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Abstract. Ovarian cancer is the most lethal gynaecological malignancy.
The disease is most commonly asymptomatic at its early stages and its
diagnosis relies on expert evaluation of transvaginal ultrasound images.
Ultrasound is the first-line imaging modality for characterising adnexal
masses, it requires significant expertise and its analysis is subjective and
labour-intensive, therefore open to error. Hence, automating processes
to facilitate and standardise the evaluation of scans is desired in clinical
practice. Using supervised learning, we have demonstrated that segmen-
tation of adnexal masses is possible, however, prevalence and label im-
balance restricts the performance on under-represented classes. To miti-
gate this we apply a novel pathology-specific data synthesiser. We create
synthetic medical images with their corresponding ground truth segmen-
tations by using Poisson image editing to integrate less common masses
into other samples. Our approach achieves the best performance across
all classes, including an improvement of up to 8% when compared with
nnU-Net baseline approaches.

1 Introduction

One in two people will develop cancer, with ovarian cancer being the most lethal
gynaecological malignancy [15]. Around 75% of women diagnosed with ovarian
cancer are already at the advanced stages of the disease due to the earlier stages
often showing no symptoms [4], leading to a survival rate of only 35% [24].

Current diagnostic methods for detecting ovarian cancer include tumour
markers (CA-125) and the analysis of a transvaginal ultrasound image. Ultra-
sound classification of adnexal masses can be a challenging process. Current
ultrasound based diagnostic models exist, but still rely on the extraction of ul-
trasound features, which is time-consuming, labor-intensive, operator-dependant
and subject to error. Accurate classification of adnexal masses is necessary to
reduce incorrect diagnosis and unnecessary surgeries. With an efficient work-
flow, population screening for ovarian cancer could be feasible, leading to earlier
disease detection and increased survival rates. Evidently, there is tangible value
in developing a tool able to automatically extract the features in transvaginal
ultrasounds accurately and consistently.
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Supervised Deep Learning is a fast-growing area of research that has been
successfully applied in the medical field to predict illnesses, design treatments,
and distinguish between benign and malignant masses [7]. For ovarian cancer
diagnosis, Deep Learning could be used to automatically segment transvaginal
ultrasound features and extract characteristics required by risk models such as
the number of cysts and their dimensions.

A major challenge of ovarian cancer diagnosis is the accurate interpretation
of ultrasound images. Although ultrasound is the imaging modality of choice,
as it is accessible, non-invasive, and does not use radiation [11], it is also “no-
torious for having significant noise with a low signal-to-noise ratio” [18]. This
represents a challenge for both medical experts and segmentation algorithms.
The wide variety in shape and size of adnexal masses can also pose challenges
for segmentation.

In this paper we automate and regularise ultrasound feature extraction, with
the aim of improving the accuracy of diagnosis and reducing unnecessary refer-
rals. We focus on transvaginal ultrasound images and segment four adnexal mass
features: (1) lesions, (2) locules, (3) solid areas and (4) papillations – this has
not yet been attempted in literature to the best of our knowledge. The presence
or absence, number of occurrences, and dimensions of adnexal masses represent
the ultrasound features used by risk models to determine the probability of ma-
lignancy. Additionally, some adnexal masses are more common than others, and
some of the less common masses are the most difficult to detect, even for medi-
cal experts. This can lead to an imbalanced dataset and a poor segmentation of
under-represented masses.
Contributions: Current Deep Learning methods struggle to accurately segment
images when trained on imbalanced datasets. Our contributions are as follows: 1)
we propose a novel method to synthesise segmentation data with Poisson image
editing [17] to mitigate class imbalance; 2) we extensively evaluate our method
on transvaginal ultrasound data and compare it to domain experts, which we
show to be highly biased in an inter-observer study; 3) models trained with our
additional generated data outperform the current state-of-the-art nnU-Net [8]
(+3.7% DSC and +8% DSC for the augmented classes), achieving excellent
and high-standard segmentations for lesions and locules ≥ 0.94 DSC, and good
quality segmentation for solid areas and papillations ≈ 0.82 DSC.
Related Work: The task of segmenting transvaginal ultrasound scans has pre-
viously been attempted by researchers in the medical field. There are models that
segment polycystic ovary ultrasounds [12], or detect various features to give a
direct risk probability prediction and bypass risk models [10,1]. Direct risk pre-
diction is a black box giving clinicians less insight, control and confidence over the
diagnosis in contrast to a segmentation-based approach. To our knowledge, no
model has been developed to extract the specific ultrasound features [23] required
by robust, externally validated ultrasound-based risk models such as Assessment
of Different Neoplasias of Adnexa (ADNEX) and Simple Rules, developed by
the International Ovarian Tumour Analysis group [19,26,23,22,25,3]. The goal
of these guidelines and clinical algorithms is to determine whether the masses
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are benign or malignant, with a percentage probability of risk. Their parameters
are mostly based on time-consuming and operator-dependant assessment of the
presence, appearance, and size of pathological structures in ultrasound images.

Synthesising images, specifically medical images, has been a growing area
of research. Deep Learning models have been developed to synthesise images
from one medical modality to another [9], or entirely new ultrasound images
[5,21,2,14,13]. The latter does not guarantee that pathological textures are pre-
served or that synthesised images are medically plausible and realistic. This
could lead to generated ultrasound images with implausible ovarian features
overlapping. GAN-based methods have also been explored for data anonymisa-
tion, augmentation [20], and domain transfer [6]. These methods are usually not
tailored towards a specific disease.

2 Methodology

Deep neural networks such as nnU-Net [8] require a large amount of data to per-
form well. This requirement is commonly addressed with extensive data augmen-
tation techniques such as rotating and scaling. However, this does not improve
cases of imbalanced datasets. In this work we aim to synthesise new data by
extracting examples of less-seen masses and integrating them into other samples
in which such features would be clinically plausible. To do this we cannot naïvely
copy and paste the masses from one image to another, as this would result in
unrealistic image discontinuities. This simple technique was first trialled and re-
sulted in a significant decrease of performance for solid areas and papillations
(-2.7% and -3.3% DSC respectively). Instead we propose a novel method of syn-
thesising data based on the Poisson image editing algorithm [17]. This method
allows us to balance the dataset with good quality imaging, and subsequently
improve the performance of the model, specifically for the augmented classes.
An overview of our approach is shown in Figure 1.
Data Synthesis of Solid Areas and Papillations: We first use ground truth
annotations to extract and sort papillations with respect to their size and relative
position to solid areas. Following that, we identify target images that do not
contain any of our upsampled classes nor any class that would render the co-
occurrence with the upsampled class medically implausible. A papillation is then
randomly selected and blended into the target image.

Each chosen papillation is aligned with the solid area of the target image
and then offset by a third of the solid area’s width. The direction of the offset
is chosen such that it matches the relative position of the papillation in the
original image. It is a physiological requirement for papillations to overlap with
solid areas. Poisson image editing [17,16] is then used to seamlessly blend the
papillation patch onto the target image. The final step is to modify the ground
truth segmentation by adding the classification of pixels for the source image in
the region of interest, such that the segmentation contains the extracted mass.

Since this method performs an intersection of the papillation and solid area,
the synthesised images are not complete duplicates of the existing data, while



4 C. Lebbos et al.

Fig. 1: Overview of the Synthesiser Implementation: extracted papillations (green
mask) from existing images are randomly positioned and seamlessly blended into
target images with a solid area (red mask) by performing the intersection of the
masks to ensure they are overlapping

keeping the texture of the masses. This means that the solid areas are also
modified which we hypothesise makes the model more robust to this pathology
as well as for papillations.
Poisson Image Editing: Poisson image editing [17] blends the source image
into the target image by making edits in the gradient domain. For a source image
g and the destination image f∗, we want to calculate an interpolant f over a
region Ω representing the pixels under the mask with a boundary δΩ such that
the squared error between the gradients of f and g is minimised, whilst having
equal intensity values to the destination image at the region boundaries (Eqn. 1).
The solution is then the Poisson equation Eqn. 2.

f = argmin
f

∫∫
Ω

‖∇f − v‖2; f
∣∣∣
∂Ω

= f∗
∣∣∣
∂Ω
, v = ∇g (1)

∆f = div v over Ω, with f
∣∣∣
∂Ω

= f∗
∣∣∣
∂Ω

(2)

Our synthesiser takes v as the gradient of the source image, rather than using
mixed gradients [17], so that the texture of the extracted region is maintained.
Selected example outputs for this approach are shown for the (expert-rated) best
and worst artificially generated signs of pathology in Fig. 2.

3 Evaluation and Results

Dataset: We have curated a transvaginal ultrasound dataset for this study using
a GE Voluson E10, E8, S10 Expert or a Samsung Hera W10, WS80A scanner
with a transvaginal convex transducer. The dataset contains 532 2D images from
222 patients with their corresponding ground truth segmentations of lesions,
locules, solid areas and papillations (Fig. 3). Segmentation masks have been
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(a) Realistic Samsung W10 example (b) Less realistic Samsung W10 example

(c) Realistic Voluson E8 example (d) Less realistic Voluson E8 example

Fig. 2: Original and synthesised ultrasound image pairs. On the synthesised im-
age of each the green boxes is the original image area and the blue box is the
modified region of interest.

generated by an expert and verified/corrected by another clinical expert. Solid
areas and papillation labels are severely under-represented and also naturally
less common and hard to detect due to their small size. We have conducted
an inter-observer variability study where three experienced doctors individually
segmented adnexal masses in 20 ultrasound images. Consistently for all pairs
of observers, the segmentation of solid areas and papillations appeared to be
the most challenging for medical professionals (up to 12.7% decrease). We use
the DSC mean and variance across observers as the human-level performance
benchmark, and the tolerance for the Surface DSC is based on the variance of
this study.

(a) Lesion segmen-
tation

(b) Locule segmen-
tation

(c) Solid area seg-
mentation

(d) Papillation seg-
mentation

Fig. 3: Ultrasound image showing ex-
amples of each adnexal mass
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Fig. 4: Comparison of the class bal-
ance: original dataset D1 and ex-
tended dataset with synthesised im-
ages D2.
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We experiment with training models on a dataset of only real images D1 and
the same dataset extended with images produced by our data synthesiserD2. The
training took approximately 40 hours per fold. We evaluated each model with
the same held-out test set consisting of 53 real samples, ensuring consistency and
fairness when comparing the methods. None of these test images were included
in any part of the synthesis process when creating D2. As a baseline we used
nnU-Net [8] with region-based training to allow for overlapping labels.

We have synthesised ultrasound images with lesions, locules, solid areas and
papillations. In our case, a patient can only have a papillation if there is also
a solid area, a locule and a lesion present, which represents only 10% of our
dataset. This means that the dataset cannot be entirely balanced, but we have
increased the number of images with solid areas and papillations from 225 to
345 and 166 to 282 respectively (Fig. 4).
Metrics: Segmentation performance is evaluated between ground truth and
model prediction by Dice similarity coefficient (DSC), Surface Dice similarity
coefficient (SDSC), Hausdorff Distance at 95th percentile (HD95) and recall. For
images in the test set where one label was not present in both the ground truth
and the predicted segmentations, the DSC and SDSC and recall are set to 1 if
no false positive prediction is present, i.e., an empty label mask is predicted. To
determine whether the improvement of methods from the baseline is significant,
we perform a statistical significance test for the DSC and SDSC. We will carry
out a two-sided paired t-test on two models trained on the same test set. From
this statistical significance test, a p-value is calculated and is compared to a
threshold α.
Results: Figure 2 shows synthesised images with their corresponding original ul-
trasound image. For most images, the added papillation is blended seamlessly in
the image; the edges are not apparent and the intensities are coherent whilst still
keeping the texture of papillations. The less realistic images arise from incom-
patible textures in the source and destination images. As observed, the textures
are obviously different for the less realistic images leading to apparent edges. We
sought an evaluation by experienced ultrasound examiners in Gynaecology who
rated a selection of images.

In Table 1 we observe that the nnU-Net [8] baseline model, which uses region-
based training, performs very well for lesions and locules (>0.9 DSC) but worse
for solid areas and papillations (<0.8 DSC). We have also trained the baseline
model with more intensive data augmentation and batch normalisation, which
improves the segmentation performance.

The models trained with synthesised data appear to be the best performing
for all classes. The most significant effect is observed in solid areas where all
of the metrics have improved, with the DSC and SDSC increasing by 8% and
5.6% respectively, making it significantly better than the baseline with p < 0.01
and considerably better than all other models. Finally, the performance of the
segmentation of papillations is also improved with the DSC and SDSC increasing
by 2.1% and 2.4% respectively, making the model significantly better than the
baseline with regards to the SDSC (p < 0.01). However, the variance and value
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Model DSC SDSC Recall HD95

L
es

io
n
s BL 0.951 ± 0.063 0.961 ± 0.005 0.948 ± 0.080 10.35 ± 12.71

BL + BN + DA 0.955 ± 0.058 0.966 ± 0.006 0.947 ± 0.085 9.461 ± 12.79
BL + S 0.955 ± 0.056 0.965 ± 0.011 0.955 ± 0.067 9.379 ± 12.73
BL + S + BN + DA 0.957± 0.050∗ 0.966 ± 0.001 0.953 ± 0.075 9.068 ± 11.32
Expert 0.98± 0.062 - 0.975± 0.092 17.88± 55.267

L
oc

u
le

BL 0.936 ± 0.073 0.984 ± 0.062 0.934 ± 0.095 10.057 ± 11.65
BL + BN + DA 0.938 ± 0.074 0.988 ± 0.047 0.93 ± 0.105 9.549 ± 11.52
BL + S 0.943± 0.064∗ 0.989 ± 0.05 0.944 ± 0.08 8.852 ± 10.17
BL + S + BN + DA 0.941 ± 0.071 0.988 ± 0.045 0.936 ± 0.100 9.298 ± 10.79
Expert 0.939± 0.229 - 0.943± 0.229 4.204± 17.1

S
ol

id
ar

ea BL 0.736 ± 0.383 0.852 ± 0.339 0.822 ± 0.320 26.011 ± 18.93
BL + BN + DA 0.812± 0.330• 0.901± 0.276∗ 0.854 ± 0.291 26.748 ± 20.98
BL + S 0.816± 0.327◦ 0.908± 0.276◦ 0.875 ± 0.265 23.957 ± 19.77
BL + S + BN + DA 0.809± 0.334◦ 0.898± 0.292∗ 0.864 ± 0.283 25.432 ± 21.70
Expert 0.853± 0.345 - 0.908± 0.27 69.611± 164.532

P
ap

il
la

ti
on BL 0.761 ± 0.395 0.854 ± 0.325 0.805 ± 0.363 31.746 ± 26.67

BL + BN + DA 0.796± 0.376∗ 0.843 ± 0.353 0.815 ± 0.363 36.436 ± 30.77
BL + S 0.798± 0.380∗ 0.878± 0.30◦ 0.814 ± 0.357 37.467 ± 27.1
BL + S + BN + DA 0.809± 0.391∗ 0.882± 0.357◦ 0.807 ± 0.371 40.851 ± 28.48
Expert 0.873± 0.33 - 0.954± 0.202 25.318± 66.985

Table 1: Evaluation and ablation study for DSC, SDSC, Recall and HD95 (in
px) scores across models for locules, lesions, solid areas and papillations [BL:
Baseline nnU-Net [8] with region-based training, BN: Batch normalisation, DA:
Intense data augmentation, S: With synthesised data] on dataset D1 and D2 for
synthesiser. Significance compared to the baseline (BL): p∗ < 0.05, p◦ < 0.01,
p• < 0.001)

of the HD95 has increased. We believe this is due to the fragmented nature of
this label and more papillations being segmented compared to the other models.
The recall is higher which confirms our hypothesis that targeted lesion synthesis
can improve ultrasound image segmentation.

The model with synthesised data was also trained with the addition of batch
normalisation and intense data augmentation. The reason behind this was to
apply more data augmentation onto the synthesised images and make the model
more robust to all images and bridge the domain gap between the different
machines used. The modifications appear to perform similarly to the baseline
model with synthesised data. For solid areas, the performance is very similar to
the model without BN and DA where the DSC and SDSC are still significantly
better than the baseline with p < 0.01 and p < 0.05 respectively. For papilla-
tions, the DSC, SDSC and recall still remain within a single standard deviation,
although the HD95 has increased. Qualitative examples are shown in Figure 5
and 6. We used an Nvidia RTX A6000 for experimentation.
Discussion and Limitations: Manual segmentation of ultrasound images can
be error-prone, even when done by experts. The inter-observer variability of the
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Solid Areas

Papillations

BL BL + BN + DA BL + S BL + S + BN + DA

Fig. 5: Predicted segmentations of trained models compared to the ground truth
(GT) segmentation [BL: Baseline nnU-Net [8] with region-based training, BN:
Batch normalisation, DA: Intense data augmentation, S: With synthesised data]
[Green represents correctly labelled pixels, red the falsely predicted segmentation
and gold the false negative pixels]
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(a) (b) (c) (d)

Fig. 6: Sample of a segmentation of a lesion (a-b) and locule (c-d) [Green repre-
sents correctly labelled pixels, red the falsely predicted segmentation and gold
the false negative pixels]. (a) Segmentation of a lesion by the baseline model.
(b) Segmentation of a lesion by the baseline with synthesised data, batch nor-
malisation and intense data augmentation model (BL + S + BN + DA). (c)
Segmentation of locules by the baseline model, (d) Segmentation of locules by
the baseline model with synthesised data.

DSC reaches a low of 0.771 with a variance of 0.4 for solid areas. Additionally,
the disagreement rate is 20.8% for papillations with a κ of 0.17. Although the
variance of our best performing model has decreased by 20% (see Table 1),
we believe that having more than one step of verification for the ground truth
segmentation would reduce the bias in our model further.

We trained models with additional synthetic data on their own as well as
combined with batch normalisation, data augmentation. The models with syn-
thesised data perform best for all labels. In our analysis of the synthesised images,
we established that most images looked realistic (based on expert evaluation).
However, a few images had blended papillations with clear edges and in some
cases the direction of the speckle noise indicates artificial modifications. We hy-
pothesise that improving the synthesiser and only including entirely realistic
images would improve the performance further. There are also pathology con-
straints to be considered, e.g., a patient can only have a papillation if they have
a solid area, a locule and a lesion, which represents only 10% of our dataset.

4 Conclusion

This paper proposes a novel ultrasound image synthesiser to address dataset im-
balance and under-represented adnexal masses. Our research has demonstrated
that the nnU-Net baseline has room for improvements, specifically for masses
with under-represented features: solid areas and papillations. Medical experts
have confirmed the realistic appearance of the synthesised images. The use of
synthesised images balanced the dataset for papillations and solid areas, trans-
lating to an improvement in the performance of the model by 3.7% and 8% for
papillations and solid areas respectively over the state-of-the-art nnU-Net [8].
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Furthermore, the integration of synthesised images also reduced the variability
found between medical experts (by 35% on average).
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