Skip to main content

END-TRUE: Emerging Nanotechnology-Based Double-Throughput True Random Number Generator

  • Conference paper
  • First Online:

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 661))

Abstract

True Random Number Generators (TRNGs) are essential primitives in any cryptographic system. They provide the foundation to secure authorization and authentication. This work proposes a generator that exploits the metastability effect of cross-coupled logic gates, as found in SR latches. Based on emerging reconfigurable transistor technology, a random number generator design has been proposed that doubles the throughput, compared to a similar standard CMOS design, by exploiting transistor-level reconfiguration. The proposed design is superior in terms of the number of transistors per block, power consumption and in critical path delay with respect to its CMOS counterpart. Random Number bit sequence are generated by operating the given design at three operating frequencies of 10 MHz, 100 MHz and 200 MHz. Firstly, the Shannon entropy for the generated bit sequence is measured, and then the generated bit sequence are subjected to statistical evaluation using the NIST benchmark suite. The \(P^\prime \) values for the NIST benchmarks is above the accepted threshold, which underlines the assumption that the designed circuit produces the random numbers based on the metastability effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is because the remaining benchmarks in the suite (Maurer’s Universal statistical, Linear, Radom excursion tests) require more than \(10^7\) bits for evaluation and it would amount to an unfeasible time duration to generate the bits using simulation [40] for a TCAD-based verilog-A model for RFETs [13].

References

  1. Bhunia, S., Tehranipoor, M.: Hardware security primitives, chapter 12. In: Hardware Security, pp. 311–345. Morgan Kaufmann (2019). https://doi.org/10.1016/B978-0-12-812477-2.00017-4, http://www.sciencedirect.com/science/article/pii/B9780128124772000174. ISBN 978-0-12-812477-2

  2. Bi, Y., et al.: Enhancing hardware security with emerging transistor technologies. In: Proceedings of the 26th Edition on Great Lakes Symposium on VLSI. GLSVLSI’16. pp. 305–310. ACM, Boston, Massachusetts (2016). https://doi.org/10.1145/2902961.2903041, http://doi.acm.org/10.1145/2902961.2903041. ISBN 978-1-4503-4274-2

  3. Bi, Y., et al.: Leveraging emerging technology for hardware security - case study on silicon nanowire FETs and graphene SymFETs. In: 2014 IEEE 23rd Asian Test Symposium, pp. 342–347 (2014). https://doi.org/10.1109/ATS.2014.69

  4. Bucci, M., et al.: A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans. Comput. 52(4), 403–409 (2003). https://doi.org/10.1109/TC.2003.1190581. ISSN 2326-3814

  5. Chen, A., et al.: Using emerging technologies for hardware security beyond PUFs. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1544–1549 (2016)

    Google Scholar 

  6. De Marchi, M., et al.: Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs. In: 2012 International Electron Devices Meeting, pp. 8.4.1–8.4.4 (2012). https://doi.org/10.1109/IEDM.2012.6479004

  7. Davies, R.B.: Exclusive OR (XOR) and hardware random number generators (2002)

    Google Scholar 

  8. Fujieda, N., Takeda, M., Ichikawa, S.: An analysis of DCM-based true random number generator. In: IEEE Trans. Circuits Syst. II: Express Briefs, 1–1 (2019). https://doi.org/10.1109/TCSII.2019.2926555. ISSN 1558-3791 , 1109–1113 (2019). ISSN 1558-3791

  9. Galderisi, G., Mikolajick, T., Trommer, J.: Reconfigurable field effect transistors design solutions for delay-invariant logic gates. IEEE Embed. Syst. Lett. (2022)

    Google Scholar 

  10. Gassend, B., et al.: Silicon physical random functions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security. CCS’02, pp. 148–160. Association for Computing Machinery, Washington, DC (2002). https://doi.org/10.1145/586110.586132. ISBN 1581136129

  11. Golic, J.D.J.: New methods for digital generation and postprocessing of random data. IEEE Trans. Comput. 55(10), 1217–1229 (2006). https://doi.org/10.1109/TC.2006.164. ISSN 2326-3814

  12. Gong, L., et al.: True random number generators using electrical noise. IEEE Access 7, 125796–125805 (2019)

    Article  Google Scholar 

  13. Gore, G., et al.: A predictive process design kit for three-independent-gate field-effect transistors. In: 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC), pp. 172–177 (2019). https://doi.org/10.1109/VLSI-SoC.2019.Gore2019

  14. Haddad, P., Fischer, V., Bernard, F., Nicolai, J.: A physical approach for stochastic modeling of TERO-based TRNG. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 357–372. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_18

    Chapter  Google Scholar 

  15. Harada, N., et al.: A polarity-controllable graphene inverter. In: vol. 96(1), p. 012102. American Institute of Physics (2010)

    Google Scholar 

  16. Hata, H., Ichikawa, S.: FPGA implementation of metastability-based true random number generator. IEICE Trans. Inf. Syst. 95(2), 426–436 (2012). https://doi.org/10.1587/transinf.E95.D.426

  17. Heinzig, A., et al.: Reconfigurable silicon nanowire transistors. Nano Lett. 12, 119–24 (2011). https://doi.org/10.1021/nl203094h

  18. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009). https://doi.org/10.1109/TC.2008.212. ISSN 2326-3814

  19. Holleman, J., et al.: A 3 \(\upmu \)W CMOS true random number generator with adaptive floating-gate offset cancellation. IEEE J. Solid-State Circuits 43(5), 1324–1336 (2008). https://doi.org/10.1109/JSSC.2008.920327. ISSN 1558-173X

  20. Holman, W.T., Connelly, J.A., Dowlatabadi, A.B.: An integrated analog/digital random noise source. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 44(6), 521–528 (1997). https://doi.org/10.1109/81.586025. ISSN 1558-1268

  21. Jiang, X., et al.: Investigations on line-edge roughness (LER) and line-width roughness (LWR) in nanoscale CMOS technology: Part I-modeling and simulation method. IEEE Trans. Electron Dev. 60(11), 3669–3675 (2013). https://doi.org/10.1109/TED.2013.2283518

  22. Yuan, J., Svensson, C.: New single-clock CMOS latches and flipflops with improved speed and power savings. IEEE J. Solid-State Circuits 32(1), 62–69 (1997). https://doi.org/10.1109/4.553179. ISSN 1558-173X

  23. Kim, S.-J., Umeno, K., Hasegawa, A.: Corrections of the NIST statistical test suite for randomness (2004). https://doi.org/10.48550/ARXIV.NLIN/0401040. https://arxiv.org/abs/nlin/0401040

  24. Kinniment, D.J., Chester, E.G.: Design of an on-chip random number generator using metastability. In: Proceedings of the 28th European Solid-State Circuits Conference, pp. 595–598 (2002)

    Google Scholar 

  25. Ko, K., et al.: Compact model strategy of metal-gate work-function variation for Ultrascaled FinFET and vertical GAA FETs. IEEE Trans. Electron Dev. 66(3), 1613–1616 (2019). https://doi.org/10.1109/TED.2019.2891677

  26. Li, X., et al.: Impact of process fluctuations on reconfigurable silicon nanowire transistor. IEEE Trans. Electron Dev. 68(2), 885–891 (2021). https://doi.org/10.1109/TED.2020.3045689

  27. Li, Y., et al.: Process variation effect, metal-gate work-function fluctuation and random dopant fluctuation of 10-nm gate-all-around silicon nanowire MOSFET devices. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 34.4.1–34.4.4 (2015). https://doi.org/10.1109/IEDM.2015.7409827

  28. Liu, N., et al.: A true random number generator using time-dependent dielectric breakdown. In: 2011 Symposium on VLSI Circuits - Digest of Technical Papers, pp. 216–217 (2011)

    Google Scholar 

  29. De Marchi, M., et al.: Top-down fabrication of gate-all-around vertically stacked silicon nanowire FETs with controllable polarity. IEEE Trans. Nanotechnol. 13(6), 1029–1038 (2014). https://doi.org/10.1109/TNANO.2014.2363386. ISSN 1536-125X

  30. Markettos, A.T., Moore, S.W.: The frequency injection attack on ring-oscillator-based true random number generators. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 317–331. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_23

    Chapter  Google Scholar 

  31. Mathew, S.K., et al.: 2.4 Gbps, 7 mw all-digital PVT-variation tolerant true random number generator for 45 nm CMOS high-performance microprocessors. IEEE J. Solid-State Circuits 47(11), 2807–2821 (2012). https://doi.org/10.1109/JSSC.2012.2217631. ISSN 1558-173X

  32. Mavrovouniotis, S., Ganley, M.: Hardware security modules. In: Markantonakis, K., Mayes, K. (eds.) Secure Smart Embedded Devices, Platforms and Applications, pp. 383–405. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7915-4_17

    Chapter  Google Scholar 

  33. Menezes, A.J., et al.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  34. Mikolajick, T., et al.: The RFET - a reconfigurable nanowire transistor and its application to novel electronic circuits and systems. Semicond. Sci. Technol. 32 (2016). https://doi.org/10.1088/1361-6641/aa5581

  35. Mulaosmanovic, H., Mikolajick, T., Slesazeck, S.: Random number generation based on ferroelectric switching. IEEE Electron Dev. Lett. 39(1), 135–138 (2018)

    Article  Google Scholar 

  36. Nakaharai, S., et al.: Electrostatically reversible polarity of ambipolar- MoTe2 transistors. ACS Nano 9(6), 5976–5983 (2015). https://doi.org/10.1021/acsnano.5b00736. PMID 25988597

    Article  Google Scholar 

  37. von Neumann, J.: Various techniques used in connection with random digits, chapter 13. In: Householder, A.S., Forsythe, G.E., Germond, H.H. (eds.) Monte Carlo Method. National Bureau of Standards Applied Mathematics Series, vol. 12, pp. 36–38. US Government Printing Office, Washington, DC (1951)

    Google Scholar 

  38. Pappu, R., et al.: Physical one-way functions. Science 297(5589), 2026–2030 (2002). https://doi.org/10.1126/science.1074376, https://science.sciencemag.org/content/297/5589/2026.full.pdf

  39. Parker, R.J.: Entropy justification for metastability based nondeterministic random bit generator. In: 2017 IEEE 2nd International Verification and Security Workshop (IVSW), pp. 25–30 (2017). https://doi.org/10.1109/IVSW.2017.8031540

  40. Perach, B., Kvatinsky, S.: An asynchronous and low-power true random number generator using STT-MTJ. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(11), 2473–2484 (2019). https://doi.org/10.1109/TVLSI.2019.2927816. ISSN 1557-9999

  41. Rahman, F., et al.: Security beyond CMOS: fundamentals, applications, and roadmap. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(12), 3420–3433 (2017). https://doi.org/10.1109/TVLSI.2017.2742943. ISSN 1063-8210

  42. Rai, S., Raitza, M., Kumar, A.: Technology mapping flow for emerging reconfigurable silicon nanowire transistors. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 767–772 (2018). https://doi.org/10.23919/DATE.2018.8342110

  43. Rai, S., et al.: A physical synthesis flow for early technology evaluation of silicon nanowire based reconfigurable FETs. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 605–608 (2018)

    Google Scholar 

  44. Rai, S., et al.: Designing efficient circuits based on runtime-reconfigurable field-effect transistors. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(3), 560–572 (2019). https://doi.org/10.1109/TVLSI.2018.2884646. ISSN 1557-9999

  45. Rai, S., et al.: Hardware watermarking using polymorphic inverter designs based on reconfigurable nanotechnologies. In: ISVLSI (2019)

    Google Scholar 

  46. Rai, S., et al.: Security promises and vulnerabilities in emerging reconfigurable nanotechnology-based circuits. IEEE Trans. Emerg. Top. Comput. 1 (2020). https://doi.org/10.1109/TETC.2020.3039375

  47. Raitza, M., et al.: Raw 2014: random number generators on FPGAs. ACM Trans. Reconfigurable Technol. Syst. 9(2) (2015). https://doi.org/10.1145/2807699. ISSN 1936-7406

  48. Rajendran, J., et al.: Nano meets security: exploring nanoelec-tronic devices for security applications. Proc. IEEE 103(5), 829–849 (2015). https://doi.org/10.1109/JPROC.2014.2387353

  49. Rukhin, A., et al.: NIST Special Publication 800-22: A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications. NIST Special Publication 800-22 (2010)

    Google Scholar 

  50. Rupani, A., Rai, S., Kumar, A.: Exploiting emerging reconfigurable technologies for secure devices. In: Euromicro DSD (2019)

    Google Scholar 

  51. Sedra, A.S., Smith, K.C.: Microelectronic Circuits, 5th edn. Oxford University Press, Oxford (2004)

    Google Scholar 

  52. Sessi, V., et al.: Back-bias reconfigurable field effect transistor: a flexible add-on functionality for 22 nm FDSOI. In: 2021 Silicon Nanoelectronics Workshop (SNW), pp. 1–2. IEEE (2021)

    Google Scholar 

  53. Simon, M., et al.: A wired-and transistor: polarity controllable FET with multiple inputs. In: 2018 76th Device Research Conference (DRC), pp. 1–2 (2018). https://doi.org/10.1109/DRC.2018.8442159

  54. Simon, M., et al.: Bringing reconfigurable nanowire FETs to a logic circuits compatible process platform. In: 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC), pp. 1–3 (2016). https://doi.org/10.1109/NMDC.2016.7777085

  55. Sistani, M., et al.: Nanometer-scale GE-based adaptable transistors providing programmable negative differential resistance enabling multivalued logic. ACS Nano 15(11), 18135–18141 (2021)

    Article  Google Scholar 

  56. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1), 109–119 (2007). https://doi.org/10.1109/TC.2007.250627. ISSN 2326-3814

  57. Tanachutiwat, S., et al.: Reconfigurable multi-function logic based on graphene p-n junctions. In: Design Automation Conference, pp. 883–888 (2010). https://doi.org/10.1145/1837274.1837496

  58. Tang, X., et al.: TSPC flip-flop circuit design with three-independent-gate silicon nanowire FETs. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1660–1663 (2014). https://doi.org/10.1109/ISCAS.2014.6865471

  59. Tokunaga, C., Blaauw, D., Mudge, T.: True random number generator with a metastability-based quality control. In: 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, pp. 404–611 (2007). https://doi.org/10.1109/ISSCC.2007.373465

  60. Torii, N., et al.: ASIC implementation of random number generators using SR latches and its evaluation. EURASIP J. Inf. Secur. 2016(1), 10 (2016)

    Article  Google Scholar 

  61. Trommer, J., et al.: Reconfigurable nanowire transistors with multiple independent gates for efficient and programmable combinational circuits. In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 169–174 (2016). ISBN 9783981537062

    Google Scholar 

  62. Trommer, J., et al.: Enabling energy efficiency and polarity control in germanium nanowire transistors by individually gated nanojunctions. ACS Nano 11(2), 1704–1711 (2016)

    Article  Google Scholar 

  63. Varchola, M., Drutarovsky, M.: New high entropy element for FPGA based true random number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 351–365. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_24

    Chapter  Google Scholar 

  64. Vasyltsov, I., Hambardzumyan, E., Kim, Y.-S., Karpinskyy, B.: Fast digital TRNG based on metastable ring oscillator. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 164–180. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_11

    Chapter  Google Scholar 

  65. Vatajelu, E.I., Di Natale, G.: High-entropy STT-MTJ-based TRNG. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(2), 491–495 (2019)

    Article  Google Scholar 

  66. Wang, R., et al.: Investigations on line-edge roughness (LER) and line-width roughness (LWR) in nanoscale CMOS technology: Part II-experimental results and impacts on device variability. IEEE Trans. Electron Dev. 60(11), 3676–3682 (2013). https://doi.org/10.1109/TED.2013.2283517

  67. Wang, Y., et al.: A novel circuit design of true random number generator using magnetic tunnel junction. In: 2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 123–128 (2016)

    Google Scholar 

  68. Weber, W.M., et al.: Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Physica Status Solidi (b) 244(11), 4170–4175 (2007)

    Article  Google Scholar 

  69. Zhao, W., Cao, Y.: New generation of predictive technology model for sub-45 nm design exploration. In: 7th International Symposium on Quality Electronic Design (ISQED 2006), vol. 6, p. 590 (2006)

    Google Scholar 

  70. Wold, K., Tan, C.H.: Analysis and enhancement of random number generator in FPGA based on oscillator rings. In: 2008 International Conference on Reconfigurable Computing and FPGAs, pp. 385–390 (2008). https://doi.org/10.1109/ReConFig.2008.17

  71. Ye, P., Ernst, T., Khare, M.V.: The last silicon transistor: nanosheet devices could be the final evolutionary step for Moore’s law. IEEE Spectr. 56(8), 30–35 (2019)

    Article  Google Scholar 

  72. Lin, Y.-M., et al.: High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481–489 (2005). https://doi.org/10.1109/TNANO.2005.851427. ISSN 1941-0085

  73. Yuan, J., Svensson, C.: High-speed CMOS circuit technique. IEEE J. Solid-State Circuits 24(1), 62–70 (1989)

    Article  Google Scholar 

  74. Zhang, J., et al.: Configurable circuits featuring dual-threshold-voltage design with three-independent-gate silicon nanowire FETs. IEEE Trans. Circuits Syst. I: Regul. Pap. 61(10), 2851–2861 (2014). https://doi.org/10.1109/TCSI.2014.2333675. ISSN 1558-0806

  75. Zhang, Z., et al.: Extraction of process variation parameters in FinFET technology based on compact modeling and characterization. IEEE Trans. Electron Dev. 65(3), 847–854 (2018). https://doi.org/10.1109/TED.2018.2790083

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rai, S. et al. (2022). END-TRUE: Emerging Nanotechnology-Based Double-Throughput True Random Number Generator. In: Grimblatt, V., Chang, C.H., Reis, R., Chattopadhyay, A., Calimera, A. (eds) VLSI-SoC: Technology Advancement on SoC Design. VLSI-SoC 2021. IFIP Advances in Information and Communication Technology, vol 661. Springer, Cham. https://doi.org/10.1007/978-3-031-16818-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16818-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16817-8

  • Online ISBN: 978-3-031-16818-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics