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Abstract. To generate proper captions for videos, the inference needs
to identify relevant concepts and pay attention to the spatial relation-
ships between them as well as to the temporal development in the clip.
Our end-to-end encoder-decoder video captioning framework incorpo-
rates two transformer-based architectures, an adapted transformer for
a single joint spatio-temporal video analysis as well as a self-attention-
based decoder for advanced text generation. Furthermore, we introduce
an adaptive frame selection scheme to reduce the number of required
incoming frames while maintaining the relevant content when training
both transformers. Additionally, we estimate semantic concepts relevant
for video captioning by aggregating all ground truth captions of each
sample. Our approach achieves state-of-the-art results on the MSVD, as
well as on the large-scale MSR-VTT and the VATEX benchmark datasets
considering multiple Natural Language Generation (NLG) metrics. Ad-
ditional evaluations on diversity scores highlight the expressiveness and
diversity in the structure of our generated captions.

Keywords: Video Captioning, Transformer, Diversity Scores

1 Introduction

The interplay between visual and text information has recently captivated sci-
entists in the field of computer vision research. Generating a caption for a short
video is a simple task for most people, but a tough one for a machine. In par-
ticular, video captioning can be seen as a sequence-to-sequence task [40] similar
to machine translation. Video captioning frameworks aim to learn a high-level
understating of the video and then convert it into text.

Since deep learning has revolutionized almost all computer vision sub-fields,
it also plays a notable role in video description generation. Usually, two main
Deep Neural Networks are involved, the encoder analyses visual content and
the decoder generates text [17,40,47,53,46]. The employed networks often are
a variety of 2D-CNN and 3D-CNNs. They extract visual features and local mo-
tion information between successive frames. Furthermore, a Faster RCNN object
recognition (FRCNN) [37] can be used to obtain fine-grained spatial information.

Attention mechanisms are adopted to let the model build relations between
local and global temporal and spatio-temporal information. This information is
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subsequently fed to a recurrent neural network such as an LSTM or a GRU
in order to produce grammatically correct sentences [1,52,57,32]. The temporal
processing is, however, somehow limited as it either involves global aggregation
with no temporal resolution or is based on 3D-CNNs with a rather small tem-
poral footprint. Transformer-based encoder-decoder architectures, on the other
hand, can inherently establish relations between all components in a sequence
independent of their positions [44]. After their breakthrough on language tasks,
lately, transformers have been successfully applied to diverse vision applications,
mainly for pure classification [3,29].

In this work, we present VASTA, an end-to-end encoder-decoder framework
for the task of video captioning where transformers perform detailed visual
spatio-temporal analysis of the input as well as generating the caption output.

Our encoder architecture is adopted from the Video Swin Transformer [30],
which has been shown to be able to interpret non-local temporal dependencies in
video-based action recognition. The task of video captioning, however, requires
even more than just spatio-temporal analysis. It needs to extract all semantically
relevant concepts [38,34], which will be key for the downstream text generation.
We identify all relevant concepts in the captions of the training data sets and
fine-tune the Swin Transformer to explicitly predict those before handing latent
information to the BERT generator.

As end-to-end training of two transformers, in particular for video processing,
is quite involved, we introduce an adaptive frame sampling (AFS) strategy that
identifies informative keyframes for caption generation.

Our transformer-based encoder-decoder architecture harnesses the power of
transformers for both the visual analysis as well as for the language generating
part, rendering quite faithful descriptions to a broad range of videos. In summary,
our contributions are:

a) a simple transformer-based video captioning approach, where a single en-
coder extracts all necessary spatio-temporal information. Unlike other recent
works we do not employ disjoint 2D analysis (e.g. object detection) and 3D
analysis (e.g. 3D convolution).

b) adaptive frame sampling for selecting more informative frames

c) visually grounded semantic context vectors derived from all captions of each
sample provide high-quality semantic guidance to the decoder

d) state-of-the-art results on three datasets (MSVD, MSR-VTT and VATEX)

e) significantly increased diversity in the predicted captions.

2 Related Work

Existing video captioning approaches can be grouped according to the techniques
used for visual analysis and text generation. See Aafaq et al. [2] for a detailed
survey.



Diverse Video Captioning by Adaptive Spatio-temporal Attention 3

2.1 Classical Models

Classical models mainly concentrate on detecting objects, actors and events in
order to fill the SVO (SVOP) structure [41]. Detection of objects and humans
was accomplished by model-based shape matching including HOG, HOF and
MbH, [15,48,49]. The analysis part is typically weak on interpreting dynam-
ics and the output of these models is limited due to their explicit sentence
structures [25,24,27,20,26]. Classical models have recently been outperformed
by models based on deep learning.

Spatio-temporal Analysis with CNNs On the encoder side, a more fine-
grained analysis of the spatio-temporal aspects has been enabled with the advent
of 3D-convolutions and the corresponding C3D network [42]. Li et al. [53] present
a 3D-CNN network for fine local motion analysis and employ soft-attention [4]
for adaptive aggregation to obtain a global feature for video captioning. Methods
like [1,13,50,39] combine both 2D and 3D-CNNs with attention mechanisms to
obtain stronger spatial-temporal and global features. As the video captions often
reflect some temporal relation between specific objects, the use of explicit ob-
ject detectors [32,54,58,57] can improve the generated descriptions. Recently, the
work on MGCMP [10] and CoSB [43] illustrates that extracting fine-grained spa-
tial information followed by propagation across time frames could provide visual
features as good as other methods that use external object detector features as
long as their relation is adequately realized in the temporal domain. While tem-
porally resolved features are necessary to analyse the dynamics, global aggregates
can provide the proper semantic context for generating captions. In [38,34,8], se-
mantic attributes are learned inside a CNN-RNN framework. In contrast to the
work of Gan et al. [18] we condition our decoder on the semantic context vector
once instead of feeding it to the decoder at every step. Still, the self-attention op-
eration of our decoder allows it to be accessed whenever it is needed. It has been
shown that selecting informative frames aids in video action recognition [19] as
this reduces the overall processing cost and lets the system focus on the relevant
parts only. The frame selection could be trained to optimize the input for the
downstream task as in [12,19] but this would introduce further complexity to
controlling the entire pipeline. In contrast to [12,19] our method is simpler and
does not require to be learned.

Transformer-based Models Following the success of transformers [44] in text-
related sequence-to-sequence tasks like translation, they have recently also been
applied to vision tasks and in particular to video classification. A key ingredient
of transformers is the multi-head self-attention mechanism where each head in-
dividually can attend and combine different parts of the sequence. This way, a
transformer can explore both long-term and short-term dependencies in the same
operation. For the task of action recognition, the ViViT transformer [3] chops
the video cube into separate spatio-temporal blocks, applying multi-head self-
attention. To keep the complexity at bay, factorized attention alternates between
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Fig. 1: VASTA (diverse Video captioning by Adaptive Spatio-Temporal Atten-
tion) The most informative 32 frames are selected by adaptive frame sampling
(AFS) as input to a Swin transformer [30] for spatio-temporal video analysis.
The output tokens of the encoder are used twice, once, to predict a semantic
concept vector aggregating the entire sequence as start-of-sequence token for the
BERT decoder, and, second, for cross-attention in the decoder. A beam search
on the most likely words predicts the final caption.

relating temporal or spatially-aligned blocks. The video Swin Transformer [30]
overcomes the problem of hard partition boundaries by shifting the block bound-
aries by half a block in every other attention layer. Instead for action recognition,
we use the Swin transformer for video captioning. On a different task, Zoha et al.
[59] employ transformer in video dense captioning with long sequences and mul-
tiple events to be described. The concept of cross-attention can easily fuse the
information coming in from different feature extractors. TVT [9] uses a trans-
former instead of a CNN-RNN network for the video captioning task. They use
attentive-fusion blocks to integrate image and motion information. The sparse
boundary-aware transformer method [21] explicitly performs cross-attention be-
tween the image domain and extracted motion features. In addition, a specific
scoring scheme tries to tune the multi-head attention to ignore redundant in-
formation in subsequent frames. Unlike these works we do not require special
fusion, as we use a single joint encoder of the input video.

3 Model Architecture

The composed architecture of our VASTA model, visualized in Figure 1, is based
on an encoder-decoder transformer [44]. First, an adaptive selection method is
used to find informative frames in the whole video length. Thereafter, the model
encodes the selected video frames into a contextualised but temporally resolved
embedding. We modify the Swin Transformer block [30], which was originally



Diverse Video Captioning by Adaptive Spatio-temporal Attention 5

Fig. 2: Adaptive frame selection visualized for two videos from the MSR-VTT.
x-axis: video length, y-axis: PDF and CDF drived from LPIPS sampling.

designed for action recognition and classification tasks, to interpret the input
video. The last hidden layer of this encoder is passed to the decoder. Though
compressed, the output of the encoder still contains a temporal sequence. This
allows the BERT [16] decoder to cross-attend to that sequence when generating
the output. Besides the direct encoder-decoder connection, the encoder output
is further used to predict a globally aggregated semantic context vector that is
to condition the language generator.

3.1 Adaptive Frame Selection

In videos, not all frames contribute the same information to the final caption.
Some frames are rather similar to the previous ones while some contain dynamics
or show new objects. In most video captioning approaches, frames are selected
with fixed uniform intervals [13,42,57].

Our adaptive frame selection (AFS) performs importance sampling on the
input frames based on local frame similarity. First, the similarity for each pair
of two consecutive frames is computed by the LPIPS score [55]. As indicated in
Figure 2, we consider this similarity as a probability density function (PDF) f ,
normalizing it over all frames. Computing and inverting the cumulative density
function (CDF) F with

F (x) = P (X ≤ x) =

∫ x

−∞
f(t)dt, for x ∈ R (1)

one can sample N frames i according to f starting with a uniform distribution
j =

{
0, 1

N ,
2
N , ... ,

N−1
N

}
, i = round(F−1(j)).

We select the frame i by rounding to the nearest integer. The resulting se-
quence forms the input to the 3D patch partition of the encoder.

3.2 Encoder

The Swin architecture is a hierarchical transformer that is able to act as general-
purpose backbone in computer vision tasks [29]. The vision input is initially split
into non-overlapping patches, followed by Shifting these Windows by half the
patch size in every other self-attention step to avoid artifacts from the discrete
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partitioning. Consequently, the swin video transformer [30] operates on shifted
3D partitions to cover both the spatial and the temporal domain. The encoder
backbone is the Swin-B variant with last the hidden layer size (BS×16×1024).

3.3 Semantic Concept Network

The second step of our pipeline includes predicting a semantic concept vector
of the entire video that is used as the start-of-sequence token in the decoder to
condition its generation on it. The training signal for this concept vector aggre-
gates all ground truth captions of a video to provide a high-quality signal for
the caption generation. The concepts are defined by the K most frequent words
found in the captions of the entire data set. Predicting the semantic concept
vector of a video is learned as a binary multi-class classification task indicating
which of the frequent words are relevant to describe the video. For generating
the ground truth classification vectors, we first select nouns, verbs and adverbs1

from all captions of the training videos (see Figure 1). Each video is labeled with
the K-dimensional vector L by:

Lk =

{
1, if word k occurs in any caption

0, otherwise

An MLP acts separately with shared weights on each of the encoder out-
puts. A single max-pooling layer merges them to one token. Afterwards a two-
layer MLP with RELU activation predicts the K concepts. For training, the
binary cross-entropy loss is minimized. In essence, the probability of each word
in the concept dictionary is used as a semantic feature. Introducing the semantic
concept vector provides an aggregated constant signal for each video while the
decoder is trained by generating individual captions.

3.4 Decoder

Our decoder generates the language output word by word while self-attending
to all already generated tokens. During training, masking ensures that BERT
cannot access the future tokens while during inference it is auto-regressive.

In our architecture, we pass the semantic feature vector as start-of-sequence
token to the decoder for generating the first output word. The self-attention to
the first input token conditions the predicted caption on the semantic concepts
which have been identified by the semantics MLP. In order to couple the hidden
states of the decoder to the output of the encoder, cross-modal fusion is neces-
sary. The necessary functionality is incorporated by extending the decoder with
multi-head cross-attention [44]. In 13 layers, the architecture alternates between
multi-head self-attention on the language tokens, cross-attention between the
language tokens and the Swin output tokens, and a feed-forward layer followed
by normalization. All these steps are bridged by a residual connection. A final

1 categorizing and POS tagging using NLTK (https://www.nltk.org/)

https://www.nltk.org/
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linear layer projects the decoder internal hidden states to the size of the BERT
vocabulary, followed by a softmax to produce word probabilities for each token.
The sentence is finally generated by applying beam search [36] to obtain the
most likely combination of words.

4 Experiments

To show the effectiveness of our proposed architecture, we train our model on
three common video captioning data sets and achieve high-ranking results. De-
tails on the architecture, training and optimizer [31] settings are described in
the supplementary.

4.1 Datasets and Metrics

Our model is trained on MSR-VTT [51], MSVD [7] and VATEX [50]. MSVD [7]
includes 1970 videos with an average length of 10 seconds. It provides up to
45 captions per video which are randomly sampled during training. MSR-
VTT [51] contains a wide variety of open domain videos of 20 seconds av-
erage and 20 captions per video. VATEX [50] is a large-scale video description
dataset. It is lexically richer, as each video has 10 unique sentences and every
caption is unique in the whole corpus.
Similarity Metrics All captions in all datasets have been annotated by humans.
We utilize the MS COCO Caption Evaluation [11] protocol on both datasets
and evaluate standard natural language generation metrics (NLG) as done by
previous works in this field. These metrics include BLEU(4-gram)(B4) [33], ME-
TEOR(M) [5], CIDEr(C) [45] and ROUGE-L(R) [28]. Additionally, we evaluate
on BERTScore [56], a more modern evaluation metric, that has shown great
alignment with human judgement. Notably, it does not share the same brittle-
ness as the n-gram based metrics [33].
Diversity Metrics In contrast to previous work we further measure the di-
versity of the generated captions. Zhu et al. [60] introduced Self-BLEU (SB) to
evaluate the diversity of generated sentences. It measures the BLEU value of
each prediction wrt. the remaining predictions and averages the obtained BLEU
values. A lower value indicates higher diversity, as on average a prediction is
less similar to all other predictions. Furthermore, Dai et al. [14] proposed the
concepts of Novel Captions (N), Unique Caption (U) and Vocab Usage (V) to
evaluate diversity of the generated caption. Novel Caption shows the percentage
of generated captions which have not been seen in the training data; Unique
Caption denotes the percentage of distinct captions among all generated cap-
tions; Vocab Usage indicates the percentage of words that are used to generate
captions from the whole vocabulary.

4.2 Quantitative Results

We present quantitative results in Tables 1 and 2 and highlight that besides
explanation quality also explanation diversity is important (Table 3). We ab-
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Method Model Year B4 ↑ M ↑ C ↑ R ↑ BERT-S ↑

Shared Enc-Dec [50] A 2019 28.4 21.7 45.1 47.0 -
NITS-VC [39] A 2020 20.0 18.0 24.0 42.0 -

ORG-TRL [57] A 2020 32.1 22.2 49.7 48.9 -
VASTA (Kinetics-backbone) T 2022 36.25 25.32 65.07 51.88 90.76

Table 1: Natural Language Generation (NLG) and BERT scores for VATEX.

late the components of our model in Table 4 and discuss qualitative examples
in Section 4.4.

Comparison to Related Approaches On the very large VATEX data set
our generated captions show significant performance improvements on all scores
(see Table 1). Similarly, on MSR-VTT and the even smaller MSVD we obtain
high-ranking, most often top-scoring results with slightly less improvements (see
Table 2). This indicates that fine tuning of the encoder and decoder transformers
benefits from the additional training data.

Thus, instead of just fine-tuning the full pipeline starting with the backbone
trained on Kinetics [22] for each individual data set, we trained once end-to-end
on Vatex and then fine-tuned for MSVD and MSR-VTT. Through this transfer
learning VASTA improves in general, particularly the CIDEr score on MSR-
VTT and MSVD by a big margin. The performance on METEOR and CIDEr
is relevant as both consider semantic relatedness. METEOR excepts synonyms
and it exhibits a higher correlation with human judgment on captions and ex-
planations [23]. The CIDEr score has been particularly designed for measuring
the quality of descriptions for visual content. While the NLG scores are all based
on n-grams the BERTScore is more semantically robust and agrees even better
with human assessments. On both data sets, our model achieves the highest
BERTScore.

Caption Diversity Albeit their wide-spread use, NLG metrics only assess a
few aspects of the generated captions. Maximising the scores on existing NLG
metrics as presented in Table 2 can for example be achieved with focusing on the
most prevalent sentence structure found in the ground truth captions. However,
we are interested in captions that are the most “human-like”. Thus, we compute
these diversity metrics on MSR-VTT, MSVD and VATEX and compare our
model to those competitors where we have access to the generated captions for
re-evaluation. As seen in Table 3, our model not only predicts highly accurate
captions but also manages to predict a highly diverse set of captions. VASTA
generates the most distinct captions and does not overfit to the training data, i.e.
generates novel captions for some of the test videos. Our model by far exploits
most of the training vocabulary. Further analysis on the diversity of sentence
structures is given in the supplementary.
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MSR-VTT MSVD

Method Model Year B4 M C R BERT-S B4 M C R BERT-S

Att-TVT [9] T 2018 40.12 27.86 47.72 59.63 - 53.21 35.23 86.76 -
GRU-EVE [1] A 2019 38.3 28.4 48.1 60.7 - 47.9 35.0 78.1 71.5 -
OA-BTG [54] A 2019 41.4 28.2 46.9 - - 36.9 36.2 90.6 -

STG [32] A 2020 40.5 28.3 47.10 60.9 - 52.2 36.9 93.0 73.9 -
STATS [13] A 2020 40.1 27.5 43.4 60.4 - 52.6 33.5 80.2 69.5 -
SAAT [58] A 2020 40.5 28.2 49.1 60.9 82.50 46.5 33.5 81.0 69.4 -

ORG-TRL [57] A 2020 43.6 28.8 50.9 62.1 - 54.3 36.4 95.2 73.9 -
SAVCSS [8] A 2020 43.8 28.9 51.4 62.4 90.00 61.8 37.8 103 76.8 91.25

DSD-3 DS-SEM [38] A 2020 45.2 29.9 51.1 64.2 - 50.1 34.7 76 73.1 -
SBAT [21] T 2020 42.9 28.9 51.6 61.5 - 53.1 35.3 89.5 72.3 -

SemSynAN [34]† A 2021 46.4 30.4 51.9 64.7 82.13 64.4 41.9 111.5 79.5 82.67
MGCMP [10] A 2021 41.7 28.9 51.4 62.1 - 55.8 36.9 98.5 74.5 -

CoSB [43] T 2022 41.4 27.8 46.5 61.0 - 50.7 35.3 97.8 72.1 -

VASTA (Kinetics-backbone) T 2022 43.4 30.2 55.0 62.5 90.10 56.1 39.1 106.4 74.5 92.00
VASTA (Vatex-backbone) T 2022 44.21 30.24 56.08 62.9 90.17 59.2 40.65 119.7 76.7 92.21

Table 2: Natural Language Generation (NLG) and BERT scores for the MSR-
VTT and MSVD datasets (T: Transformer, A: Attention). Darker blue indicates
higher scores. For both data sets our approach improves the BERTScore and
produces high-ranking NLG scores. †: BERT-score is computed on reproduced
captions by the released code.

MSR-VTT MSVD VATEX

Method SB ↓ N ↑ U ↑ V ↑ SB ↓ N ↑ U ↑ V ↑ SB ↓ N ↑ U ↑ V ↑
SAVCSS [8] 95.19 44.61 33.44 1.88 84.32 51.34 42.08 2.07 - - - -

SAAT [58] 99.99 40.46 20.06 1.33 - - - - - - - -
SemSynAN [34] 96.47 42.84 18.92 1.57 83.00 47.16 37.61 2.19 - - - -

VASTA (Kinetics-backbone) 92.94 45.98 34.74 2.93 81.88 30.49 42.89 3.48 86.18 97.29 85.80 7.04
VASTA (Vatex-backbone) 92.70 45.51 34.21 3.00 76.90 42.75 52.16 3.94 - - - -

Table 3: Diversity of the generated captions.

Analyzing the performance of SemSynAN [34] (a model which has strong
similarity metrics) where the number of captions per video is limited to just
five to train a predictor for the most common syntactic POS structures (see
Supplementary) reveals that this comes at the cost of reduced caption diversity,
sentence quality and video-caption match. Thus, we found that its diversity is
much lower.

4.3 Ablation Study

The results of Table 2 have been achieved by carefully designing our adaptive
spatio-temporal encoder-decoder framework. As demonstrated by the ablation
results in Table 4, introducing adaptive frame sampling (AFS) helps improve the
image-description related CIDEr score while adding the semantic concept vector
further improves on the more translation-related scores (BLEU-4, METEOR,
ROUGE-L, CIDEr). Similarly, both AFS and the semantic concept prediction
improves the diversity score. Thus, more informative and more precise encoder
predictions support higher quality and more diverse language output. In the
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MSR-VTT VATEX

Method B4 ↑ M ↑ C ↑ R ↑ SB ↓ N ↑ U ↑ V ↑ B4 ↑ M ↑ C ↑ R ↑ SB ↓ N ↑ U ↑ V ↑

UFS-SB 43.21 29.55 52.91 62.1 96.48 37.09 19.23 1.90 35.31 25.05 63.82 51.27 87.73 97.62 81.41 6.70
AFS-SB 43.07 29.72 55.08 62.02 93.93 38.29 27.95 2.46 35.64 25.43 64.98 51.53 88.57 97.51 83.33 6.50

UFS-SBS 43.51 29.75 53.59 62.27 94.82 42.44 26.48 2.36 35.68 25.42 65.63 51.58 88.40 97.35 83.38 6.43
AFS-SBS 43.43 30.24 55.00 62.54 92.94 45.98 34.74 2.93 36.25 25.32 65.04 51.88 86.18 97.29 85.80 7.04

Table 4: Influence of the individual components in VASTA. Applying both, AFS
and semantic vectors, yields favorable scores. UFS: uniform frame selection, AFS:
Adaptive frame selection, SB: Swin BERT, SBS: Swin BERT Semantics.

supplemental we demonstrate how the results depend on the chosen decoder
model, by replacing Bert by GPTNeo Causal LM [6,35]. There, we also study
different inference methods (beam search, greedy, top-k, top-p).

Uniform sampling: there is a car moving on the road

Adaptive sampling: a man is walking through the woods

Fig. 3: Adaptive Frame Selection (AFS). Uniform sampling (top) keeps frames
with repetitive non-informative content (cf. frames with foliage). In contrast,
adaptive sampling enhances the diversity of input frames by selecting those with
activity (cf. frames with people walking). Ground truth: “Two men walking
around a forest by a lake.”

AFS Results Figure 3 exemplifies the effect of our adaptive frame selection
approach. The video transformer can only take in 32 frames. Driven by the frame
differences, the adaptive frame selection samples more diverse frames than simple
uniform subsampling, increasing the chance of selecting informative time steps.
An irregular temporal sampling pattern on the other hand leads to a non-uniform
play-back speed. Still, AFS consistently improves the CIDEr result (Table 4),
indicating that the gain in input information has a more positive effect than
potential introducing temporal disturbance in the Swin transformer inference.

Semantic Concept Vectors The accuracy (BCE score) of the multi-class
extraction task for the semantic concept vectors is 0.88 (0.12) on the training set
and 0.85 (0.15) on the test set. This indicates, that this training step generalizes
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BCE B4 ↑ M ↑ C ↑ R ↑

10%-best 55.67 41.25 109.4 75.44
10%-worst 31.50 21.97 22.76 49.09

Table 5: Dependency on the quality of the predicted semantic vector. Sorting all
test samples of the MSR-VTT wrt. the classification accuracy of the proposed
semantic vector, a strong correlation with the evaluation scores is revealed.

well. Introducing the semantic concept vectors improves the overall performance,
as one can see by the strong correlation between classification accuracy and
resulting NLG scores in Table 5. Bad examples most often occur in conjunction
with misclassification of the main actors or concepts in the video. In these cases,
often the content of the video is not well represented by the most common 768
concepts.

Reference: a group of people are dancing and singing
Our: a group of people are dancing and singing
SymsynAN: a group of people are dancing

Reference: a dog is playing on a trampoline
Our: a dog is playing on a trampoline
SymsynAN: a dog is playing with a dog

Reference: a person is making a paper aircraft
Our: a person is making a paper airplane
SymsynAN: a person is folding paper

Fig. 4: Examples for the top-performing videos in the test set.

4.4 Qualitative Results

In Figure 4, representative videos and the generated captions are shown. We list
examples of the top 1%-percentile on the METEOR score. For positive exam-
ples, the content of the video is fully recognized leading to a description that
matches one of the reference captions almost exactly. In the bad examples (see
supplementary) the content is often misinterpreted or the video is so abstract
that there could be many diverse explanations.

Spatio-Temporal Attention The video in Figure 5 on the top features a
complex temporal interaction between two actors (monkey and dog). The gener-
ated caption correctly reflects both spatial detail (dog’s tail) as well as multiple
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Reference: A monkey pulling on a dog ’s tail and running away
Generated text: a monkey grabs a dog’s tail and runs away

Reference: a girl is talking about some food she is eating
Generated text: a woman is cooking in a pot and talking about it

Fig. 5: Spatio-temporal inference gathers information from different segments.

temporal stages (grabbing the tail and running away). Similarly, the temporal
domain is also respected in the second example. Different parts of the video con-
tribute to different sections in the generated captions (woman talking about food
and cooking in pot). These examples demonstrate that high-quality detection and
tracking from the Swin transformer across multiple frames goes hand-in-hand
with the powerful language skills of the fine-tuned generator in our proposed
framework.

5 Limitations and Discussion

The introduced VASTA architecture performs quite well according to the com-
monly used evaluation metrics. Even though our model has the best diversity
scores, looking at some samples of generated captions, they are often rather
general and might miss some important detail about the video. This suggests,
further research in the diversity aspect is important.

As indicated in Section 4.4, the current extraction of concepts for video cap-
tioning might need further improvement, potentially by the use of a larger train-
ing data set. Compared to the very good performance of the produced language,
the visual analysis is not yet on par. The training and the evaluation are done on
three data sets MSR-VTT, MSVD and VATEX, which come with their own dis-
tributions of scenes, people, objects, and actions. Any marginalization of specific
social groups present in the data sets will likely also be present in our trained
encoder-decoder framework. In general, our approach to automated video anal-
ysis and captioning might furthermore be trained and applied in other contexts.
While we think that the application to the presented data is not problematic,
ethical issues can quickly arise in surveillance or military applications.

6 Conclusion

We presented VASTA, a video captioning encoder-decoder approach which in-
corporates the processed visual tokens by multi-layer multi-head cross-attention.
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While the Swin tokens extracts separate spatio-temporal information, we intro-
duce also a globally aggregating semantic concept vector that initializes the
sentence generation in the BERT module. By proposing a content-based adap-
tive frame selection sampling, we can assure that the most informative frames
are selected while maintaining efficient training.

This transformer-based video captioning framework introduces a new archi-
tecture that produces plausible captions that are state-of-the-art on the MSR-
VTT, MSVD and VATEX benchmark data sets. Our evaluation highlights that
the commonly used NLG metrics only address some of the aspects necessary to
fully assess the quality of video descriptions. We demonstrate that our method
produces highly diverse captions. We hope that this work will inspire further re-
search for a better, broader assessment of the performance of caption generation
algorithms.
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8 Supplementary: Diverse Video Captioning by Adaptive
Spatio-temporal Attention.

This supplementary presents model details in Section 8.1, and provides addi-
tional ablation studies on our decoder model in Section 8.2. Also, an analysis
on the diversity of generated captions is shown in Section 8.4 and demonstrates
additional qualitative results in Section 8.3. Training detail of our model is ex-
plained in Section 8.5.

8.1 Architecture

In this section, we show technical sketches of the three subnetworks in our
VASTA framework and present additional details of the network structures and
configurations. Also, our code is available at https://github.com/zohrehghaderi/
VASTA.

Data Preparation The input videos are read with the mmcv library2 choosing
the NCTHW input shape format. Each input is resized and cropped to 224×224
resolution followed by normalization with mean of [123.675, 116.28, 103.53] and
standard deviation of [58.395, 57.12, 57.375].

The adaptive frame selection (AFS, see Section 3.1 of the main paper) ex-
tracts the 32 most informative frames based on LPIPS [55] similarity scores and
passes the video with shape 32× 224× 224× 3 to the Swin encoder.

Data set splits MSVD [7]. Following [7,53] the data set is split into 1200
samples for training, 100 samples for validation and the remaining 670 samples
for testing. MSR-VTT [51]. Following the official setting [51], the data set
is split as follows: 6513, 497 and 2990 videos for training, validation and test.
VATEX [50]. This data set officially includes 25991, 3000, 6000 videos for train,
validation and test. Unfortunately, roughly 10% of the original set are no longer
available for download. Thus, our evaluation in paper is on 23303 videos for
training, 2690 videos for validation and 5398 videos for test (see Table table 6).

MSR-VTT [51] MSVD [7] VATEX [50]

Train 6513 1200 23303
Val 497 100 2690

Test 2990 670 5398

Total 10000 1970 31391

Table 6: Train, validation and test splits of the utilized data sets.

2 https://github.com/open-mmlab/mmcv

https://github.com/zohrehghaderi/VASTA
https://github.com/zohrehghaderi/VASTA
https://github.com/open-mmlab/mmcv
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Swin Encoder The encoder backbone to our VASTA model is the Swin net-
work, more precisely the Swin-B variant [29]. While the original pipeline is de-
signed for action classification in our context, video description, we modify the
network as shown in Figure 6.a, generating 16 output tokens that are reshaped
to fit the expected input size of the BERT decoder. More details on the specific
configuration and parameters of the Swin transformer [29] are listed in Table 9.

Semantic Context Network The network to extract the semantic context
vector is three-layer MLP that is shown in Figure 6.b. The MLP operates on each
Swin token individually and then joins them using max-pooling. The resulting
vector yields the probability of the most frequent 768 words.

The predicted semantic feature is passed as the start-of-sequence ([SOS])
token to the BERT decoder where it replaces the BERT-embedding layer for the
first time step.

BERT Decoder The architecture of the BERT decoder is shown in Figure 7. It
follows the traditional BERT architecture [16] with an additional cross-attention
layer in the 12 transformer blocks which relates the BERT inference to the
encoder output sequence. The specific configuration of the layers and attention
heads is given in Table 9.

8.2 Ablation Study

Different Inference Methods. As illustrated in Table 7, we compare fre-
quently used inference methods applied to our VASTA model. Beam search with
3 beams achieves the best results on the MSVD and MSR-VTT data sets.

MSR-VTT MSVD

Method B4 ↑ M ↑ C ↑ R ↑ B4 ↑ M ↑ C ↑ R ↑

Top-p p=0.95 42.28 29.53 53.00 62.28 54.56 38.52 102.5 74.15
Top-k k=20 19.03 22.18 28.50 46.39 30.96 29.58 57.50 61.48
Top-k k=3 29.59 25.85 39.12 54.16 41.78 33.79 74.73 67.04

Greedy 42.28 29.53 53.00 62.28 54.56 38.52 102.5 74.15

Beam Search b=3 43.43 30.24 55.00 62.54 56.14 39.09 106.3 74.47

Table 7: Influence of the difference inference method on VASTA model.

Ablation on the decoder model. To study the effect of different pre-trainings
of our language decoder we try two different decoder models. GPT [35] is an
auto-regressive language model whose aim is to predict the next word based
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(a) (b)

Fig. 6: a) Detailed architecture of our encoder model based on the Video Swin
Transformer [30]. b) Detailed architecture of our semantics model. Each token
of the Swin transformer output is processed individually by a three-layer MLP
before fusing all 16 tokens by a max layer.
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on all of previous words. Huge amounts of data are used to train the large
number of parameters. Additionally, the size of the GPT model with its 125M
parameters limits the ability to combine it with a large Swin network. Thus we
use the GPTNeo Causal Language Modelling [6] model, which is similar to GPT2
except that GPTNeo uses local attention in every other layer. We compare the
performance when replacing the BERT decoder by GPTNeo in Table 8.

MSR-VTT MSVD VATEX

Decoder B4 ↑ M ↑ C ↑ R ↑ B4 ↑ M ↑ C ↑ R ↑ B4 ↑ M ↑ C ↑ R ↑

BERT 43.43 30.24 55.00 62.54 56.14 39.09 106.3 74.47 34.96 25.46 51.33 64.33
GPT-Neo 40.13 28.09 46.91 57.25 50.83 33.80 81.40 65.89 27.25 24.50 47.01 38.79

Table 8: Comparison of BERT and GPTNeo [6] as decoders for our model
VASTA. BERT clearly outperforms GPTNeo as a decoder.

We hypothesize, that BERT is trained on mask filling whose aim is to predict
a masked word bases on previous words and upcoming words in the sentences.
Thus, it is leading to improved sentence understanding which is related to video
understanding for caption generation.

Fig. 7: Detailed architecture of our BERT-based decoder model. The decoder
considers the visual input once by using the semantic vector as [SOS] token
and second by cross-attending to it in the 12 transformer layers. Note, that the
conditioning on the semantic vector bypasses the embedding step.
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Swin Encoder Semantics Network BERT Decoder

Type Size Type Size Type Size

Patch-size (2,4,4) Linear 1024 Hidden-size 768
Depths [2,2,18,2] Activation RELU Num-hidden-layers 12
Embed-dim 128 Drop out train 0.5 Num-attention-heads 12
Num-heads [4,8,16,32] Linear 2048 Intermediate-size 2872
Window-size (8,7,7) Activation RELU Hidden-act Gelu
MLP-ratio 4 Drop out train 0.5 Hidden-dropout-prob 0.3
qkv-bias True Max pooling 1D Attention-probs-drop-out-prob 0.3
qk-scale None Drop out fine tunig 0.1 Max-position-embeddings 512
Drop-rate 0 Type-vocab-size 2
Attn-drop-rate 0 Initializer-rang 0.02
Drop-path-rate 0.2 Layer-norm-eps 1e-12
Path-norm True Vocab size 30522

Position-embedding-type absolute
Pad-token-id 0

Table 9: Parameter sets and configurations for the three subnetworks in our
pipeline: the Swin encoder, the semantics network and the BERT decoder.
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8.3 Qualitative Examples

To better assess the quality of the captions generated by our model, we present
a few more generated examples. Figure 8, Figure 9 and Figure 15 feature some
videos of the MSVD and the MSR-VTT data sets, respectively, where intro-
ducing the semantic context vector into our pipeline (see Section 4.3) improved
the CIDEr score significantly compared to the version of our model without the
semantic vector.

Additional top-performing videos based on METEOR and BLUE-4 and their
corresponding generated captions are demonstrated in Figure 13 and Figure 14.

AFS Examples In addition, Figure 10 shows representative frames in two
videos of MSVD and MSR-VTT where the adaptive frame selection makes a
major difference. Video xxHx6s-DbUo-162-165 is about a man running on the
road. Adaptive frame sampling is able to pick up the informative frames about
the running movement. Thus, it generates a proper caption. Also, in Video 7153
AFS selects frames, which contain the wrestling movement, that are key to
correctly describing the “wrestling [. . . ] competition” instead of making a broad
statement about “playing sports”.

8.4 Caption Diversity

Following the discussion on caption diversity in Section 4.4, we visualize the dis-
tribution of generated Part-of-Speech tagging (POS) structures for the captions
by our model and by SemSynAN [34] in Figure 11 for the MSR-VTT and Fig-
ure 12 for the MSVD data set. While some sentence structures are more frequent
than others it can be seen that our approach generates more diverse sentences.

As explained in Section 4.2 of our paper some related works operate on a
limited subset of the data sets. As we show in Table 10 working on a subset
limits the diversity of the sentences and the size of the vocabulary. Our vocab-
ulary on MSVD is about twelve-thousand words. In contrast, the vocabulary in
SemSynAN [34] has only half the size, which will also restrict the diversity of
the captions generated by the SemSynAN model.

Data set VASTA (Ours) SemSynAN [34]

MSVD 9636 ∼6K
MSR-VTT 23081 ∼12K

Table 10: Vocabulary sizes on MSVD and MSR-VTT for our model and SemSy-
nAN [34] showing that our model operates on a much larger set of words.
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Video hJFBXHtxKIc-286-291

Reference: a man pours cooked pasta from a plastic container into a bowl CIDEr
AFS-Swin-Bert: a man cooking his kichen 35.04
AFS-Swin-Bert-Semantics: a man is pouring pasta out of a plastic container 75.86

Video qypmR4O1Gwk-0-10

Reference: a gazelle is fighting with a baboon CIDEr
AFS-Swin-Bert: two zebras are fighting 23.74
AFS-Swin-Bert-Semantics: a cheetah is chasing a gazelle 57.89

Video idXJu0BQRvo-2-6

Reference: a boy is sliding around a water slide CIDEr
AFS-Swin-Bert: a dog is swimming in a pool 26.64
AFS-Swin-Bert-Semantics: a man is sliding down a water slide 208.0

Video zpgW7m7-LZw-2-15

Reference: a little boy is playing golf CIDEr
AFS-Swin-Bert: a man is riding a bicycle 0.005
AFS-Swin-Bert-Semantics: a boy is playing 157.5

Fig. 8: Effect of considering the semantic context vector in caption generation.
In these videos from the MSVD collection the CIDEr score has been effectively
increased.
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8.5 Training Details

We initialize our encoder with the weights of a Swin-B network weight with layer
number = {2, 2, 18, 2} [29], which was trained on the Kinetics400 data set [22].
For all videos, we employ AFS to select N = 32 frames and follow the default
Swin-B normalization, cropping and resizing operations to transform them to a
dimension of 3 × 224 × 224. The input to the Swin network is T ×W ×H × 3
(in our case (32, 224, 224, 3)), which is divided to 3 × T

2 ×
W
4 ×

H
4 3D tokens.

These 3D tokens are hierarchically merged to analyse their temporal relations.
The output of our encoder is the last hidden layer of the Swin-B architecture
variant. It has the size of Size = (T

2 ,
W
32 ,

H
32 , 1024). After average 2D-pooling on

(W,H), followed by a single linear layer, we produce sixteen output tokens of
size 768, encoding the visual state to be fed to the decoder. The same output is
also taken to produce a semantic context vector.

Our decoder backbone is initialized by pre-trained BERT [16] on which we
add a language modelling head. During training and inference we employ causal
masks to prevent attention to future tokens. Following prior work [10,9,57], sen-
tences longer than 20 words are truncated. All words are converted to lower
case and the decoder predicts lower case tokens. Its dropout probability is set
to 0.3. A two-layer MLP with RELU activation is trained for K = 768 concepts
(layer sizes (1024, 2048, 768)). In a first step, we train the semantic concept MLP
network using the pre-trained Swin-B and BCE loss.

We train our model end-to-end network to minimize the overall loss L where
the training loss for decoder is the cross-entropy to the randomly selected train-
ing caption and the loss for the full network including the semantic vector MLP
is given by

L = LCE + λ · LBCE , with λ = 0.1. (2)

To train our models, we use the AdamW [31] optimizer with default settings,
with a learning rate of 0.00001 and an effective batch size of 8. Additionally,
we use gradient clipping of 0.05. The final model is selected based on the best
harmonic mean of the METEOR [5] and BLEU-4 [33] scores to avoid optimizing
for a single metric.
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Video 7021

Reference: a baseball batter hits the ball CIDEr
AFS-Swin-Bert: there is a man is playing with a ball 29.45
AFS-Swin-Bert-Semantics: a man is playing baseball in a field 115.1

Video 7053

Reference: a man playing with a lion CIDEr
AFS-Swin-Bert: a lion is playing with a lion 155.6
AFS-Swin-Bert-Semantics: a man is playing with a lion 300.9

Video 7060

Reference: two men are giving an introduction CIDEr
AFS-Swin-Bert: a man is talking to another man 3.20
AFS-Swin-Bert-Semantics: a person is explaining something 101.1

Video 7265

Reference: a girl in her room shows off her new hairstyle CIDEr
AFS-Swin-Bert: a woman is showing how to wash her hair 31.37
AFS-Swin-Bert-Semantics: a woman is showing off her hair 73.79

Fig. 9: Effect of considering the semantic context vector in caption generation. In
these videos from the MSR-VTT collection the CIDEr score has been effectively
increased.
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Video xxHx6s-DbUo-162-165

Uniform sampling: a man is kicking a soccer ball CIDEr=5.41

Adaptive sampling: a man is running CIDEr=465.9
Reference: a man is running on the road

Video 7153

Uniform sampling: a group of people are playing sports CIDEr=9.24

Adaptive sampling: a man is talking about a wrestling match CIDEr=78.88
Reference: two guys are wrestling in a competition

Fig. 10: Effect of the Adaptive Frame Selection. In these example videos uniform
sampling (top) wastes some of the 32 input frames for repetitive non-informative
content. Our adaptive frame selection prefers those frames with strong differences
to the previous one. Often, more diverse frames are selected helping generate
better captions.
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VASTA (ours): SemSynAN [34]

Fig. 11: Frequency of different POS structures on MSR-VTT Data set. More
different segments indicate a higher diversity in captions. Note, that SemSynAN
only uses 4 different POS structures for more than 50% of its generated captions.

VASTA (ours) SemSynAN [34]

Fig. 12: Frequency of POS structures on MSVD Data set. More different seg-
ments indicate a higher diversity in captions. Note, that SemSynAN only uses 6
different POS structures for more than 75% of its generated captions.
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Fig. 13: Based on METEOR and BLEU-4 we present a selection of the 10 percent
best-performing videos in the MSR-VTT data set. GT refers to the ground truth
reference.



30 Z. Ghaderi et al.

Fig. 14: Based on METEOR and BLEU-4 we present a selection of the 10 percent
best-performing videos in the MSVD data set. GT refers to the ground truth
reference.
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Fig. 15: Based on METEOR and BLEU-4 we present a selection of the 10 percent
best-performing videos in the VATEX data set. GT refers to the ground truth
reference.
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