalization.net/datasets/
https://matterport.com/
https://matterport.com/cameras/pro2-3D-camera
https://github.com/CesiumGS/obj2gltf
https://pyrender.readthedocs.io/en/latest/
https://gssc.esa.int/navipedia/index.php/Galileo_Performances
https://gssc.esa.int/navipedia/index.php/Galileo_Performances
https://www.visuallocalization.net/workshop/eccv/2020/
https://www.visuallocalization.net/workshop/eccv/2020/

D-InLoc++: Indoor Localization in Dynamic Environments 15

21. Hyeon, J., Kim, D., Jang, B., Choi, H., Yi, D.H., Yoo, K., Choi, J., Doh, N.:
Kr-net: A dependable visual kidnap recovery network for indoor spaces. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
pp. 8527–8533. IEEE (2020)

22. Hyeon, J., Kim, J., Doh, N.: Pose correction for highly accurate visual localiza-
tion in large-scale indoor spaces. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 15974–15983 (2021)

23. Jin, Y., Mishkin, D., Mishchuk, A., Matas, J., Fua, P., Yi, K.M., Trulls, E.: Image
matching across wide baselines: From paper to practice. International Journal of
Computer Vision 129(2), 517–547 (2021)

24. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt
and 6-pt relative pose problems. In: BMVC. vol. 2, p. 2008 (2008)

25. Kukelova, Z., Heller, J., Bujnak, M., Fitzgibbon, A., Pajdla, T.: Efficient solution
to the epipolar geometry for radially distorted cameras. In: Proceedings of the
IEEE international conference on computer vision. pp. 2309–2317 (2015)

26. Kukelova, Z., Heller, J., Fitzgibbon, A.: Efficient intersection of three quadrics
and applications in computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 1799–1808 (2016)

27. Laguna, A.B., Mikolajczyk, K.: Key. net: Keypoint detection by handcrafted and
learned cnn filters revisited. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022)

28. Larsson, V., Kukelova, Z., Zheng, Y.: Making minimal solvers for absolute pose
estimation compact and robust. In: Proceedings of the IEEE International Confer-
ence on Computer Vision. pp. 2316–2324 (2017)

29. Lindenberger, P., Sarlin, P.E., Larsson, V., Pollefeys, M.: Pixel-perfect structure-
from-motion with featuremetric refinement. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision. pp. 5987–5997 (2021)

30. Liu, C., Yuen, J., Torralba, A.: Sift flow: Dense correspondence across scenes and
its applications. IEEE transactions on pattern analysis and machine intelligence
33(5), 978–994 (2010)

31. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision 60(2), 91–110 (2004)

32. Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Zhao, Y., Wijmans,
E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J., Parikh, D., Batra, D.:
Habitat: A Platform for Embodied AI Research. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2019)

33. Marcel, J.: Bluetooth technology is getting precise with positioning systems (2019),
https://www.bluetooth.com/blog/bluetooth-positioning-systems/

34. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duck-
worth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo col-
lections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 7210–7219 (2021)

35. Melekhov, I., Ylioinas, J., Kannala, J., Rahtu, E.: Relative camera pose estimation
using convolutional neural networks. In: International Conference on Advanced
Concepts for Intelligent Vision Systems. pp. 675–687. Springer (2017)

36. Palazzolo, E., Behley, J., Lottes, P., Giguere, P., Stachniss, C.: Refusion: 3d recon-
struction in dynamic environments for rgb-d cameras exploiting residuals. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
pp. 7855–7862. IEEE (2019)

https://www.bluetooth.com/blog/bluetooth-positioning-systems/

16 M. Dubenova et al.

37. Pourhomayoun, M., Fowler, M.: Improving wlan-based indoor mobile positioning
using sparsity. In: 2012 Conference Record of the Forty Sixth Asilomar Confer-
ence on Signals, Systems and Computers (ASILOMAR). pp. 1393–1396 (2012).
https://doi.org/10.1109/ACSSC.2012.6489254

38. Radenović, F., Tolias, G., Chum, O.: Fine-tuning cnn image retrieval with no
human annotation. IEEE transactions on pattern analysis and machine intelligence
41(7), 1655–1668 (2018)

39. Revaud, J., Almazán, J., Rezende, R.S., Souza, C.R.d.: Learning with average
precision: Training image retrieval with a listwise loss. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5107–5116 (2019)

40. Revaud, J., Weinzaepfel, P., De Souza, C., Pion, N., Csurka, G., Cabon, Y., Humen-
berger, M.: R2d2: repeatable and reliable detector and descriptor. arXiv preprint
arXiv:1906.06195 (2019)

41. Rocco, I., Arandjelović, R., Sivic, J.: Efficient neighbourhood consensus networks
via submanifold sparse convolutions. In: European conference on computer vision.
pp. 605–621. Springer (2020)

42. Runz, M., Buffier, M., Agapito, L.: Maskfusion: Real-time recognition, tracking and
reconstruction of multiple moving objects. In: 2018 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR). pp. 10–20. IEEE (2018)

43. Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: Robust
hierarchical localization at large scale (2019)

44. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: Learning
feature matching with graph neural networks. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 4938–4947 (2020)

45. Sarlin, P.E., Unagar, A., Larsson, M., Germain, H., Toft, C., Larsson, V., Pollefeys,
M., Lepetit, V., Hammarstrand, L., Kahl, F., et al.: Back to the feature: Learning
robust camera localization from pixels to pose. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 3247–3257 (2021)

46. Shavit, Y., Ferens, R.: Introduction to camera pose estimation with deep learning.
arXiv preprint arXiv:1907.05272 (2019)

47. for Space-Based Positioning Navigation, N.C.O., Timing: Gps accuracy (2022),
https://www.gps.gov/systems/gps/performance/accuracy/

48. Stenborg, E., Sattler, T., Hammarstrand, L.: Using image sequences for long-term
visual localization. In: 2020 International Conference on 3D Vision (3DV). pp.
938–948. IEEE (2020)

49. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: Loftr: Detector-free local fea-
ture matching with transformers. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 8922–8931 (2021)

50. Sun, W., Jiang, W., Trulls, E., Tagliasacchi, A., Yi, K.M.: Acne: Attentive context
normalization for robust permutation-equivariant learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11286–
11295 (2020)

51. Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T.,
Torii, A.: Inloc: Indoor visual localization with dense matching and view synthesis.
CoRR abs/1803.10368 (2018), http://arxiv.org/abs/1803.10368

52. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. pp. 6105–6114. PMLR
(2019)

53. Tong, W., Matas, J., Barath, D.: Deep magsac++. arXiv preprint arXiv:2111.14093
(2021)

https://doi.org/10.1109/ACSSC.2012.6489254
https://www.gps.gov/systems/gps/performance/accuracy/
http://arxiv.org/abs/1803.10368

D-InLoc++: Indoor Localization in Dynamic Environments 17

54. Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M., Pajdla, T.: 24/7 place recogni-
tion by view synthesis. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 1808–1817 (2015)

55. Torii, A., Sivic, J., Pajdla, T., Okutomi, M.: Visual place recognition with repetitive
structures. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 883–890 (2013)

56. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjust-
ment—a modern synthesis. In: International workshop on vision algorithms. pp.
298–372. Springer (1999)

57. Vidal-Balea, A., Blanco-Novoa, O., Picallo-Guembe, I., Celaya-Echarri, M., Fraga-
Lamas, P., Lopez-Iturri, P., Azpilicueta, L., Falcone, F., Fernández-Caramés, T.M.:
Analysis, design and practical validation of an augmented reality teaching system
based on microsoft hololens 2 and edge computing. In: Engineering Proceedings.
vol. 2, p. 52. Multidisciplinary Digital Publishing Institute (2020)

58. Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find
good correspondences. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 2666–2674 (2018)

59. Zhou, Q., Sattler, T., Leal-Taixe, L.: Patch2pix: Epipolar-guided pixel-level corre-
spondences. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 4669–4678 (2021)

	D-InLoc++: Indoor Localization in Dynamic Environments

