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Abstract—Shared folders are still a common practice for
granting third parties access to data files, regardless of the
advances in data sharing technologies. Services like Google Drive,
Dropbox, Box, and others, provide infrastructures and interfaces
to manage file sharing. The human factor is the weakest link
and data leaks caused by human error are regrettable common
news. This takes place as both mishandled data, for example
stored to the wrong directory, or via misconfigured or failing
applications dumping data incorrectly. We present Data Leakage
Prevention FileSystem (DLPFS), a first attempt to systematically
protect against data leakage caused by misconfigured application
or human error. This filesystem interface provides a privacy
protection layer on top of the POSIX filesystem interface,
allowing for seamless integration with existing infrastructures
and applications, simply augmenting existing security controls.
At the same time, DLPFS allows data administrators to protect
files shared within an organisation by preventing unauthorised
parties to access potentially sensitive content. DLPFS achieves
this by transparently integrating with existing access control
mechanisms. We empirically evaluate the impact of DLPFS
on system’s performances to demonstrate the feasibility of the
proposed solution.

I. INTRODUCTION

Most of today’s data breaches are due to human error caused
by insiders (e.g. misconfiguration, poor data governance),
rather than attacks by hackers from outside an organiza-
tion [15].

Incorrectly configured applications and bugs are an ever
present threat to confidentiality of sensitive data. Examples of
these scenarios include log files, which might contain incor-
rectly handled log level messages, and thus potentially leaking
sensitive information such as usernames and passwords, and
stack traces or core dumps of crashed applications.

Several approaches have been taken to address the issue,
mainly through access control or encryption, hence by restrict-
ing who can access specific storage structures (e.g. partitions,
mount points, directories, files and/or zones). This is still
not sufficient if data are meant to be shared among various
principals in a platform, in case of data that is required to
be accessible for various reasons (e.g. log files that need
to be accessible both for audit and debugging purposes),
or if datasets is incorrectly stored in locations not initially
envisioned – like public nodes of a Hadoop cluster in a hybrid
cloud setting.

Several common use cases require data, possibly containing
sensitive information, to be accessible from different user/roles
with different granularity/level of completeness.

Currently, the solution most used in practice is to create
different versions of the dataset for each purpose, which is

expensive or even impractical if large volumes of data need
to be replicated. Alternatives, such as utilization of techniques
based on fully or partially homomorphic encryption have been
proposed [17]. These solutions incur significant performance
penalties, however, caused by the mathematical complexity of
the algorithms required to achieve required levels of security.

As the adoption of tools like Dropbox1, Google Drive2, and
Box3 suggests, file systems offer a very popular approach to
data sharing across applications [13] and across systems [2].

Therefore, we propose DLPFS, a novel mechanism to
share data across multiple applications and systems leveraging
state-of-the-art data type identification and de-identification
technologies. DLPFS exposes a POSIX file system API to
applications accessing a protected subtree of the file system.
Practically, DLPFS acts as a middleware between applications
and the actual file systems, identifying and protecting sensitive
data on both read and write paths.

DLPFS allows data users to share data in a privacy pre-
serving fashion across multiple systems without the need to
create bespoke copies of the data for the target application.
Moreover, DLPFS allows legacy applications to operate on
data de-identified on the fly, without the need of modifying
such applications themselves. This removes the burden of
modifying legacy and mission critical applications from the
developers, allowing DevOps and SecOps teams to define
fine grained access control and privacy profiles, according to
application and context requirements.

The rest of the paper is organized as follows. Section II
introduces the design principles of DLPFS and its operational
steps. Section III and IV present the implementation of the
DLPFS prototype and discuss empirical performance evalua-
tions. Finally, Section V compares our solution with the state
of the art and Section VI summarizes the contribution and
depicts possible future directions.

II. DATA LEAKAGE PREVENTION FILESYSTEM IN
PRACTICE

DLPFS operates as a middleware between a software ap-
plication and the file system stack. The DLPFS conceptual
architecture is shown in Figure 1.

The system exposes a POSIX filesystem API that proxies
all requests performed by a client application to the actual
filesystem. DLPFS intercepts all read and write operations

1https://www.dropbox.com
2https://www.google.com/drive
3https://www.box.com/
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Fig. 1: Overall modules architecture

Fig. 2: Read data flow

and acts on the transferred data according to the instructions
specified in the knowledge base. The two supported read and
write flows are sketched in Figure 2 and Figure 3.

The key idea behind DLPFS is to intercept and analyse data
as it is transferred between the data storage and applications.
Inspection and transformation operations can generally be
applied to streams of raw data. Hence, there is no strict need
for DLPFS to be aware of the format of the files where the
data is being read from or written to, or their structure.

However, having knowledge of the file structure improves
how information is handled in specific scenarios, leading to
more accurate data detection and data transformation. As
an example, consider an application that loads data from a
Comma-Separated Values (CSV) file into memory by sequen-
tially reading blocks of 1, 024 bytes of data. According to the
CSV format, information is stored within data fields that are
separated by a comma character (‘,’) and groups of fields,
i.e. rows, must be terminated with a newline character (‘\n’).
Ignoring such terminators and processing data in blocks with
a fixed size of 1, 024 bytes can result in a high probability
of processing truncated data, which might lead to incorrect
classification of the represented information. Therefore, iden-
tification and transformation must be performed on the data in
a format dependent and semantically consistent manner, and
DLPFS achieves this by loading and processing data with a
strategy respecting file format specifications and encoding.

For this reason, minimal support for common file formats
like CSV, XLS, or JSON positively impacts the precision
of detection and utility preservation, by reducing the risk of
incorrect classification of data blocks, and the probability of
damaging the file structure.

When a read or write operation is intercepted, DLPFS
inspects the raw data that is being read (or written) in order
to identify potentially sensitive information. On read, DLPFS
retrieves a certain amount of bytes before and after the buffer
requested by the client application. We call this additional

Fig. 3: Write data flow

amount of bytes guard. This allows the identification of
sensitive patterns that are expanding beyond the acquired
buffer. The application of guards is in addition to the ability to
support specific file formats, allowing DLPFS to also handle
exotic file formats. The client application receives only the
amount of data initially requested while the other bytes are
kept internally by DLPFS as a cache. Thus, improving retrieval
time for sequential read.

On the other hand, on write, DLPFS delays the flush oper-
ation to be able to perform detection of sensitive information
beyond the individual buffer.

These operations require DLPFS of being aware of all
applications accessing files within the directory exposed by
DLPFS, basically mimicking the behaviour of modern oper-
ating systems. The size of the left and right guards can be
defined by the user based on empirical observations, or be
predefined by the file type. The latter strategy allows better
precision and utility preservation, while requiring the ability
to correctly identify file types with extensive work to expand
the support for unconventional, or custom file types.

The definition of sensitive information is provided through
a Knowledge Base (KB). The KB contains information about
the definition of sensitive information, and instructions on how
the identified information should be treated. DLPFS supports
several types of data transformation, ranging from simple
redaction, where the identified values are being replaced with
blanks or ‘*’, to semantic and format preserving masking [5]
and anonymisation techniques such as data generalisation and
local differential privacy.

The main advantage of the proposed approach lies in the
transparency that the solution provides. DLPFS can be de-
ployed as a protection layer in order to reduce the privacy risk
in a number of scenarios. For example, by providing access
to data files for monitoring purposes to a third party system,
while preventing leakage of incorrectly handled information
produced by applications in testing or debug mode. This way,
it is not required to modify the application consuming the
data, as DLPFS can be transparently deployed to inspect, and
redact, the data that such an application is consuming and/or
producing within a specific portion of file system. The sole
effort required is to properly define and validate in the KB
the specifications for detection and transformation of sensitive
information. As an example of such validation, transformations
applied need to be consistent with the original data format, if
the expected applications are sensitive to data format.

III. IMPLEMENTATION DETAILS

A prototype has been implemented to validate the feasibility
of DLPFS and to test its impact on performance.



Following agile best practices, we concentrated on creating
a proof of concept implementation. This means leveraging lan-
guages and framework that would speed up the development
and testing of the system.

For this reason, we created a prototype using Python
(version 3.6) and python-fuse as main development li-
brary.4 This library exposes the Python bindings of FUSE [21].
The reasons behind these choices are as follows. Python is
a popular language for rapid prototyping, thus allowing fast
experimentation of various strategies for rules and transforma-
tion application. Similarly, File system in User Space (FUSE)
is the de-facto standard for user-space applications exposing a
filesystem interface.

These implementation choices have known drawbacks.
Namely, using Python as main language introduces perfor-
mance penalties, which can be overcome by implementing the
application in a more canonical system language (mainly C or
C++). Similarly, the fact that the main functionality of DLPFS
are executed in user space introduces another performance
penalty, as we will present and discuss in the evaluation
section. An implementation in a more canonical system lan-
guage would have yielded better performance, however, we
are accounting for this in the evaluations.

The prototype consists of a main application that is in charge
of running FUSE. Invoking the dlpfs module from Python
requires three mandatory parameters, namely: -t, specifying
the file system type; -r, specifying the root directory; -m,
specifying the mounting point; and optionally -s, that is the
path to the behaviour specification file.

Currently, the prototype supports two types of file sys-
tems: (i) dlpfs, and (ii) LoopBack. The latter is a simple
LoopBack (LB) file system that mirrors the content of the
root directory to the mounting directory, and its purpose is
only to fairly benchmark DLPFS, as will be discussed in
Section IV. The former, dlpfs, is the actual implementation
of the method presented in Section II.

The behaviour specification file contains instructions to
DLPFS regarding which data flow to protect (write, read,
or both), which patterns to protect and what transformation
to apply to the detected patterns. A simple example of this
specification file is presented in Figure 4. The structure of
the file is simple. It consists of a JavaScript Object Notation
(JSON) 5 object containing the following fields:

• do_read, a boolean value indicating if read data flow
should be protected

• do_write, a boolean value indicating if write data flow
should be protected

• rules, a list of rules to be applied on read and/or write
operations.

Each rule is a JSON object containing two fields:
• patterns, a list of patterns identified within this rule
• transformation, the transformation to apply to the

detected bytes

4https://github.com/libfuse/python-fuse
5https://www.json.org

{
” do read ” : t r u e ,
” d o w r i t e ” : f a l s e ,
” r u l e s ” : [ {

” p a t t e r n s ” : [ {
” t y p e ” : ” r e ” ,
” spec ” : ” ( : ?\\w | \ \ . ) +@( ? : \\w | \ \ . )

+\\ .\\w{2 , 4}”
} ] ,
” t r a n s f o r m a t i o n ” : {

” t y p e ” : ” r e d a c t ”
}} , {
” p a t t e r n s ” : [ {

” t y p e ” : ” r e ” ,
” spec ” : ” Account\\ s+ t o t a l : \\ s +( −?\\d

+\ .\\d{2} ) ”
} ] ,
” t r a n s f o r m a t i o n ” : {

” t y p e ” : ” d i f f p r i v ” ,
” mechanism ” : ” l a p l a c e ” ,
” e ” : 0 . 0 1 ,
” d ” : 0 . 2

}
} ]

}

Fig. 4: Example of behaviour specification file content

Currently, DLPFS supports two types of patterns: regular
expressions – implemented using the Python wrapper for re26

– and lookup tables. Other types of patterns – for instance
those presented in [5] – are envisioned to be added to the
system according to the needs presented in use cases.

DLPFS currently supports a small but functional set
of transformations: redaction, masking, generalisation, and
anonymisation. Redaction is implemented as a specialisation
of masking where the detected bytes are replaced with a
predefined character, set as default to ‘*‘, preserving the length
of the replaced bytes. Masking, on the other hand, replaces
the value with another fictionalised value within the same
domain [5], [23]. Generalisation is a special type of masking,
where the identified value is replaced with a more generic
value within the same domain, for example replacing the
value “Single” with “Not Married”, when protecting values
within the Marital Status domain. Generalisations are per-
formed using external knowledge bases like type hierarchies.
Finally, DLPFS supports a lightweight form of local differen-
tial privacy. This is achieved by replacing numerical values
with the output of the application of a differential privacy
mechanism [11].

IV. EXPERIMENTAL EVALUATION

This section describes the evaluation setup used to validate
the performance of DLPFS.

A. Setup

A number of experiments have been conducted in order to
assess the impact of DLPFS on the performance of read and
write operations. The benchmarks presented and discussed in

6https://github.com/google/re2/

https://github.com/libfuse/python-fuse
https://www.json.org
https://github.com/google/re2/


the remainder of this section have been executed on a Virtual
Machine (VM), equipped with an Intel® Xeon® Gold 6140
CPU 2.30GHz vCPU with 8 vcores, 32GB of RAM, and
Storage Area Network (SAN) drives.

This scenario mimics a common production environment,
where applications are running in a virtualised environment
and the hardware stack is abstracted to the user. It is not
uncommon for the storage system of such virtualised envi-
ronments to be mounted as a remote filesystem, leveraging
technologies such as Network FileSystem (NFS).7

Thanks to this approach, for instance, directories can be
easily shared across different virtual machines within the
same cloud infrastructure, and data can easily migrate across
different environments.

This introduces additional penalties to the performance of
read and write operations through network factors such as
latency, jitter, and congestion. Therefore, it is paramount to
define an unbiased and clear baseline for performing objective
and accurate benchmark measurements.

As described in Section III, the initial DLPFS prototype
has been developed by extending the python-fuse library.
The performance impact of the protection offered by DLPFS
has then been measured by comparing its throughput with that
obtained from a simple LB filesystem implementation that also
extends the python-fuse library.

A LoopBack file system is a simple pseudo-file system
implementation that accesses content from a storage device
at a given path, and renders it available at a different path.
In other words, it simply forwards read and write operations
without introducing any additional computational steps. For
any given benchmark test, the performance of such LB imple-
mentation has been used as a baseline for the experiments, thus
accounting in the comparison for the computational overhead
caused by using python-fuse library and network induced
delays.

B. Methodology

The experiments have been conducted as follows.
First, a number of synthetic datasets have been generated

using the Python library faker8, a popular open source
library for the generation of synthetic data. The data schema
of these datasets is the following:

• id contains a monotonically increasing sequence number.
It reflects the typical row identifier present in most
datasets. Its values range from 0 to N − 1, where N
is the number of rows contained in the dataset.

• icd contains a valid International Classification of Dis-
eases (ICD) value with probability 0.05, or an empty
string. The ICD is an international coding standard main-
tained by the World Health Organization (WHO), which
is globally used as diagnostic standard for epidemiology,
health management, and clinical purposes. This field
contains valid values for the version 10 of the standard.9

7https://tools.ietf.org/html/rfc7530
8https://github.com/libfuse/python-fuse
9https://icd.who.int/browse10/2019/en

• amount contains a randomly generated currency value.
Its values range from 1 to 1, 000 US dollars, with up to 2
decimal places. The values are sampled uniformly from
the domain.

• message contains a variable length string representing
a text message, or a comment, and it is composed by
concatenating:

– A randomly generated sentence, with length varying
between 3 and 9 words.

– A first keyword with probability 0.01.
– A second keyword with probability 0.1.
– A randomly generated email address with probability

0.05.
– Another randomly generated sentence, comprised of

3 to 9 words.

The test data is then represented in CSV format 10 and an
excerpt of a test dataset is shown in Figure 5. Note that rows
are truncated with (...) for readability purposes.

We created several of such CSV test datasets with sizes
ranging from 1 to 20, 000 rows, where each row amounts to
approximately 100 bytes, and we then performed two main
batches of experiments.

The first batch concentrates on exploring the performance
impact of DLPFS on read operations, while the second one
concentrates on measuring the impact on write operations.

a) Read Strategies: We tested a number of read strate-
gies, with the objective of simulating behaviours that are
commonly followed by applications while reading the content
of an input file. Namely, we simulated the following scenarios:

• Entire file content loaded in memory as pandas11

dataframe, this strategy replicates the usual behaviour of
a data scientist or machine learning practitioner.

• Entire file content entirely copied in memory, another
common practice to load and process the content of files

• Scan file content one row at a time, delegating to Python
the identification of row boundaries, typically via the new
line character (\n). This is the behaviour of row-oriented
programs or scripts.

• Read file content using Operating System (OS) instruc-
tions with varying read buffer size between 10, 100,
1, 000, and 10, 000 bytes. This strategy simulates sequen-
tial access to file when loading fixed size buffers, for
example when data objects are deserialised from disk.

b) Write Strategies: Similarly to how the read perfor-
mances were tested, we also executed benchmarks of different
behaviours with respect to writing files to disk. Namely, we
simulated the following writing patterns:

• Entire file content written to disk as pandas dataframe,
this strategy replicates the usual behaviour of a data
scientist or machine learning practitioner who is storing
the result of a computation to disk.

10https://tools.ietf.org/html/rfc4180
11https://pandas.pydata.org/

https://tools.ietf.org/html/rfc7530
https://github.com/libfuse/python-fuse
https://icd.who.int/browse10/2019/en
https://tools.ietf.org/html/rfc4180
https://pandas.pydata.org/


. . .
124 ,” G30 . 1 ” , ” $683 . 9 1 ” , ” Force food second . D i r e c t i o n n o t e h i s f i n i s h c a s e . ”
125 ,” C00 . 6 ” , ” $3 . 9 7 ” , ” Car ry wish q u i c k l y i n d u s t r y . . . I n t e r n a t i o n a l v i s i t . . . ”
126 ,” F71 . 8 ” , ” $355 . 5 6 ” , ” The p o l i t i c s mother r e s o u r c e . . . Charge f i l l t h a t . . . ”
127 ,” D51 . 3 ” , ” $93 . 6 4 ” , ” Born i n d u s t r y h e r e . . . H e a l t h e v e r n e a r l y a c h i e v e d . . . ”
128 ,” G29 . 3 ” , ” $87 . 9 4 ” , ” Role method must . . . FrequentKeyword . La t e why ho ld . . . ”
129 ,” F71 . 1 ” , ” $159 . 7 1 ” , ” F a t h e r go everybody . . . Big a c c o r d i n g he move . ”
130 ,” B20 . 3 ” , ” $874 . 1 9 ” , ” Chance d a t a unde r l i n e l e f t . . . FrequentKeyword . . . ”
131 ,” C00 . 2 ” , ” $825 . 0 5 ” , ” N a t io n c u t l a s t o l d . . . vanessa36@cox −mata . n e t . . . ”
. . .

Fig. 5: Example of generated data.

• Entire file at once, this pattern simulates an application
saving the all the output at once, or a program faulting
and creating a memory dump.

• Row by row, this pattern mimics the behaviour of an
application periodically logging messages to disc.

• Field by field, this pattern replicates the behaviour of an
application incrementally writing the produced output.
c) DLPFS configuration: As we will show later in this

section, the most important factor on the performance of
DLPFS resides in its configurations, in terms of identification
pattern and guard sizes.

We tested numerous configurations. First of all, we tested
the overhead caused by the DLPFS architecture. This has
been done providing a configuration with no patterns or
transformation. After that we tested with different types of
patterns, namely regular expressions of various complexity and
coverage. We tested the impact of an administrator specifying
not optimised regular expressions (i.e. containing unnecessary
greedy operators, or containing overlapping parts) against
precise patterns.

We then tested the performance impact of using different
guard sizes, ranging from 0 (i.e. no guard) to 256 bytes.

d) Matching cases: The last variable in our evaluation
is the percentage of matches encountered by the privacy
protection policies when executing the read or write operation.
More precisely, we tested several policies that differ in the
number of matching patterns with the file that is being read
or written. As it will be presented in Section IV-C, this is one
of the factors that most impacted performance of the system.
We tested three main cases:

• No matches. Thus, specifying patterns that were by
design not existing in the test data.

• Few matches. In this case we used a set of patterns
having a low probability of match within the test data.
More precisely, we tested patterns with probability 0.01
of being present in the test data, according to both data
construction and post data generation assessment.

• Many matches. In this case we used a set of patterns
having a higher probability of match within the test data.
More precisely, we tested patterns with probability 0.10
of being present in the test data, according to both data
construction and post data generation assessment.

Finally, we also tested different strategies in terms of how

the patterns are matched, and how the patterns behave. For
example, we noticed in the preliminary evaluation how the
structure of patterns implemented as regular expression pro-
duced very different results depending on whether the regular
expression itself had certain characteristics. As one would
expect, optimised regular expressions with less overlapping
parts and less greedy operators were performing better.

C. Results and Discussion

We repeated executions of the bulk of experiments 30 times,
and report the mean, 10th and 90th percentile of the measured
results.

Before analyzing the performance of DLPFS, let us argue
about more general observation. First of all, the experimental
evaluation clearly shows the importance of the correct se-
lection of the detection engine. One might notice how, with
no detection, DLPFS behaves exactly as the LB baseline,
which means that the additional buffering is not impacting
overall read/write performances. Let us also remark that the
time taken by the actual transformation is negligible when
compared with the detection, as demonstrated by prelimi-
nary execution of DLPFS with configuration specifying no
transformation, redact, masking (randomisation) or differential
privacy noise addition. Table I presents the average of 30 runs
over randomly generated 20, 000 numerical values transformed
with the strategies supported by DLPFS. In fact, the average
time required for processing 20, 000 numerical values takes
is, 3.459, 6.113, 151.982, and 319.207 milliseconds. The only
exception is the application of noise addition in a differentially
private fashion. This is caused by two factors. The first one
relates to the fact that the used framework has been designed
to operate on vectors of values, not individual ones. Secondly,
the framework is designed to sample noise from a distribution
in a secure manner [14], [10], a procedure that introduces
additional complexity.

TABLE I: Transformations time.

Transformation Time (ms)
No transformation 3.4593

Redact 6.11317
Masking 151.982
DP noise 319.207

On the other hand, as patterns are detected the reader
should notice an increment in execution time. The amount



(a) Read strategy (b) Write

Fig. 6: LB performance, varying file size, all strategies

(a) Read: No pattern specified (b) Read: No matching pattern

(c) Write: No pattern specified (d) Write: No matching pattern

Fig. 7: Minimum penalty of DLPFS over LB



(a) Not optimised (b) Many match

(c) Few match (d) Dictionary

Fig. 8: Read performance, varying file size, pread-1000

(a) Many matches (b) Few match

Fig. 9: Read performance, varying guard size



(a) Not optimised (b) Many match

(c) Few match (d) Dictionary

Fig. 10: Write performance, varying file size

(a) Read pattern (b) Write pattern

Fig. 11: Application throughput



of execution time directly depends on the amount of matches
the pattern has in the file, as one would expect. Moreover, the
engine actually used for the detection of the patterns greatly
impacts the amount of time spent in this phase. This analysis of
difference in performance, for example between re and re2,
is beyond the scope of this paper and it has been previously
discussed.12 For the rest of this we will present only the best
performing detection engine.

Similarly, the strategy of operation affects the performance.
For example, Figure 6 shows the difference in time required to
process different files reading, or writing, using the different
strategies. A common pattern that can be observed, is that
the time increases linearly as the file sizes increase. This is an
expected behaviour, and follows the trend of the baseline, even
if generally with a steeper slope. This is shown in Figure 7,
where we present the trend for two special cases. The first one,
Figure 7a, where the protection policy is set to empty, and a
second one, Figure 7b, where the policy has no match in the
processed data. The experiments performed on the write path
provide a similar picture, although the overhead of validating
data on write is greater than for read, as shown in Figure 7c
and Figure 7d.

Figure 8 shows the execution time of the introduced policies
when the entire file is read as a block of data. The first observa-
tion is that the guard size does not seem to impact significantly
the performance. On the other hand, the specified patterns
greatly impact the overall performance, as clearly shown in
Figure 8 and following. A poorly optimised set of patterns, as
shown in Figure 8a, reduces the system performance greatly,
while a set of patterns with similar hit ratio but with more
optimised regular expressions still shows a significant but from
a practical viewpoint acceptable overhead (see Figure 8b). On
the other hand, in case of patterns with few hits in the data,
the performances are affected by less then 30%, as shown in
Figure 8c and Figure 8d.

Figure 9 shows how the performance changes with the guard
size. Once can notice how there is no significant variation as
the guard, which we remind is the amount of bytes DLPFS
reads before and/or after the buffer required by the user, ranges
from 0 to 256 bytes. One might only notice a shift on the y-axis
caused by the different number of matches between Figure 9a,
having many matches, and Figure 9b, having fewer matches.

Similar as for read, also the write pattern performances
are mostly influenced by the pattern itself and the privacy
protection policy enforced. Figure 10 presents an overview of
the impact. The performance can degrade up to twice in case
of many matches, as shown in Figure 10b, but can be deemed
generally acceptable for non real-time services.

After this analysis, we can conclude the DLPFS has known
costs in terms of performance, but compares favourably con-
sidering the additional protection provided. In fact, the men-
tioned motivating scenario assumes DLPFS to be deployed as
additional protection layer, thus generally providing a minimal
impact on application’s performance as shown in Figure 7,

12https://pypi.org/project/re2/#performance

while providing additional guarantees in rare but critical
events. This is further corroborated by Figure 11, where we
present the throughput of an application reading (Figure 11a)
and writing (Figure 11b) data. This application behaves ac-
cording to the following pattern: first it reads(/writes) non
sensitive data. At t = 100 the application accesses a protected
pattern, after which it resumes normal operation.

V. RELATED WORK

Properly protecting data outsourcing or sharing, even lo-
cally, is an open issue. Several works have been proposed
to address these issues in specific context, with particular
focus on context where sensitive data are pervasive, like in
the healthcare domain [6].

The majority of the proposed approaches leverage, one
way or another, cryptographic-based techniques. For example,
[22] presents a cryptographic-based access control mecha-
nism to selectively limit access to sensitive parts of the
file. Similarly, [20], [7] describe a system, and associated
architecture, to introduce cryptography-based techniques in
federated health information systems. The authors show the
feasibility of improving the security of such systems by
adopting proper mechanisms to protect the exchanged data
and the provided functionalities from malicious manipulations.
Still in the healthcare domain, other approaches – like the
one presented in [24] – tackle the problem of data sharing
using a microservice approach. Hence, data is provided on
demand using highly restricted access control rules, to reveal
data on a need-to-know bases, and transforming the data in an
abstract data format before release, thus limiting the risk of
data leakage.

Other approaches rely on different ways to encode the files
on storage. For example, [19] presents a new file system that
focuses on the privacy protection of the on-disk state. This
is achieved by re-ordering data in user files at the bit level,
and storing bit slices at distributed locations in the storage
system. On the other hand, [8] presents a stackable filesys-
tem that leverages trusted hardware to provide confidentiality
and integrity for user files stored on untrusted platforms. A
similar idea is presented in [16], where the authors propose a
technique that involves using a hash function that uniquely
identifies the data and then splitting data across multiple
cloud providers. This is done following a “Good Enough”
approach to privacy-preserving cloud data storage, which has
been proven to be both technologically feasible and financially
advantageous.

Moreover, [3] presents a statistical Data Leakage Prevention
(DLP) model to classify data on the basis of semantics. This
study contributes by using data statistical analysis to detect
evolved confidential data. A fairly a summary and comparison
of DLP systems, techniques and research directions is also
provided in [4].

The work the most similar to DLPFS is presented in [18].
The authors analyse and propose mechanisms to enhance the
disclosure control of personal data. The scheme, called the
Hippocratic Filesystem, stores personal data’s purpose and
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use limitation as the data’s label, propagates the label as the
information flows from one place to another, and enforces
the label to prevent accidental disclosures. DLPFS, on the
other hand, presents a complementary method, where data is
transformed either at reading or writing time. Similarly, [1]
proposes the so called Hippocratic databases (HDB), which
presents similar concept to the filesystem approach previously
presented, but in the context of a centralised database.

Moreover, [25] presents a Windows file system that trans-
parently encrypts files automatically according to encryption
strategies. This work is complementary to the approach here
presented. The main differentiation is that in DLPFS it is not
mandatory to access the protected data through DLPFS itself.
A file directory can be protected while accessed from some
applications, while others can access the data without interact-
ing with DLPFS, thus introducing a performance penalty only
when deemed necessary.

Leveraging HDB, a P2P-based solution to tackle the pri-
vate data sharing problem in social networks has been pre-
sented [12]. The identification and transformation capabilities
of DLPFS are inspired by the work in [5], which presents a
toolkit that contains functionality for the detection and format
preserving transformation of values.

Finally, an extensive survey of masking anonymisation and
cryptographic-based methods for outsourced data storage is
presented in [9]. This survey was instrumental to the design
of DLPFS because, even if the application scenario is different,
the referenced techniques can be ported to the approach here
presented.

VI. CONCLUSIONS AND FUTURE WORK

We presented DLPFS, a novel data leakage prevention file
system middleware, to protect sensitive information potentially
stored in shared systems. We demonstrated the technical fea-
sibility and experimentally evaluated the performance impact
of the system. In particular, the evaluation demonstrated that
little to none overhead is introduced by DLPFS on normal
file-based operations, with reductions in performance detected
only when sensitive data is protected.

Future work can focus on four main aspects. First, scaling
up the concepts illustrated here in a purely distributed setting,
for example by porting the prototype to Java to enhance HDFS.
Second, the extension of the capabilities offered by DLPFS
in terms of data transformation. This could materialise as an
integration with more established data privacy frameworks.
Third, to extend data detection capabilities, for example with
the integration of contextual information, such as file metadata,
application and user operation, during the detection process.
Fourth and finally, we envision to integrate DLPFS with con-
ventional access control frameworks, to simplify configuration
management and deployment.
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