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Abstract. Featherweight Go (FG) is a minimal core calculus that in-
cludes essential Go features such as overloaded methods and interface
types. The most straightforward semantic description of the dynamic be-
havior of FG programs is to resolve method calls based on run-time type
information. A more efficient approach is to apply a type-directed trans-
lation scheme where interface-values are replaced by dictionaries that
contain concrete method definitions. Thus, method calls can be resolved
by a simple lookup of the method definition in the dictionary. Establish-
ing that the target program obtained via the type-directed translation
scheme preserves the semantics of the original FG program is an impor-
tant task.
To establish this property we employ logical relations that are indexed by
types to relate source and target programs. We provide rigorous proofs
and give a detailed discussion of the many subtle corners that we have
encountered including the need for a step index due to recursive interfaces
and method definitions.

1 Introduction

Type directed translation is the process of elaborating a source into some target
program by making use of type information available in the source program.
Source and target may be from the same language as found in the case of com-
piler transformations, e.g. consider [16]. The target may be a more elementary
language compared to the source, e.g. consider [7,13]. In all cases it is essential
to establish that the target program resulting from the translation preserves the
meaning of the source program.

Here, we consider a type directed translation method applied to Feather-
weight Go. Featherweight Go (FG) is a minimal core calculus that includes
the essential features of Go such as method overloading and interfaces. Earlier
work by Griesmer and co-authors [6] specifies static typing rules and a run-time
method lookup semantics for FG. In our own prior work [26], we give a type di-
rected translation that elaborates methods calls to method lookup in dictionaries
that will be passed around in place of interfaces. We could establish correctness
of our translation but the result was somewhat limited as semantic preservation
only holds under the assumption that source and target programs terminate.
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In this work, we significantly extend our earlier semantic preservation result
and establish the following properties.

– If the source program terminates so will the target program and the resulting
values are equivalent.

– If the source program diverges so will the target program.
– If the source program panics due to a failed run-time type check, the target

program will panic as well.

These results require non-trivial extensions and adaptations of our earlier proof
method and type-indexed relation to connect source to target values. The up-
coming Section 2 gives an overview and highlights the changes from [26] to
achieve the above results.

In summary, we make the following contributions.

– We introduce a family of syntactic, step-indexed logical relations to estab-
lish semantic preservation for terminating, diverging and panicking source
programs (Section 5)

– We provide for rigorous proofs of our results (Section 5 and Appendix).

Section 3 specifies Featherweight Go (FG). The type directed translation of
FG including a description of the target language is given in Section 4. Both sec-
tions are adopted from our earlier work [26]. Related work is covered in Section 6.
Section 7 concludes.

2 Overview

Translation by example. We consider a type directed translation scheme that
transforms a FG program into some target program. The target language is an
untyped lambda-calculus extended with recursive let-bindings, constructors, and
pattern matching. Here, we use Haskell-style notation.

For example, the FG program on the left translates to the target program
on the right. For simplicity, we leave out some details (marked by ...).

type Int struct {val int}
type Eq interface {eq(that Eq) bool}
func (this Int) eq(that Eq) bool {...} eqInt this that = ...

func main() { main =

var i Eq = Int{1} let j = (1,eqInt)

var bool = i.eq(i) } in case j of (x,eq) -> eq x j

The FG program on the left contains a struct Int, an interface Eq, and a
definition for method eq for receiver type Int (line 3). Our example only contains
one definition of the eq method. In general, FG methods can be overloaded on
the receiver type. Hence, in the translation on the right, the function name eqInt
uniquely identifies the definition of eq for receiver type Int.

Interfaces give a name to a set of method signatures. They are types, and
so interface type Eq effectively describes all receiver types implementing the eq
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method. Type Int implements this eq method and therefore Int{1} is (also) of
type Eq. Hence, the method call i.eq(i) type checks.

The FG semantics performs a run-time type lookup to resolve method calls
such as i.eq(i). In the translation, an interface is represented as a pair that
consists of the value that implements the interface and a dictionary of method
definitions for this specific value. For example, i at type Eq translates to the pair
(1,eqInt). Assuming that we represent the FG variable i as j in the target, the
method call i.eq(i) translates to case j of (x,eq) -> eq x j, where we only
require a pattern match to access the underlying value and the concrete method
definition. See Section 4 for details of the type-directed translation.

Semantic preservation via logical relations. To establish that the translation is
meaning preserving we need to relate source to target expressions. One challenge
is that evaluation steps are not in sync. For example, FG method calls reduce
in a single step whereas the translated code first performs a pattern match to
obtain the method definition followed by another step to execute the call.

Earlier work:

∀k1, k2, v, V . k − (k1 + k2) > 0 ∧ e −→k1 v ∧ E −→k2 V

=⇒ v ≡APLAS V ∈ JtKk−(k1+k2)

e ≈APLAS E ∈ JtKk

This work:

terminate

∀k′
< k, v . e −→k′

v =⇒ ∃V.E −→∗
V ∧ v ≡ V ∈ JtKk−k′

e ≈ E ∈ JtKk

diverge

∀k′
< k, e

′
. e −→k′

e
′ ∧ diverge(e′) =⇒ diverge(E)

e ≈↑ E ∈ JtKk

panic

∀k′
< k, e

′
. e −→k′

e
′ ∧ panic(e′) =⇒ panic(E)

e ≈ 6↓ E ∈ JtKk

Fig. 1. Improvements compared to earlier work

In our earlier work [26], we introduce a logical relation e ≈APLAS E ∈ JtKk to
express that source and target expressions behave the same. See top of Figure 1.
The relation is indexed by type t and a step index k where we assume that
step indices are natural numbers starting with 0. Source expression e and target
expression E are in a relation: if the sum of evaluation steps to reduce e to some
source value v and E to some target value V is less than k, then the values must
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be in a relation.3 Thus, the number of reduction steps in the source and target
do not need to be in sync. If we need more than k steps, or if only the source
expression yields a value within k steps, or if one of the expressions diverges or
panics, the relation e ≈APLAS E ∈ JtKk holds vacuously and does not give us
any information.

In this work, we consider three cases: source terminates, diverges or panics.
See Figure 1 that sketches a logical relation for each case. terminate: if the
source e terminates within less than k steps, then the target E terminates as
well where the number of evaluation steps do not matter. diverge / panic: if
the source e evaluates to e′ in less than k steps and e′ diverges/panics, then so
does target E. The detour via e′ in the last two cases is required to prove that
source e and its translation E are related. Taken together, the three cases yield
a much stronger characterization of the semantic relation between source and
target programs compared to our earlier work.

We use the convention that ≡ relates values whereas ≈ relates expressions.
The step index in the relation for values, see v ≡ V ∈ JtKk−k′ , seems unnecessary
but is important to guarantee that the definition of logical relations is well-
founded (c.f. Section 5)

Ill-founded without step index. Consider the example from above where Int{1}
of type Eq translates to (1,eqInt). We expect Int{1} ≡ (1,eqInt) ∈ JEqK to
hold; that is, FG value Int{1} is equivalent to target value (1,eqInt) when
viewed at FG type Eq.

The following reasoning steps try to verify this claim. We deliberately ignore
the step index to show that without a step index we run into some issue.

(1) Int{1} ≡ (1,eqInt) ∈ JEqK

if (2) Int{1} ≡ 1 ∈ JIntK

and (3) func (x Int) eq(y Eq) bool {e’} ≈ eqInt ∈ Jeq(y Eq) boolK

Statement (1) reduces to statements (2) and (3). (2) states that the underlying
values are related at struct type Int. This clearly holds, we omit the details. (3)
requires a bit more thought. Function eqInt is part of the dictionary. Hence,
eqInt must have the same behavior as method eq defined on receiver type Int.
This is the intention of statement (3). Compared to the earlier notation of the
example, the function body has been replaced by some expression e’.

How can we establish (3)? It must hold that when applied to related argument
values, eqInt and method eq defined on receiver type Int behave the same. Thus,
establishing (3) requires (4):

(4) ∀v ≡ V ∈ JIntK, v′ ≡ V ′ ∈ JEqK. 〈x 7→ v, y 7→ v′〉e’ ≈ eqInt V V ′ ∈ JboolK

where we write 〈x 7→ v, y 7→ v′〉e’ to denote the substitution of arguments by
values in the function body.

3 We defer all formal and missing definitions to Sections 3, 4 and 5. For now, we appeal
to intuition.
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There is an issue. One of the arguments is of interface type Eq. Hence, for any
values v′, V ′ we require v′ ≡ V ′ ∈ JEqK. This leads to a cyclic dependency as a
statement of the form · ≡ · ∈ JEqK relies on a statement · ≡ · ∈ JEqK. See (1) and
(4). This would mean that the definition of our logical relation is ill-founded.

Rule schemes parameterized by some binary ordering relation ◭:

method-◭

∀k′
, v, v

′
, V, V

′
.k

′
◭ k ∧ v ≡ V ∈ JIntKk′ ∧ v

′ ≡ V
′ ∈ JEqKk′

=⇒ 〈x 7→ v, y 7→ v
′〉e’ ≈ eq V V

′ ∈ JboolKk′

func (x Int) eq(y Eq) bool {e’} ≈ eq ∈ Jeq(y Eq) boolKk

iface-◭

∀k1.k1 ◭ k =⇒ v ≡ V ∈ JIntKk1

∀k2.k2 ◭ k =⇒ func (x Int) eq(y Eq) bool {e’} ≈ V
′ ∈ Jeq(y Eq) boolKk2

v ≡ (V, V ′) ∈ JEqKk

Logical relation properties:

lr-step e ≈ E ∈ JtKk ∧ e′ −→1 e ∧E′ −→∗ E =⇒ e′ ≈ E′ ∈ JtKk+1

lr-mono e ≈ E ∈ JtKk ∧ k′ ≤ k =⇒ e ≈ E ∈ JtKk′

Fig. 2. Getting the step index right

Step indices to the rescue. FG interfaces can have cyclic dependencies similar
to recursive types, see interface Eq. To guarantee well-foundedness we include
a step index in the definition of our logical relations. There is in fact a second
reason for a step index. Method definitions may be recursive similar to recursive
functions. There is no well-foundedness issue here. But to apply an inductive
proof method where semantic preservation for expressions is lifted to method
definitions require a step-index.

Step indices in case of recursive types and recursive functions have been stud-
ied before [2]. What makes our setting interesting is a subtle interaction between
(recursive) interfaces and (recursive) methods. Figure 2 specifies the logical re-
lation rules for methods and interfaces that we have used in the above reasoning
steps (1-4). The rule for interfaces relies on the rule for methods and the rule
for methods relies on the rule for interfaces (in case of recursive interfaces). For
brevity, we omit rules for struct types such as Int.

Rules method-◭ and iface-◭ are parameterized by some binary ordering
relation◭. Why not simply replace◭ by<, the less than relation? Rule instances
method-< and iface-< are clearly well-founded.

Failed proof attempt in case of method-< and iface-<. Via our running example
we illustrate that the proof of semantic preservation for expressions will not go
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through. Recall that

i.eq(i) of type bool translates to case j of (x,eq) -> eq x j

i = Int{1} of type Eq j = (1, eqInt)

For values i and j, we may assume (1) Int{1} ≡ (1,eqInt) ∈ JEqKk for some k.
To verify that the translation yields related expressions, we must show

(2) i.eq(i) ≈ case j of (x,eq) -> eq x j ∈ JboolKk

From (1), via reverse application of rule iface-<, we can derive

(3) func (x Int) eq(y Eq) bool {e’} ≈ eqInt ∈ Jeq(y Eq) boolKk−1

From (3) we get the implication in the premise of rule method-<. The left-
hand side of this implication can be satisfied for k− 2 < k− 1 via lr-mono from
Figure 2 and (1) and the fact that Int{1} ≡ 1 ∈ JIntKk. Thus, we can derive the
right-hand side 〈x 7→ i, y 7→ i〉e’ ≈ eqInt 1 j ∈ JboolKk−2. From this we get

(5) i.eq(i) ≈ case j of (x,eq) -> eq x j ∈ JboolKk−1

via property lr-step in Figure 2 and the following evaluation steps:

i.eq(i) −→1 〈x 7→ i, y 7→ i〉e’
case j of (x,eq) -> eq x j −→∗ eqInt 1 j

The issue is that from (5) we cannot deduce (2). Property lr-step allows us
to bump up the step index in case of source reduction steps. Target reductions
have no impact. Hence, we end up being one step short.

Fixing the proof by turning < into ≤. The solution is to turn one < into ≤. Then,
we can derive (5) i.eq(i) ≈ case j of (x,eq) -> eq x j ∈ JboolKk and the
proof of semantic equivalence for expressions goes through. It seems that we
have a choice between (A) rule instances method-≤ and iface-< and (B) rule
instances method-< and iface-≤. We pick choice (B) because under (A) the
proof of semantic preservation for (possibly recursive) method definitions will
not go through. See the proof of the upcoming Lemma 2 in Section 5.

Comparison to our earlier work [26]. The logical relation introduced in our
earlier work [26] is more limited in that semantic preservation is only stated under
the assumption that both expressions, source and target programs, terminate.
Recall Figure 1 that shows that the logical relation ≈APLAS∈ JK also takes into
account source as well as target steps. Under this stronger assumption it is easier
to get the step index right as we can derive the following more general variant
of property lr-step

e ≈APLAS E ∈ JtKk ∧ e′ −→k1 e ∧ E −→k2 E′ =⇒ e′ ≈APLAS E′ ∈ JtKk+k1+k2
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That is, we can bump up the step index based on target reductions as well. This
provides for more flexibility, even with rule instances method-< and iface-<,
the proofs go through. As highlighted above, more care is needed for the logical
relations that we introduce in this work.

Next, we introduce the semantics of Featherweight Go and give the details
of the typed-directed translation scheme followed by our semantic preservation
results.

3 Featherweight Go

Featherweight Go (FG) [6] is a tiny fragment of Go containing only structs,
methods and interfaces. Figure 3 gives its syntax and the dynamic semantics.
Overbar notation s

n denotes the sequence s1 . . . sn for some syntactic construct
s, where in some places commas separate the sequence items. If irrelevant, we
omit the n and simply write s. Using the index variable i under an overbar
marks the parts that vary from sequence item to sequence item; for example,
s
′
si

n
abbreviates s′ s1 . . . s

′
sn and sj

q abbreviates sj1 . . . sjq.
A FG program P consists of declarations D and a main function. A decla-

ration is either a type declaration for a struct or an interface, or a method dec-
laration. Such a method declaration func (x tS) mM {return e} makes method
of name m and signature M available for receiver type tS , where the body e
may refer to the receiver as x. Expressions e consist of variables x, method calls
e.m(e), struct literals tS{e} with field values e, access to a struct’s field e.f , and
dynamic type assertions e.(t). For convenience, we use disjoint sets of identifiers
for structs tS and interfaces tI .

FG is a statically typed language. For brevity, we omit a detailed description
of the FG typing rules as they appear in [6] and will show up in slightly different
form in the type-directed translation in Section 4. However, we state the following
conditions that must be satisfied by a FG program:

FG1: Structs must be non-recursive.
FG2: For each struct, field names must be distinct.
FG3: For each interface, method names must be distinct.
FG4: Each method declaration is uniquely identified by the receiver type and

method name.

The execution of dynamic type assertions in FG relies on structural subtyp-
ing. The relation D ⊢FG t <: u denotes that under declarations D type t is a
subtype of type u (see Figure 3). A struct tS is a subtype of an interface tI if
tS implements all the methods specified by tI . An interface tI is a subtype of
another interface uI if the methods specified by tI are a superset of the methods
specified by uI .

The dynamic semantics of FG is given in the bottom part of Figure 3 as
structural operational semantics rules. The relation D ⊢FG e −→ e′ denotes
that expression e reduces to expression e′ under the sequence D of declarations.
Rule fg-context makes use of evaluation contexts E with holes � to apply
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Field name f

Method name m

Variable name x, y

Struct type name tS, uS

Interface type name tI , uI

Type name t, u ::= tS | tI
Method signature M ::= (xi ti) t
Method specification R,S ::= mM

Expression d, e ::=
Variable x |
Method call e.m(e) |
Struct literal tS{e} |
Select e.f |
Type assertion e.(t)

Type literal L ::=

Struct struct {f t} |

Interface interface {S}

Declaration D ::=
Type type t L |
Method func (x tS) mM {return e}

Program P ::= D func main(){ = e}

D ⊢FG t <: u Subtyping

methods-struct

methods(D, tS) = {mM | func (x tS) mM {return e} ∈ D}

methods-iface

type tI interface {S} ∈ D

methods(D, tI) = {S}

sub-struct-refl

D ⊢FG tS <: tS

sub-iface

methods(D, t) ⊇ methods(D,uI)

D ⊢FG t <: uI

D ⊢FG e −→ e Reductions

Value v ::= tS{v}
Evaluation context E ::= � | tS{v, E , e} | E .f | E .(t) | E .m(e) | v.m(v, E , e)
Substitution (FG values) Φv ::= 〈xi 7→ vi〉

fg-context

D ⊢FG e −→ e
′

D ⊢FG E [e] −→ E [e′]

fg-field

type tS struct {f t} ∈ D

D ⊢FG tS{v}.fi −→ vi

fg-call

v = tS{v} func (x tS) m(x t) t {return e} ∈ D

D ⊢FG v.m(v) −→ 〈x 7→ v, xi 7→ vi〉e

fg-assert

v = tS{v} D ⊢FG tS <: t

D ⊢FG v.(t) −→ v

Fig. 3. Featherweight Go (FG)

8



a reduction inside an expression. Values, ranged over by v, are struct literals
whose components are all values. A capture-avoiding substitution Φv = 〈xi 7→ vi〉
replaces variables xi with values vi, applying a substitution Φv to an expression
e is written Φve.

Rule fg-field deals with field access. Condition FG2 guarantees that field
name lookup is unambiguous. Rule fg-call reduces method calls. Condition FG4
guarantees that method lookup is unambiguous. The method call is reduced to
the method body e where we map the receiver argument to a concrete value
v and method arguments xi to concrete values vi. Rule fg-assert covers type
assertions. We need to check that the type tS of value v is consistent with the
type t asserted in the program text. This check can be carried out by checking
that tS and t are in a structural subtype relation.

We write D ⊢FG e −→k e′ to denote that e reduces to e′ in exactly k steps.
We write D ⊢FG e −→∗ e′ to denote that there exists some k ∈ N with e −→k e′.
We assume that N includes zero. If e reduces ad infinitum, we say that e diverges,
written D ⇑FG e. Formally, D ⇑FG e if ∀k ∈ N.∃e′.D ⊢FG e −→k e′.

FG enjoys type soundness [6]. A well-typed program either reduces to a value,
diverges, or it panics by getting stuck on a failed type assertion. The predicate
panicFG(D, e) formalizes panicking:

¬ D ⊢FG tS <: t

panicFG(D, E [tS{v}.(t)])
fg-panic

4 Type Directed Translation

We specify a type-directed translation from FG to an untyped lambda-calculus
extended with recursive let-bindings, constructors, and pattern matching. The
translation itself has already been specified elsewhere [26], but there only a weak
form of semantic equivalence between source and target programs was given.
The goal of the article at hand is to prove a much stronger form of semantic
equivalence (see Section 5).

4.1 Target Language

Figure 4 specifies the syntax and dynamic semantics of our target language (TL).
We use capital letters for constructs of the target language. Target expressions
E include variables X,Y , data constructors K, function application, lambda
abstraction and case expressions to pattern match against constructors. In a
case expression with only one pattern clause, we often omit the brackets. If
a case expressions has more than one clause [Pat → E], we assume that the
constructors in Pat are distinct. A program consists of a sequence of (mutually
recursive) function definitions and a (main) expression. The function definitions
are the result of translating FG method definitions.

We assume data constructors for tuples up to some fixed but arbitrary size.
The syntax (E

n
) constructs an n-tuple when used as an expression, and decon-

structs it when used in a pattern context. At some places, we use nested patterns

9



Expression E ::=
Variable X | Y |
Constructor K |
Application E E |
Abstraction λX.E |

Pattern case case E of [Cls]

Pattern clause Cls ::= Pat → E

Pattern Pat ::= K X

Program Prog ::= let Yi = λXi.Ei

in E

TL values V ::= K V | λX.E | X

TL evaluation context R ::= � | case R of [Pat → E] | R E | V R

Substitution (TL values) ΦV ::= 〈X 7→ V 〉

Substitution (TL methods) Φm ::= 〈Y 7→ λX.E〉

Φm ⊢TL E −→ E′ TL expression reductions

tl-context

Φm ⊢TL E −→ E
′

Φm ⊢TL R[E] −→ R[E′]

tl-lambda

Φm ⊢TL (λX.E) V −→ 〈X 7→ V 〉E

tl-case

K Xi
n
→ E

′ ∈ Cls

Φm ⊢TL case K Vi
n
of [Cls ] −→ 〈Xi 7→ Vi

n
〉E′

tl-method

Φm ⊢TL Y V −→ Φm(Y ) V

⊢TL Prog −→ Prog ′ TL reductions

tl-prog

〈Yi 7→ λXi.Ei〉 ⊢TL E −→ E
′

⊢TL let Yi = λXi.Ei in E −→ let Yi = λXi.Ei in E
′

Fig. 4. Target Language (TL)
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as an abbreviation for nested case expressions. The notation λPat .E stands for
λX.case X of Pat → E, where X is fresh.

Target values V consist of constructors, lambda expressions, and variables.
A variable may be a value if it is bound in a let at the top-level; that is, it refers
to a method from FG. A constructor value K V

n
is short for (. . . (K V1) . . .)Vn.

The structural operational semantics employs two types of substitutions.
Value substitutions ΦV records the bindings resulting from pattern matching and
function applications. Method substitutions Φm records the bindings for trans-
lated method definitions (i.e. for top-level let-bindings). Reduction of programs
is mapped to reduction of expressions under a method substitution, see rule
tl-prog. A variable Y applied to a value V reduces to Φm(Y )V via tl-method.
The remaining reduction rules are standard.

We write Φm ⊢TL E −→k E′ to denote that E reduces to E′ with exactly k
steps, and Φm ⊢TL E −→∗ E′ for some finite number of steps. If E reduces an
arbitrary number of steps, we say that E diverges, written Φm ⇑TL E. Formally,
Φm ⇑TL E iff ∀k ∈ N.∃E′.Φm ⊢TL E −→k E′.

In the source language FG, evaluation might panic by getting stuck on a failed
type assertion. The translation to the target language preserves panicking, so we
need to formalize panic. A target language expression panics if it is stuck on a
case-expression and there is no matching clause.

K Xi
n
→ E′ 6∈ [Cls ]

panicTL(Φm,R[case K Vi
n
of [Cls ]])

tl-panic

4.2 Translation

The specification of the translation spreads out over three figures. Figure 5 gives
the translation of expressions, relying on Figure 6 to define auxiliary relations for
translating structural subtyping and type assertions. Finally, Figure 7 translates
method declarations and programs.

Before explaining the translation rules, we establish the following conven-
tions (see also the top of Figure 5). We assume that each FG variable x trans-
lates to the TL variable X . FG variables introduced in method declarations are
assumed to be distinct. This guarantees that there are no name clashes in envi-
ronment Γ . For each struct tS we introduce a TL constructor KtS , and for each
interface tI we introduce a TL constructor KtI . For each method declaration
func (x tS) mM {return e} we introduce a TL variable Xm,tS , thereby relying
on condition FG4 which guarantees that m and tS uniquely identify this decla-
ration. We write Γ to denote typing environments where we record the types of
FG variables. The notation [n] is a short-hand for the set {1, . . . , n}.

The overall idea of the translation is to choose the TL-representation of an
FG-value v = tS{v} based on the type t that v is used at:

– If t is a struct type tS , then the representation of v is KtS (V ), where each
Vi is the representation of vi, so (V ) is a tuple for the struct fields.
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– If t is an interface type, then the representation of v is an interface-value
KtI (V,Xmi,tS ), where V is the representation of v at struct type tS and
Xmi,tS is a dictionary [7] containing all methods mi of interface tI . The
translation makes each method func (x tS) miM {return e} available as a
top-level binding let Xmi,tS = E. An interface value KtI (V,Xmi,tS ) bears
close resemblance to an existential type [12], as it hides the concrete repre-
sentation of the value V .

Convention for mapping source to target terms

x X tS  KtS tI  KtI func (x tS) mM {return e} Xm,tS

FG environment Γ ::= {} | {x : t} | Γ ∪ Γ

〈D,Γ 〉 ⊢exp e : t E Translating expressions

td-var

(x : t) ∈ Γ

〈D,Γ 〉 ⊢exp x : t X

td-struct

type tS struct {f t
n
} ∈ D

〈D, Γ 〉 ⊢exp ei : ti  Ei (∀ i ∈ [n])

〈D,Γ 〉 ⊢exp tS{e
n} : tS  KtS (E

n
)

td-access

〈D,Γ 〉 ⊢exp e : tS  E type tS struct {f t
n
} ∈ D

〈D,Γ 〉 ⊢exp e.fi : ti  case E of KtS (X
n
) → Xi

td-call-struct

m(x t
n
) t ∈ methods(D, tS)

〈D, Γ 〉 ⊢exp e : tS  E 〈D,Γ 〉 ⊢exp ei : ti  Ei (∀ i ∈ [n])

〈D,Γ 〉 ⊢exp e.m(en) : t Xm,tS E (E
n
)

td-call-iface

〈D,Γ 〉 ⊢exp e : tI  E type tI interface {S} ∈ D

Sj = m(x t
n
) t 〈D,Γ 〉 ⊢exp ei : ti  Ei (∀ i ∈ [n]) X,X

q
fresh

〈D,Γ 〉 ⊢exp e.m(en) : t case E of KtI (X,X
q
) → Xj X (E

n
)

td-assert

u defined in D

〈D,Γ 〉 ⊢exp e : tI  E2 D ⊢iDestr tI ց u E1

〈D,Γ 〉 ⊢exp e.(u) : u E1 E2

td-sub

〈D,Γ 〉 ⊢exp e : t E2

D ⊢iCons t <: u E1

〈D,Γ 〉 ⊢exp e : u E1 E2

Fig. 5. Translation of expressions

The translation rules for expressions (Figure 5) are of the form 〈D,Γ 〉 ⊢exp

e : t  E where D refers to the sequence of FG declarations, Γ refers to type
binding of local variables, e is the to be translated FG expression, t its type and
E the resulting target term. Rule td-var translates variables and follows our
convention that x translates to X . Rule td-struct translates a struct creation.

12



The translated field elements Ei are collected in a tuple and tagged via the
constructor KtS . Rule td-access uses pattern matching to capture field access
in the translation.

Method calls are dealt with by rules td-call-struct and td-call-iface. Rule
td-call-struct covers the case that the receiver e is of the struct type tS . The
first precondition guarantees that an implementation for this specific method
call exists. (See Figure 3 for the auxiliary methods.) Hence, we can assume that
we have available a corresponding definition for Xm,tS in our translation. The
method call then translates to applying Xm,tS first on the translated receiver E,

followed by the translated arguments collected in a tuple (E
n
).

Rule td-call-iface assumes that receiver e is of interface type tI , so e trans-
lates to interface-value E. Hence, we pattern match on E to access the under-
lying value and the desired method in the dictionary. We assume that the order
of methods in the dictionary corresponds to the order of method declarations
in the interface. The preconditions guarantee that tI provides a method m as
demanded by the method call, where j denotes the index of m in interface tI .

To explain the two remaining rules for expressions (td-assert and td-sub),
we first introduce the two auxiliary relations defined in Figure 6. The relation
D ⊢iCons t <: uI  E constructs an interface-value for uI . Thus, the resulting
expression E is a λ-expression taking the representation of a value at type t and
yields its representation at type uI .

D ⊢iCons t <: uI  E Interface-value construction

td-cons-struct-iface

type tI interface {S} ∈ D methods(D, tS) ⊇ S S = mM
n

D ⊢iCons tS <: tI  λX.KtI (X,Xmi ,tS

n
)

td-cons-iface-iface

type tI interface {R
n
} ∈ D

type uI interface {S
q
} ∈ D Si = Rπ(i) (∀ i ∈ [q])

D ⊢iCons tI <: uI  λX.caseX of KtI (X,X
n
) → KuI

(X,Xπ(1), . . . , Xπ(q))

D ⊢iDestr tI ց u E Interface-value destruction

td-destr-iface-struct

type tI interface {R
n
} ∈ D D ⊢FG tS <: tI

D ⊢iDestr tI ց tS  λX.caseX of KtI (KtS Y,X
n
) → KtS Y

td-destr-iface-iface

X,Y, Y
′
, X

n
fresh type tI interface {R

n
} ∈ D

for all type tSj struct {f u} ∈ D with D ⊢iCons tSj <: uI  Ej :
Clsj = KtSj

Y
′ → (Ej (KtSj

Y
′))

D ⊢iDestr tI ց uI  λX.case X of KtI (Y,X
n
) → case Y of [Cls]

Fig. 6. Translation of structural subtyping and type assertions

13



The preconditions in rule td-cons-struct-iface check that struct tS imple-
ments the interface. This guarantees the existence of method definitions Xmi,tS .
Hence, we can construct the desired interface-value. The preconditions in rule
td-cons-iface-iface check that tI ’s methods are a superset of uI ’s methods.
This is done via the total function π : {1, . . . , q} → {1, . . . , n} that matches
each (wanted) method in uI against a (given) method in tI . We use pattern
matching over the tI ’s interface-value to extract the wanted methods. Recall
that dictionaries maintain the order of method as specified by the interface.

The relation D ⊢iDestr tI ց u  E destructs an interface-value. The λ-
expression E takes a representation at type tI and converts it to the represen-
tation at type u. This conversion might fail, resulting in a pattern-match error.

Rule td-destr-iface-struct deals with the case that the target type u is a
struct type tS . Hence, we find the precondition D ⊢FG tS <: tI . We pattern
match over the interface-value that represents tI to check that the underlying
value matches tS and extract the value. It is possible that some other value has
been used to implement the interface-value that represents tI . In such a case,
the pattern match fails and we experience run-time failure.

Rule td-destr-iface-iface deals with the case that the target type u is an
interface type uI . The outer case expression extracts the value Y underlying
interface-value tI (this case never fails). We then check if we can construct an
interface-value for uI via Y . This is done via an inner case expression. For each
struct tSj implementing uI , we have a pattern clause Clsj that matches against
the constructor KtSj

of the struct and then constructs an interface-value for uI .
There are two reasons for run-time failure here. First, Y (used to implement
tI) might not implement uI ; that is, none of the pattern clauses Clsj match.
Second, [Cls ] might be empty because no receiver at all implements uI . This
case is rather unlikely and could be caught statically.

We now come back explaining the two remaining translation rules for expres-
sions (Figure 5). Rule td-assert translates a type assertion e.(u) by destructing
e’s interface-value, potentially yielding a representation at type u. The type of
e must be an interface type because only conversions from an interface type to
some other type must be checked dynamically. Rule td-sub translates structural
subtyping by constructing an appropriate interface-value. This rule could be in-
tegrated as part of the other rules to make the translation more syntax-directed.
For clarity, we prefer to have a stand-alone subtyping rule.

The translation of programs and methods (Figure 7) boils down to the trans-
lation of expressions involved. Rule td-method translates a specific method dec-
laration, rule td-prog collects all method declarations and also translates the
main expression. The type system induced by the translation rules is equivalent
to the original type system of Featherweight Go. See the Appendix.

5 Semantic preservation

We establish correctness of the type-directed translation scheme by showing that
source and target behave the same. Figure 8 introduces the details of the logical

14



D ⊢meth func (x tS) m(x t) t E Translating method declarations

td-method

〈D, {x : tS , xi : ti
n
}〉 ⊢exp e : t E

D ⊢meth func (x tS) m(x t
n
) t {return e} λX.λ(X

n
).E

⊢prog P  Prog Translating programs

td-prog

all types used in D are defined in D 〈D, {}〉 ⊢exp e : t E

D ⊢meth D
′
i  Ei D

′
i = func (xi tSi) miMi {return ei}

(for all i ∈ [n],where D′
n
are the func declarations in D)

⊢prog D func main(){ = e} let Xmi ,tSi
= Ei

n
in E

Fig. 7. Translation of methods and programs

relations that are discussed in the earlier Section 2. We assume that step indices
k are natural numbers starting with 0.

The relation e ≈ E ∈ JtK
〈D,Φm〉
k specifies how an FG expression e and TL

expression E are related at FG type t. The three cases terminate, diverge and
panic from Figure 1 are combined in one rule red-rel-exp.

The relation v ≡ V ∈ JtK
〈D,Φm〉
k specifies when FG value v and TL value

V are equivalent at FG type t. Rule red-rel-struct covers struct values by
ensuring that the constructor tag matches and all field values are equivalent. Rule
red-rel-iface generalizes iface-≤ from Figure 2. The auxiliary methodLookup

retrieves the method declaration for some method name and receiver type:

func (x tS) mM {return e} ∈ D

methodLookup(D, (m, tS)) = func (x tS) mM {return e}

Rule red-rel-method relates methods, generalizing method-< from Sec-
tion 2. Rules red-rel-vb and red-rel-decls lift the logical relation to envi-
ronments and declarations.

Thanks to the step index our logical relations are well-founded. In the defi-

nitions in Figure 8, the relations e ≈ E ∈ JtK
〈D,Φm〉
k and v ≡ V ∈ JtK

〈D,Φm〉
k form

a cycle. But either the step index k decreases or it stays constant but the size
of the target value V decreases in recursive calls. Several other basic properties
hold, such as lr-step and lr-mono from the earlier Figure 2. Details are given
in the appendix. These properties are vital to establish the following results.

We can prove that target expressions resulting from FG expressions are se-
mantically equivalent to the source.

Lemma 1 (Expression Equivalence). Let 〈D,Γ 〉 ⊢exp e : t  E and Φv,
ΦV, Φm such that 〈D,Φm, Γ 〉 ⊢k

rr Φv ≈ ΦV and ⊢k
rr D ≈ Φm for some k. Then,

we find that Φv(e) ≈ ΦV(E) ∈ JtK
〈D,Φm〉
k .

15



e ≈ E ∈ JtK
〈D,Φm〉
k FG versus TL expressions

red-rel-exp
(

∀k′
< k, v . D ⊢FG e −→k′

v =⇒ ∃V.Φm ⊢TL E −→∗
V ∧ v ≡ V ∈ JtK

〈D,Φm〉
k−k′

)

∧
(

∀k′
< k, e

′
. D ⊢FG e −→k′

e
′ ∧D ⇑FG e

′ =⇒ Φm ⇑TL E
)

∧
(

∀k′
< k, e

′
. D ⊢FG e −→k′

e
′ ∧ panicFG(D, e

′) =⇒ panicTL(Φm, E)
)

e ≈ E ∈ JtK
〈D,Φm〉
k

v ≡ V ∈ JtK
〈D,Φm〉
k FG versus TL values

red-rel-struct

type tS struct {f t
n
} ∈ D ∀i ∈ [n].vi ≡ Vi ∈ JtiK

〈D,Φm〉
k

tS{v
n} ≡ KtS (V

n
) ∈ JtSK

〈D,Φm〉
k

red-rel-iface

V = KuS
V ′ ∀k1 ≤ k.v ≡ V ∈ JuSK

〈D,Φm〉
k1

methods(D, tI) = {mM
n
}

∀k2 ≤ k, i ∈ [n].methodLookup(D, (mi, uS)) ≈ Yi ∈ JmiMiK
〈D,Φm〉
k2

v ≡ KtI (V, Y
n
) ∈ JtIK

〈D,Φm〉
k

func (x tS) mM {return e} ≈ Y ∈ JmMK
〈D,Φm〉
k FG versus TL methods

red-rel-method

∀k′
< k, v

′
, V

′
, vi

n
, Vi

n
.(v′ ≡ V

′ ∈ JtSK
〈D,Φm〉

k′ ∧ (∀i ∈ [n].vi ≡ Vi ∈ JtiK
〈D,Φm〉

k′ ))

=⇒ 〈x 7→ v
′
, xi 7→ vi

n〉e ≈ (Y V
′) (V

n
) ∈ JtK

〈D,Φm〉
k′

func (x tS) m(x t
n
) t {return e} ≈ Y ∈ Jm(x t

n
) tK

〈D,Φm〉
k

〈D,Φm, Γ 〉 ⊢k
rr Φv ≈ ΦV FG environments versus TL value substitutions

red-rel-vb

∀(x : t) ∈ Γ.Φv(x) ≈ ΦV(X) ∈ JtK
〈D,Φm〉
k

〈D,Φm, Γ 〉 ⊢k
rr Φv ≈ ΦV

⊢k
rr D ≈ Φm FG declarations versus TL method substitutions

red-rel-decls

∀ func (x tS) mM {return e} ∈ D :

func (x tS) mM {return e} ≈ Xm,tS ∈ JmMK
〈D,Φm〉
k

⊢k
rr D ≈ Φm

Fig. 8. Relating FG to TL Reduction
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As motivated in Section 2, for the proof to go through, one of the rules
red-rel-iface and red-rel-method must use < and the other ≤. In our case, we
use ≤ in rule red-rel-iface and < in rule red-rel-method. The lengthy proof
is given in the appendix.

Based on the above result, we can establish semantic equivalence for method
definitions. For this proof to go through it is essential that we find ≤ in rule
red-rel-iface and < in rule red-rel-method.

Lemma 2 (Method Equivalence).
Let D and Φm such that for each func (x tS) m(x t

n
) t {return e} in D we have

Φm(Xm,tS) = λX.λ(X
n
).E where D ⊢meth func (x tS) m(x t

n
) t {return e} 

λX.λ(X
n
).E. Then, we find that ⊢k

rr D ≈ Φm for any k.

Proof. To verify (1) ⊢k
rr D ≈ Φm for each func (x tS) m(xi ti

n
) t {return e} in D

we have to show based on rules red-rel-decls and red-rel-method that

∀k′ < k, v, V, vn, V
n
.(v ≈ V ∈ JtSK

〈D,Φm〉
k′ ∧ (∀i ∈ [n].vi ≈ Vi ∈ JtiK

〈D,Φm〉
k′ ))

=⇒ (2) 〈x 7→ v, xi 7→ vi
n〉e ≈ (Xm,tS V ) (V

n
) ∈ JtK

〈D,Φm〉
k′

We verify the result by induction on k.

– Case k = 0 or k = 1: Holds immediately. See rule red-rel-exp.

– Case k =⇒ k + 1: Suppose k′ < k + 1 and (3) v ≈ V ∈ JtSK
〈D,Φm〉
k′ and

(4) vi ≈ Vi ∈ JtiK
〈D,Φm〉
k′ for some v, V , vi, Vi for i ∈ [n]. Define Φv = 〈x 7→

v, xi 7→ vi
n〉 and ΦV = 〈X 7→ V,Xi 7→ Vi

n
〉 and Γ = {x : tS , xi : ti

n
}.

(5) 〈D,Φm, Γ 〉 ⊢k′

rr Φv ≈ ΦV via (3) and (4).

(6) ⊢k′

rr D ≈ Φm by induction.

(7) 〈D,Γ 〉 ⊢exp e : t E from the assumption and rule td-method.

(8) Φve ≈ ΦVE ∈ JtK
〈D,Φm〉
k′ via (5), (6), (7), and Lemma 1.

(9) Φm ⊢TL (Xm,tS V ) (V
n
) −→∗ ΦVE

via the assumption that Φm(Xm,tS ) = λX.λ(X
n
).E.

(10) Φve ≈ (Xm,tS V ) (V
n
) ∈ JtK

〈D,Φm〉
k′

via (8), (9) and because target reductions do not affect the step index
(Lemma 10 in the Appendix).

Statement (10) corresponds to (2). Thus, we can establish (1). ⊓⊔

If we would find ≤ instead of < in rule red-rel-method, the proof would not
go through. We would then need to establish the implication at the beginning of
the proof for k′ ≤ k, but the induction hypothesis gives us only ⊢k′−1

rr D ≈ Φm

in (6).
We state our main result that the dictionary-passing translation preserves

the dynamic behavior of FG programs.

Theorem 1 (Program Equivalence). Let ⊢prog D func main(){ = e}  

let Xmi,tSi
= Ei

n
in E where we assume that e has type t. Let Φm = 〈Xmi,tSi

7→ Ei
n
〉.

Then, we find that e ≈ E ∈ JtK
〈D,Φm〉
k for any k.
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Proof. Follows from Lemmas 1 and 2. ⊓⊔

6 Related Work

Logical relations have a long tradition of proving properties of typed program-
ming languages. Such properties include termination [28,25], type safety [24],
and program equivalence [18, Chapters 6, 7]. A logical relation (LR) is often de-
fined inductively, indexed by type. If its definition is based on an operational se-
mantics, the LR is called syntactic [20,5]. With recursive types, a step-index [3,2]
provides a decreasing measure to keep the definition well-founded. See [15, Chap-
ter 8] and [24] for introductions to the topic.

LRs are often used to relate two terms of the same language. For our trans-
lation, the two terms are from different languages, related at a type from the
source language. Benton and Hur [4] prove correctness of compiler transfor-
mations. They used a step-index LR to relate a denotational semantics of the
λ-calculus with recursion to configurations of a SECD-machine. The setup relies
on biorthogonality [21,14,22,11] to allow for compositionality and extensionality
of equivalences.

Hur and Dreyer [9] build on this idea to show equivalence between an ex-
pressive source language (polymorphic λ-calculus with references, existentials,
and recursive types) and assembly language. Their biorthogonal, step-indexed
Kripke LR does not directly relate the two languages but relies on abstract lan-
guage specifications. The Kripke part of the LR [19] allows reasoning about the
shape of the heap.

Our setting is different in that we consider a source language with support for
overloading. Besides structured data and functions, we need to cover interface
values. This then leads to some challenges to get the step index right. Recall
Figure 2 and the discussion in Section 2.

Simulation or bisimulation (see e.g. [27]) is another common technique for
showing program equivalences. In our setting, using this technique amounts to
proving that reduction and translation commutes: if source term e reduces to e′

and translates to target term E, then e′ translates to E′ such that E reduces to
E′′ (potentially in several steps) with E′ = E′′. One challenge is that two target
terms E′ and E′′ are not necessarily syntactically equal but only semantically.
With LR, we abstract away certain details of single step reductions, as we only
compare values not intermediate results. A downside of the LR is that getting
the step index right is sometimes not trivial.

Paraskevopoulou and Grover [17] combine simulation and an untyped, step-
indexed LR [1] to relate the translation of a reduced expression (the E′ from the
preceding paragraph) with the reduction result of the translated expression (the
E′′). They use this technique to prove correctness of CPS transformations using
small-step and big-step operational semantics. Resource invariants connect the
number of steps a term and its translation might take, allowing them to prove
that divergence and asymptotic runtime is preserved by the transformation.
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Our LR does not support resource invariants but includes a case for divergence
directly.

Hur and coworkers [10] as well as Hermida and coworkers [8] also blend
bisimulation with LRs, building on previous results [9].

7 Conclusion

In this work, we established a strong semantic preservation result for a type-
directed translation scheme of Featherweight Go. To achieve this result, we rely
on syntactic, step-indexed logical relations. There are some subtle corners and
we gave a detailed discussion of how to get the definition of logical relations
right so that the proofs will go through. The proofs are still hand-written where
all cases are worked out in detail. To formalize the proofs in a proof assistant
we yet need to mechanize the source and target semantics. This is something we
plan to pursue in future work.

We believe that the methods developed in this work will be useful in other
language settings that employ a type-directed translation scheme for a form of
overloading, e.g. consider Haskell type classes [7] and traits in Scala [29] and
Rust [23]. This is another topic for future work. In another direction, we plan
to adapt our translation scheme and proof method to cover Featherweight Go
extended with generics [6].

Acknowledgments. We thank the MPC’22 reviewers for their comments.
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A Properties of FG and TL

The translation rules from FG to the target language also induce a set of typing
rules for FG by simply omitting the translation part. These typing rules are
slightly different from FG’s original typing rules [6], because the translation
rules are not syntax-directed due the structural subtyping rule td-sub defined
in Figure 5. We could integrate this rule via the other rules but this would make
all the rules harder to read. Hence, we prefer to have a separate rule td-sub.
Nevertheless, the typing rules induced by the translation are equivalent to FG’s
original typing rules.

Lemma 3. Assume P is an FG program. Then we have that P is well-typed
according to FG’s original typing rules [6, Figure 13] if, and only if, ⊢prog P  
Prog for some Prog.

Proof. We write Γ ⊢FG e : t for FG’s original typing relation on expressions,
and ⊢FG P ok for FG’s original typing relation on programs. These relation are
defined in [6, Figure 13], the sequence of declaration D is implicit there. Fur-
ther, we need to prepend packagemain; to program P . FG’s original subtyping
relation, written D ⊢FG t <: u is identical to the one defined in Figure 3, expect
that in FG’s original definition D is implicit.

We then prove the following facts, where (e) is the claim of the lemma.

(a) If D ⊢FG t <: u then either D ⊢iCons t <: u E for some E or t = u and t
is a struct type.

(b) If D ⊢iCons t <: u E then D ⊢FG t <: u.
(c) If Γ ⊢FG e : t then 〈D,Γ 〉 ⊢exp e : t E for some E.
(d) If 〈D,Γ 〉 ⊢exp e : t E then Γ ⊢FG e : t′ for some t′ with D ⊢FG t′ <: t.
(e) ⊢FG P ok iff ⊢prog P  Prog for some Prog .

We prove (a) and (b) by case distinctions on the last rule of the given deriva-
tions; (c) and (d) follow by induction on the derivations, using (a) and (b). Claim
(e) then follows by examining the type rules, using (c), (d), and conditions FG2,
FG3, FG4. ⊓⊔

Lemma 4 (FG reductions are deterministic). If D ⊢FG e −→ e′ and
D ⊢FG e −→ e′′ then e = e′.

Proof. We first state and prove three sublemmas:

(a) If e = E1[E2[e
′]] then there exists E3 with e = E3[e

′]. The proof is by induction
on E1.

(b) If D ⊢FG e −→ e′ then there exists a derivation of D ⊢FG e −→ e′ that ends
with at most one consecutive application of rule fg-context. The proof is
by induction on the derivation of D ⊢FG e −→ e′. From the IH, we know
that this derivation ends with at most two consecutive applications of rule
fg-context. If there are two such consecutive applications, (a) allow us
to merge the two evaluation contexts involved, so that we need only one
consecutive application of fg-context.
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(c) We call an FGG expression directly reducible if it reduces but not by rule
fg-context. If e1 and e2 are now directly reducible and E1[e1] = E2[e2] then
E1 = E2 and e1 = e2. For the proof, we first note that E1 = � iff E2 = �. This
holds because directly reducible expressions have no inner redexes. The rest
of the proof is then a straightforward induction on E1.

Now assume D ⊢FG e −→ e′ and D ⊢FG e −→ e′′. By (b) we may assume
that both derivations ends with at most one consecutive application of rule
fg-context. It is easy to see (as values do not reduce) that both derivations
must end with the same rule. If this rule is not fg-context, then obviously
e′ = e′′ (note condition FG4 for rule fg-call). Otherwise, we have the following
situation with R1 6= fg-context and R2 6= fg-context:

fg-context

R1
e1 −→ e′1

E1[e1]
︸ ︷︷ ︸

=e

−→ E1[e
′
1]

︸ ︷︷ ︸

=e′

e2 −→ e′2
R2

E2[e2]
︸ ︷︷ ︸

=e

−→ E2[e
′
2]

︸ ︷︷ ︸

=e′′

fg-context

As neither R1 nor R2 are fg-context, we know that e1 and e2 are directly
reducible. Thus, with E1[e1] = E2[e2] and (c) we get E1 = E2 and e1 = e2. With
R1 and R2 not being fg-context, we have e′1 = e′2, so e′ = e′′ as required. ⊓⊔

Lemma 5 (Target reductions are deterministic). If Φm ⊢TL E −→ E′

and Φm ⊢TL E −→ E′′ then E′ = E′′. Further, if ⊢TL Prog −→ Prog ′ and
⊢TL Prog −→ Prog ′′ then Prog = Prog ′.

Proof. Assume Φm ⊢TL E −→ E′ and Φm ⊢TL E −→ E′′. The claim that
E′ = E′′ follows analogously to the proof of Lemma 4. If both derivations end
with rule tl-case, we get deterministic evaluation by the syntactic restriction
that case clauses have distinct constructors.

Deterministic evaluation for programs is a simple consequence of determin-
istic evaluation of expressions. ⊓⊔

B Logical Relation Properties

A fundamental property of step indexed logical relations is that if two expressions
are in a relation for k steps then they are also in a relation for any smaller number
of steps. (See lr-mono from Figure 2.)

Lemma 6 (Monotonicity). (1) Let e ≈ E ∈ JtK
〈D,Φm〉
k and k′ ≤ k. Then, we

find that e ≈ E ∈ JtK
〈D,Φm〉
k′ . (2) Let v ≡ V ∈ JtK

〈D,Φm〉
k and k′ ≤ k. Then, we find

that v ≡ V ∈ JtK
〈D,Φm〉
k′ .

Proof. By mutual induction over the derivations e ≈ E ∈ JtK
〈D,Φm〉
k and v ≡ V ∈

JtK
〈D,Φm〉
k .

Case red-rel-exp: Follows immediately.
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Case red-rel-struct:

type tS struct {f t
n
} ∈ D ∀i ∈ [n].vi ≡ Vi ∈ JtiK

〈D,Φm〉
k

tS{v
n} ≡ KtS (V

n
) ∈ JtSK

〈D,Φm〉
k

Follows immediately by induction.
Case red-rel-iface:

V = KuS
V ′

(1) ∀k1 ≤ k.v ≡ V ∈ JuSK
〈D,Φm〉
k1

methods(D, tI) = {mM
n
}

(2) ∀k2 ≤ k, i ∈ [n].methodLookup(D, (mi, uS)) ≈ Yi ∈ JmiMiK
〈D,Φm〉
k2

v ≡ KtI (V, Y
n
) ∈ JtIK

〈D,Φm〉
k

Consider the first premise (1). If there exists k1 ≤ k′ then v ≡ V ∈ JuSK
〈D,Φm〉
k1

.
Otherwise, this premise holds vacuously.
The same argument for k2 ≤ k′ applies to the second premise (2) by unfolding

methodLookup(D, (mi, uS)) ≈ Yi ∈ JmiMiK
〈D,Φm〉
k2

via rule red-rel-method.

Hence, v ≡ KtI (V, Y
n
) ∈ JtIK

〈D,Φm〉
k′ . ⊓⊔

A similar monotonicity result applies to method definitions and declarations.

Lemma 7 (Monotonicity 2). Let func (x tS) mM {return e} ≈ V ∈ JmMK
〈D,Φm〉
k

and k′ ≤ k. Then, we find that func (x tS) mM {return e} ≈ V ∈ JmMK
〈D,Φm〉
k′ .

Proof. Follows immediately by observing the premise of rule red-rel-method.
⊓⊔

Lemma 8 (Monotonicity 3). Let ⊢k
rr D ≈ Φm and k′ ≤ k. Then, we find

that ⊢k′

rr D ≈ Φm.

Proof. Follows via Lemma 7. ⊓⊔

Monotonicity is an essential property that is exploited frequently in our
proofs. Another useful property is lr-step from Figure 2. We also need several
variations of this property in our proofs.

Lemma 9. Let e ≈ E ∈ JtK
〈D,Φm〉
k for some k, e, E, D and Φm. Let D ⊢FG

e2 −→1 e for some e2. Then, we have that e2 ≈ E ∈ JtK
〈D,Φm〉
k+1 .

Proof. Based on our assumption we find that

red-rel-exp

(1)
(

∀k′ < k, v . D ⊢FG e −→k′

v =⇒ ∃V.Φm ⊢TL E −→∗ V ∧ v ≡ V ∈ JtK
〈D,Φm〉
k−k′

)

∧

(2)
(

∀k′ < k, e′ . D ⊢FG e −→k′

e′ ∧D ⇑FG e′ =⇒ Φm ⇑TL E
)

∧

(3)
(

∀k′ < k, e′ . D ⊢FG e −→k′

e′ ∧ panicFG(D, e′) =⇒ panicTL(Φm, E)
)

e ≈ E ∈ JtK
〈D,Φm〉
k
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From (1) and D ⊢FG e2 −→1 e we conclude that

∀k′ < k + 1, v . D ⊢FG e2 −→k′+1 v =⇒ ∃V.Φm ⊢TL E −→∗ V ∧ v ≡ V ∈ JtK
〈D,Φm〉
k+1−k′

From (2) and D ⊢FG e2 −→1 e we conclude that

∀k′ < k + 1, e′ . D ⊢FG e2 −→
k′

e′ ∧D ⇑FG e′ =⇒ Φm ⇑TL E

From (3) and D ⊢FG e2 −→1 e we conclude that

∀k′ < k + 1, e′ . D ⊢FG e2 −→k′

e′ ∧ panicFG(D, e′) =⇒ panicTL(Φm, E)

Thus, e2 ≈ E ∈ JtK
〈D,Φm〉
k+1 and we are done. ⊓⊔

Lemma 10. Let e ≈ E ∈ JtK
〈D,Φm〉
k for some k, e, E, D and Φm. Let Φm ⊢TL

E2 −→k2 E for some E2 and k2. Then, we have that e ≈ E2 ∈ JtK
〈D,Φm〉
k .

Proof. By assumption we have the following

red-rel-exp
(

∀k′ < k, v . D ⊢FG e −→k′

v =⇒ ∃V.Φm ⊢TL E −→∗ V ∧ v ≡ V ∈ JtK
〈D,Φm〉
k−k′

)

∧
(

∀k′ < k, e′ . D ⊢FG e −→k′

e′ ∧D ⇑FG e′ =⇒ Φm ⇑TL E
)

∧
(

∀k′ < k, e′ . D ⊢FG e −→k′

e′ ∧ panicFG(D, e′) =⇒ panicTL(Φm, E)
)

e ≈ E ∈ JtK
〈D,Φm〉
k

For each case we can argue that E2 satisfies the requirements. Hence, we find

that e ≈ E2 ∈ JtK
〈D,Φm〉
k . ⊓⊔

Lemma 11. Let e ≈ E ∈ JtK
〈D,Φm〉
k for some k, e, E, D and Φm. Let D ⊢FG

e −→∗ v for some value v. Let Φm ⊢TL E −→∗ V for some value V . Let
E′ be a target expression such that Φm ⊢TL E′ −→∗ V . Then, we have that

e ≈ E′ ∈ JtK
〈D,Φm〉
k .

Proof. Expression e reduces to a value. Hence, the statement e ≈ E ∈ JtK
〈D,Φm〉
k

implies

∀k′ < k, v . D ⊢FG e −→k′

v =⇒ ∃V.Φm ⊢TL E −→∗ V ∧ v ≡ V ∈ JtK
〈D,Φm〉
k−k′

We can simply replace E by E′ in the above. Hence, we also find that e ≈ E′ ∈

JtK
〈D,Φm〉
k . ⊓⊔
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C Semantic Preservation for Interface-Value

Constructors and Destructors

Interface-value constructors and destructors, see Figure 6, preserve equivalent
expressions via logical relations as stated by the following results.

Lemma 12 (Structural Subtyping versus Interface-Value Constructors).

Let D ⊢iCons t <: u  E1 and ⊢k
rr D ≈ Φm and e ≈ E2 ∈ JtK

〈D,Φm〉
k . Then, we

find that e ≈ E1 E2 ∈ JuK
〈D,Φm〉
k .

Proof. We perform a case analysis of the derivation for D ⊢iCons t <: u  E1

and label the assumptions (1) ⊢k
rr D ≈ Φm and (2) e ≈ E2 ∈ JtK

〈D,Φm〉
k as well

as the to be proven statement (3) e ≈ E1 E2 ∈ JtK
〈D,Φm〉
k for later reference.

Case td-cons-struct-iface:

type tI interface {S} ∈ D methods(D, tS) ⊇ S S = mM
n

D ⊢iCons tS <: tI  λX.KtI (X,Xmi,tS

n
)

We establish statement (3) by distinguishing among the subcases that arise
in rule red-rel-exp.

Subcase-Terminate:
Suppose (4) D ⊢FG e −→k′

v for some k′ and value v where k′ < k.
(5) Φm ⊢TL E2 −→∗ V for some V where

(6) v ≡ V ∈ JtSK
〈D,Φm〉
k−k′

via reverse application of rule red-rel-exp on (2) where in the premise the
left-hand side of the implication is satisfied via (4).

(7) Φm ⊢TL (λX.KtI (X,Xmi,tS

n
)) E2 −→∗ KtI (V,Xmi,tS

n
)

via reduction step (5).

(8) func (x tS) miMi {return e} ≈ Xmi,tS ∈ JmiMiK
〈D,Φm〉
k for i = 1, ..., n

via reverse application of rule red-rel-decls on (1).

(9) func (x tS) miMi {return e} ≈ Xmi,tS ∈ JmiMiK
〈D,Φm〉
k−k′

via (7) and the Monotonicity Lemma.

(10) v ≡ KtI (V,Xmi,tS

n
) ∈ JtIK

〈D,Φm〉
k−k′

via application of rule red-rel-iface on (6) and (8). Statements (6) and (8)
hold for any k′′ ≤ k − k′′ via the Monotonicity Lemma.

Thus, this subcase in statement (3) holds.

Subcase-Diverge:
Suppose (4) D ⊢FG e −→k′

e′ for some k′ and e′ where k′ < k and D ⇑FG e′.
(5) Φm ⇑TL E2

via reverse application of rule red-rel-exp on (2) where in the premise the
left-hand side of the implication is satisfied via (4).

(6) Φm ⇑TL (λX.KtI (X,Xmi,tS

n
)) E2 via (5).
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Thus, this subcase in statement (3) holds.

Subcase-Panic:
Suppose (4) D ⊢FG e −→k′

e′ for some k′ and e′ where k′ < k and
panicFG(D, e′).

(5) panicTL(Φm, E2)
via reverse application of rule red-rel-exp on (2) where in the premise the

left-hand side of the implication is satisfied via (4).
(6) panicTL(Φm, (λX.KtI (X,Xmi,tS

n
)) E2) via (5).

Thus, this subcase in statement (3) holds.
Case td-cons-iface-iface

type tI interface {R
n
} ∈ D

type uI interface {S
q
} ∈ D Si = Rπ(i) (∀ i ∈ [q])

D ⊢iCons tI <: uI  λX.caseX of KtI (X,X
n
) → KuI

(X,Xπ(1), . . . , Xπ(q))

Via similar reasoning as for the other upcast case, we establish statement (3)
by distinguishing among the subcases that arise in rule red-rel-exp.

Subcase-Terminate:
Suppose (4) D ⊢FG e −→k′

v for some k′ and value v where k′ < k.
(5) Φm ⊢TL E2 −→∗ V for some V where

(6) v ≡ V ∈ JtIK
〈D,Φm〉
k−k′

via reverse application of rule red-rel-exp on (2) where in the premise the
left-hand side of the implication is satisfied via (4).

(7) for any k′′ ≤ k − k′

(8) v ≡ Vval ∈ JuSK
〈D,Φm〉
k′′ and

(9) func (x uS) Rj ≈ Yj ∈ JRjK
〈D,Φm〉
k′′ for j = 1, ..., n where

(10) Vval = KuS
(V ′) and

(11) V = KtI (Vval, Yj
n
)

via reverse application of rule red-rel-iface on (6).
(12) Φm ⊢TL (λX.caseX ofKtI (X,X

n
) → KuI

(X,Xπ(1), . . . , Xπ(q))) E2 −→∗

KuI
(Vval, Yπ(1), . . . , Yπ(q)) via

reduction steps (5), (10) and (11).

(8) v ≡ KuI
(Vval, Yπ(1), . . . , Yπ(q)) ∈ JuIK

〈D,Φm〉
k−k′

via application of rule red-rel-iface on (6), (7) and (9) in combination with
the Monotonicity Lemma.

Thus, the first subcase in statement (3) holds.
We omit the other subcases as the reasoning steps exactly correspond to case

td-cons-struct-iface. ⊓⊔

Lemma 13 (Type Assertions versus Interface-Value Destructors). Let

D ⊢iDestr t ց u  E1 and ⊢k
rr D ≈ Φm and e ≈ E2 ∈ JtK

〈D,Φm〉
k . Then, we find

that e.(u) ≈ E1 E2 ∈ JuK
〈D,Φm〉
k .
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Proof. We perform a case analysis of the derivation D ⊢iDestr t ց u  E1 and

label the assumptions (1) ⊢k
rr D ≈ Φm and (2) e ≈ E2 ∈ JtK

〈D,Φm〉
k as well as the

to be proven statement (3) e.(u) ≈ E1 E2 ∈ JtK
〈D,Φm〉
k for later reference.

Case td-destr-iface-struct:

(4) type tI interface {S
n
} ∈ D (5) D ⊢FG tS <: tI

D ⊢iDestr tI ց tS  λX.caseX of KtI (KtS Y ,X
n
) → KtS Y

We establish statement (3) by distinguishing among the subcases that arise
in rule red-rel-exp.

Subcase-Terminate: Suppose (6) D ⊢FG e.(tS) −→
k′

v for some value v where
k′ < k.

(7) v = tS{v} for some v
via (5), (6) and the FG reduction rules.
(8) D ⊢FG e −→k′−1 tS{v}
via (6) and (7).
(9) Φm ⊢TL E2 −→∗ V for some V where

(10) v ≡ V ∈ JtIK
〈D,Φm〉
k−(k′−1)

via reverse application of rule red-rel-exp on (2) where in the premise the
right-hand side of the implication is satisfied via (8) and the fact that k′−1 < k.

(11) v ≡ Vval ∈ JtSK
〈D,Φm〉
k′′ for any k′′ ≤ k − (k′ − 1) where

(12) Vval = KtS (V ′) for some V ′ and
(13) V = KtI (Vval, Yj

n
) for some Yj

n

via reverse application of rule red-rel-iface on (10) where we make use of
(7) and rule red-rel-struct to derive the shape of Vval and (4) to guarantee
that there are n method variables Yj .

(14) Φm ⊢TL (λX.caseX of KtI (KtS Y ,X
n
) → KtS Y ) E2 −→∗ Vval

via the reduction step (9) and the equations (12) and (13).

(15) v ≡ Vval ∈ JtSK
〈D,Φm〉
k−k′

via (11) and the Monotonicity Lemma.
Thus, we can establish this subcase in statement (3).

Subcase-Diverge: Suppose (6) D ⊢FG e.(tS) −→
k′

e′ for some e′ where k′ < k
and D ⇑FG e′.

(7) D ⊢FG e −→k′

e′′ for some e′′ where k′′ ≤ kA and D ⇑FG e′′

by observing the reduction (6).
(8) Φm ⇑TL E2

via reverse application of rule red-rel-exp on (2) where in the premise the
left-hand side of the implication is satisfied via (8).

(9) Φm ⇑TL (λX.caseX of KtI (KtS Y ,X
n
) → KtS Y )E2 via (7).

Thus, we can establish this subcase in statement (3).

Subcase-Panic: Suppose (6) D ⊢FG e.(tS) −→
k′

e′ for some e′ where k′ < k
and panicFG(D, e′).
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We distinguish among the following two cases. Either (1) the expression pan-
ics or (2) the type assertion fails.

Subcase-Panic-1: (7) D ⊢FG e −→k′′

e′′ for some e′′ where k′′ < k and
panicFG(D, e′).

Subcase-Panic-2: (8) D ⊢FG e −→k′′

uS{v′} for some uS{v′} where k′′ < k
and tS 6= uS .

Consider Subcase-Panic-1.
(9) panicTL(Φm, E2)
via reverse application of rule red-rel-exp on (2) where in the premise the

left-hand side of the implication is satisfied via (7).
(10) panicTL(Φm, (λX.caseX of KtI (KtS Y ,X

n
) → KtS Y ) E2) via (9) and

we are done here.

Consider Subcase-Panic-2.
(11) Φm ⊢TL E2 −→∗ V for some V where

(12) uS{v′} ≡ V ∈ JtIK
〈D,Φm〉
k−k′′

via reverse application of rule red-rel-exp on (2) where in the premise the
right-hand side of the implication is satisfied via (8)

(13) Vval = KuS
(V ′) for some V ′ and

(14) V = KtI (Vval, Y ) for some method variables Y
via reverse application of rule red-rel-iface on (12) where we make use of

red-rel-struct to derive the shape of Vval.
(15) panicTL(Φm, (λX.caseX of KtI (KtS Y ,X

n
) → KtS Y ) E2)

via (11), (13) and (14) and the fact that KtS 6= KuS
. Thus, we are done

here.
Case td-destr-iface-iface:

(4) type tI interface {R
n
} ∈ D

(5) for all type tSj struct {f u} ∈ D with D ⊢iCons tSj <: uI  Ej :
Clsj = KtSj

Y ′ → (Ej (KtSj
Y ′))

D ⊢iDestr tI ց uI  λX.case X of KtI (Y,X
n
) → case Y of [Cls ]

We establish statement (3) by distinguishing among the subcases that arise
in rule red-rel-exp.

Subcase-Terminate: Suppose (6) D ⊢FG e.(uI) −→
k′

v for some value v where
k′ < k.

(7) v = tS{v} for some v where
(8) D ⊢FG tS <: uI

via (6) and the FG reduction rules.
(9) D ⊢FG e −→k′−1 tS{v}
via (6) and (7).
(10) Φm ⊢TL E2 −→∗ V for some V where
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(11) v ≡ V ∈ JtIK
〈D,Φm〉
k−(k′−1)

via reverse application of rule red-rel-exp on (2) where in the premise the
right-hand side of the implication is satisfied via (9) and the fact that k′−1 < k.

(12) v ≡ Vval ∈ JtSK
〈D,Φm〉
k′′ for any k′′ ≤ k − (k′ − 1) where

(12) Vval = KtS (V ′) for some V ′ and
(13) V = KtI (Vval, Yj

n
) for some Yj

n

via reverse application of rule red-rel-iface on (11) where we make use of
(7) and rule red-rel-struct to derive the shape of Vval and (4) to guarantee
that there are n method variables Yj .

(14) e ≈ Vval ∈ JtSK
〈D,Φm〉
k

via (9), (12) and rule red-rel-exp.

(15) e ≈ E′ Vval ∈ JuIK
〈D,Φm〉
k where

(16) D ⊢iCons tS <: uI  E′

via (8), (14) and Lemma 12.
(17) Φm ⊢TL E′ Vval −→

∗ V ′ and
(18) Φm ⊢TL (λX.case X of KtI (Y,X

n
) → case Y of [Cls ]) E2 −→∗ V ′ for

some V ′

via (4), (10), (13) and (16).

(19) e ≈ (λX.case X of KtI (Y,X
n
) → case Y of [Cls ]) E2 ∈ JuIK

〈D,Φm〉
k

via (9), (17), (18) and Lemma 11.

(20) e.(uI) ≈ (λX.case X of KtI (Y,X
n
) → case Y of [Cls ]) E2 ∈ JuIK

〈D,Φm〉
k

via (6), (7), (9), (19) and the Monotonicity Lemma.
Thus, this subcase in statement (3) holds.

Subcase-Diverge: Suppose (6) D ⊢FG e.(uI) −→
k′

e′ for some e′ where k′ < k
and D ⇑FG e′.

(7) D ⊢FG e −→k′

e′′ for some e′′ where k′′ ≤ kA and D ⇑FG e′′

by observing the reduction (6).
(8) Φm ⇑TL E2

via reverse application of rule red-rel-exp on (2) where in the premise the
left-hand side of the implication is satisfied via (8).

(9) Φm ⇑TL (λX.case X of KtI (Y,X
n
) → case Y of [Cls ]) E2 via (7).

Thus, we can establish this subcase in statement (3).

Subcase-Panic: Suppose (6) D ⊢FG e.(uI) −→
k′

e′ for some e′ where k′ < k
and panicFG(D, e′).

We distinguish among the following two cases. Either (1) the expression pan-
ics or (2) the type assertion fails.

Subcase-Panic-1: (7) D ⊢FG e −→k′′

e′′ for some e′′ where k′′ < k and
panicFG(D, e′).

Subcase-Panic-2: (8) D ⊢FG e −→k′′

uS{v′} for some uS{v′} where k′′ < k
and D ⊢FG uS <: uI does not hold.
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Consider Subcase-Panic-1.
(9) panicTL(Φm, E2)
via reverse application of rule red-rel-exp on (2) where in the premise the

left-hand side of the implication is satisfied via (7).
(10) panicTL(Φm, (λX.case X of KtI (Y,X

n
) → case Y of [Cls ]) E2) via (9)

and we are done here.

Consider Subcase-Panic-2.
(11) Φm ⊢TL E2 −→∗ V for some V where

(12) uS{v′} ≡ V ∈ JtIK
〈D,Φm〉
k−k′′

via reverse application of rule red-rel-exp on (2) where in the premise the
right-hand side of the implication is satisfied via (8)

(13) Vval = KuS
(V ′) for some V ′ and

(14) V = KtI (Vval, Y ) for some method variables Y
via reverse application of rule red-rel-iface on (12) where we make use of

red-rel-struct to derive the shape of Vval.
(15) panicTL(Φm, (λX.case X of KtI (Y,X

n
) → case Y of [Cls ]) E2)

via the assumption that D ⊢FG uS <: uI does not hold and therefore none
of the pattern clauses Cls will yield a match. Thus, we are done here.

⊓⊔

D Proof of Lemma 1

Proof. By induction over the derivation 〈D,Γ 〉 ⊢exp e : t  E. We label the
assumptions (1) 〈D,Φm, Γ 〉 ⊢k

rr Φv ≈ ΦV and (2) ⊢k
rr D ≈ Φm as well as the to

be proven statement (3) Φv(e) ≈ ΦV(E) ∈ JtK
〈D,Φm〉
k for some later reference.

Case td-var:

(x : t) ∈ Γ

〈D,Γ 〉 ⊢exp x : t X

(3) follows immediately from (1).
Case td-struct:

type tS struct {fi tin} ∈ D 〈D,Γ 〉 ⊢exp ei : ti  Ei (∀ i ∈ [n])

〈D,Γ 〉 ⊢exp tS{ei
n} : tS  KtS (Ei

n
)

(4) Φv(ei) ≈ ΦV(Ei) ∈ JtK
〈D,Φm〉
k by induction.

To establish (3) Φv(e) ≈ ΦV(E) ∈ JtK
〈D,Φm〉
k we consider the subcases that

arise in rule red-rel-exp.

Subcase-Terminate:
Suppose (5) D ⊢FG Φv(tS{ei

n}) −→k′

tS{vi
n} for some values vi where (6)

k′ < k.
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(7) D ⊢FG Φv(ei) −→
ki vi for some ki where

(8) ki ≤ k′ < k

by observing the reduction (5) and the number of reduction steps taken (6).

(9) Φm ⊢TL ΦV(Ei) −→
∗ Vi for some Vi where

(10) vi ≡ Vi ∈ JtiK
〈D,Φm〉
k−ki

via reverse application of rule red-rel-exp on (4) where in the premise the
left-hand side of the implication is satisfied via (7) and (8).

(11) k − k′ ≤ k − ki via (8).

(12) vi ≡ Vi ∈ JtiK
〈D,Φm〉
k−k′

via (10), (11) and the Monotonicity Lemma.

(10) Φm ⊢TL KtS (ΦV(Ei)
n
) −→∗ KtS (Vi

n
)

via the reduction step (7).

(11) tS{e′i
n
} ≡ KtS (Vi

n
) ∈ JtSK

〈D,Φm〉
k−k′

via application of rule red-rel-struct on (9).

Via (10) and (11) we can establish this subcase in statement (3).

Subcase-Diverge:

Suppose (5) D ⊢FG Φv(tS{ei
n}) −→k′

tS{e′i
n
} for some expressions e′1, ..., e

′
n

where k′ < k and D ⇑FG tS{e′i
n
}.

(6) D ⇑FG e′j for some j where e′1, ..., e
′
j−1 are values via (5) and FG reduction

rules.

(7) Φm ⊢TL ΦV(El) −→
∗ Vl for some values Vl for l = 1, ..., j − 1 via (4), (6)

and rule red-rel-exp.

(8) Φm ⇑TL Ej via (4), (6) and rule red-rel-exp.

(9) Φm ⇑TL ΦV(KtS (Ei
n
)) via (7) and (8).

Via (9) we can establish this subcase in statement (3).

Subcase-Panic:

Suppose (5) D ⊢FG Φv(tS{ei
n}) −→k′

tS{e′i
n
} for some e′1, ..., e

′
n where k′ <

k and panicFG(D, tS{e′i
n
}).

(6) panicFG(D, e′j) for some j where e′1, ..., e
′
j−1 are values via (5) and evalu-

ation context tS{e
′
i, . . . , e

′
j−1, E , ej+1, . . . , en}.

(7) Φm ⊢TL ΦV(El) −→
∗ Vl for some values Vl for l = 1, ..., j − 1 via (4), (6)

and rule red-rel-exp.

(8) panicTL(Φm, E) via (4), (6) and rule red-rel-exp.

(9) panicTL(Φm, ΦV(KtS (Ei
n
))) via (7) and (8).

Via (9) we can establish this subcase in statement (3).

Case td-access:

〈D,Γ 〉 ⊢exp e : tS  E type tS struct {fj tj
n
} ∈ D

〈D,Γ 〉 ⊢exp e.fi : ti  case E of KtS (Xj
n
) → Xi

(4) Φv(e) ≈ ΦV(E) ∈ JtK
〈D,Φm〉
k by induction.
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To establish (3) Φv(e) ≈ ΦV(E) ∈ JtK
〈D,Φm〉
k we consider the subcases that

arise in rule red-rel-exp.

Subcase-Terminate:

Suppose (5) D ⊢FG Φv(e.fi) −→
k′

v′ for some value v′ where (6) k′ < k.

(7) D ⊢FG Φv(e) −→
k′′

v for some v and k′′ where

(8) k′′ < k′

by observing the reduction (5) and the number of reduction steps taken (6).

(9) Φm ⊢TL ΦV(E) −→∗ V for some V where

(10) v ≡ V ∈ JtSK
〈D,Φm〉
k−k′′

via reverse application of rule red-rel-exp on (4) where the left-hand side of
the implication is satisfied via (7) and (8).

(11) v = tS{vj
n} and

(12) V = KtS (Vj
n
) for some vj and Vj where

(13) vj ≡ Vj ∈ JtjK
〈D,Φm〉
k−k′′ for j = 1, ..., n

via reverse application of rule red-rel-struct on (10).

(14) Φm ⊢TL ΦV(case E of KtS (Xj
n
) → Xi) −→

∗ Vi

via reduction step (9) and (12).

(15) v′ = vi
via reduction step (5) and (11).

(16) v′ ≡ Vi ∈ JtjK
〈D,Φm〉
k−k′

via (13), (15) and the Monotonicity Lemma as we have that k− k′ ≤ k− k′′.

Via (14) and (16) we can establish this subcase in statement (3).

Subcase-Diverge:

Suppose (5) D ⊢FG Φv(e.fi) −→
k′

e′ for some e′ where k′ < k and D ⇑FG e′.

(6) D ⊢FG Φv(e) −→
k′

e′ and D ⇑FG e′ via (5) and the FG reduction rules.

(7) Φm ⇑TL ΦV(E) via (4), (6) and rule red-rel-exp.

(8) Φm ⇑TL ΦV(case E of KtS (Xj
n
) → Xi) via (7).

Via (8) we can establish this subcase in statement (3).

Subcase-Panic:

Suppose (5)D ⊢FG Φv(e.fi) −→
k′

e′ for some e′ where k′ < k and panicFG(D, e′).

(6) D ⊢FG Φv(e) −→k′

e′ and panicFG(D, e′) via (5) and the FG reduction
and panic rules.

(7) panicTL(Φm, ΦV(E)) via (4), (6) and rule red-rel-exp.

(8) panicTL(Φm, ΦV(case E of KtS (Xj
n
) → Xi)) via (7).

Via (8) we can establish this subcase in statement (3).

Case td-call-struct:

m(xi ti
n
) t ∈ methods(D, tS)

〈D,Γ 〉 ⊢exp e : tS  E 〈D,Γ 〉 ⊢exp ei : ti  Ei (∀ i ∈ [n])

〈D,Γ 〉 ⊢exp e.m(ei
n) : t Xm,tS E (Ei

n
)
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(4) Φv(e) ≈ ΦV(E) ∈ JtSK
〈D,Φm〉
k and (5) Φv(ei) ≈ ΦV(Ei) ∈ JtiK

〈D,Φm〉
k by

induction.

To establish (3) Φv(e) ≈ ΦV(E) ∈ JtK
〈D,Φm〉
k we consider the subcases that

arise in rule red-rel-exp.

Subcase-Terminate:

Suppose (6) D ⊢FG Φv(e.m(ei
n)) −→k′

v′ for some value v′ where (7) k′ < k.

(8) D ⊢FG Φv(e) −→
k′′

v for some v, k′′ where

(9) k′′ < k′

by observing the reduction (6) and the number of steps taken (7).

(10) D ⊢FG Φv(ei) −→
ki vi for some vi, ki where

(11)
∑

i ki < k′

by observing the reduction (6) and the number of steps taken (7).

(12) Φm ⊢TL ΦV(E) −→∗ V for some V where

(13) v ≡ V ∈ JtSK
〈D,Φm〉
k−k′′

via reverse application of rule red-rel-exp on (4) where in the premise the
left-hand side of the implication is satisfied via (8) and (9).

(14) Φm ⊢TL ΦV(Ei) −→
∗ Vi for some Vi where

(15) vi ≡ Vi ∈ JtiK
〈D,Φm〉
k−ki

via reverse application of rule red-rel-exp on (5) where in the premise the
left-hand side of the implication is satisfied via (10) and (11).

(16) Set k′′′ = min(k − k′′, k −
∑

i ki)− 1 where

(17) 0 ≤ k′′′ < k and

(18) k′′′ < k − k′′ and k′′′ < k − ki
via (7), (9) and (11).

(19) v ≡ V ∈ JtSK
〈D,Φm〉
k′′′

via (13), (18) and the Monotonicity Lemma.

(20) vi ≡ Vi ∈ JtiK
〈D,Φm〉
k′′′

via (15), (18) and the Monotonicity Lemma.

(21) func (x tS) mM{return e′′} ≈ Xm,tS ∈ JmMK
〈D,Φm〉
k

via reverse application of rule red-rel-decls on (2).

(22) 〈x 7→ v, xi 7→ vi
n〉e′′ ≈ Xm,tS V (Vi

n
) ∈ JtK

〈D,Φm〉
k′′′

via reverse application of rule red-rel-method on (21) where in the premise
the left-hand side of the implication is satisfied via (18), (19) and (20).

(23) v.m(vi
n) ≈ (Xm,tS V ) (Vi

n
) ∈ JtK

〈D,Φm〉
k′′′+1

via (22) and Lemma 9.

(24) D ⊢FG v.m(vi
n) −→k′−(k′′+

∑

i ki) v′

via reduction steps (6), (8) and (10).

(25) k′′′ + 1 > k′ − (k′′ +
∑

i ki)

via the following reasoning.
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k′′′ + 1
= min(k − k′′, k −

∑

i ki) by definition
= k −max(k′′,

∑

i ki) by min/max distributivity law
≥ k − (k′′ +

∑

i ki) by max approximation
> k′ − (k′′ +

∑

i ki) by k′ < k

(26) Φm ⊢TL Xm,tS V (Vi
n
) −→∗ V ′ for some V ′ where

(27) v′ ≡ V ′ ∈ JtK
〈D,Φm〉
k′′′+1−(k′−(k′′+

∑

i ki))

via reverse application of rule red-rel-exp on (23) where in the premise the
left-hand side of the implication is satisfied via (24) and (25).

(28) k − k′ ≤ k′′′ + 1− (k′ − (k′′ +
∑

i ki))
via the following reasoning.

k′′′ + 1− (k′ − (k′′ +
∑

i ki))
= min(k − k′′, k −

∑

i ki)− (k′ − (k′′ +
∑

i ki)) by definition
= k −max(k′′,

∑

i ki)− (k′ − (k′′ +
∑

i ki)) by min/max distributivity law
= k − k′ + k′′ +

∑

i ki −max(k′′,
∑

i ki) by equivalence
≥ k − k′ by approximation

(29) v′ ≡ V ′ ∈ JtK
〈D,Φm〉
k−k′

via (27), (28) and the Monotonicity Lemma.
(30) Φm ⊢TL ΦV(Xm,tS E (Ei

n
)) −→∗ V ′

via reduction steps (12), (14) and (24).
Via (29) and (30) we can establish this subcase in statement (3).

Subcase-Diverge: Suppose (5) D ⊢FG Φv(e.m(ei
n)) −→k′

e′ for some e′ where
k′ < k and D ⇑FG e′.

We distinguish among the following three cases. Either the (1) expression on
which the method call is performed diverges or (2) one of the arguments diverges
or (3) reduction of the method call leads to some expression that diverges.

Subcase-Diverge-1: e′ = e′′.m(...) where
(6) D ⇑FG e′′ and D ⊢FG Φv(e) −→

k′′

e′′ and k′′ < k′.

Subcase-Diverge-2: e′ = v.m(v1, ..., vj−1, e
′′, ...) for some j where

(7) D ⇑FG e′′ and
(8) D ⊢FG Φv(e) −→

k′′

v and k′′ < k′ and
(9) D ⊢FG Φv(el) −→

kj vj and kl < k′ for l = 1, ..., j − 1 and

(10) D ⊢FG Φv(ej) −→
k′′′

e′′ and k′′′ < k′.

Subcase-Diverge-3: (11) D ⊢FG Φv(e) −→
k′′

v and k′′ < k′ and
(12) D ⊢FG Φv(ei) −→

ki vi and ki < k′ and
(13) D ⊢FG Φv(e.m(ei

n)) −→k′′+
∑

i ki v.m(vi
n) −→k′′′′

e′ where
(14) k′ = k′′ +

∑

i ki + k′′′′.
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Consider Subcase-Diverge-1.
(15) Φm ⇑TL ΦV(E) via (4), (6) and rule red-rel-exp.
(16) Φm ⇑TL ΦV(Xm,tS E (Ei

n
)) via (15) and we are done here.

Consider Subcase-Diverge-2.
(17) Φm ⊢TL ΦV(E) −→∗ V for some V via (4), (8) and rule red-rel-exp.
(18) Φm ⊢TL ΦV(El) −→

∗ Vl for some Vl via (4), (9) and rule red-rel-exp

for l = 1, .., j − 1.
(19) Φm ⇑TL ΦV(Ej) via (4), (7), (1) and rule red-rel-exp.

(20) Φm ⇑TL Xm,tS E (Ei
n
) via (17), (18) and (19) and we are done here.

Consider Subcase-Diverge-3.

(20) v.m(vi
n) ≈ (Xm,tS V ) (Vi

n
) ∈ JtK

〈D,Φm〉
k′′′+1 via the exact same reasoning

steps that lead to (23) as found in the first subcase. (21) Recall k′′′ = min(k −
k′′, k −

∑

i ki)− 1.
(22) Recall k′′′ + 1 > k′ − (k′′ −

∑

i ki) = k′′′′.

(23) Φm ⇑TL Xm,tS E (Ei
n
) via (13), (20), (22) and rule red-rel-exp and we

are done here.

Subcase-Panic: Suppose (5) D ⊢FG Φv(e.m(ei
n)) −→k′

e′ for some e′ where
k′ < k and panicFG(D, e′).

We distinguish among the following three cases. Either (1) the expression on
which the method call is performed panics or (2) one of the arguments panics
or (3) reduction of the method call leads to some expression that panics.

Subcase-Panic-1: e′ = e′′.m(...) where
(6) panicFG(D, e′′) and D ⊢FG Φv(e) −→

k′′

e′′ and k′′ < k′.

Subcase-Panic-2: e′ = v.m(v1, ..., vj−1, e
′′, ...) for some j where

(7) panicFG(D, e′′) and
(8) D ⊢FG Φv(e) −→

k′′

v and k′′ < k′ and
(9) D ⊢FG Φv(el) −→

kj vj and kl < k′ for l = 1, ..., j − 1 and

(10) D ⊢FG Φv(ej) −→
k′′′

e′′ and k′′′ < k′.

Subcase-Panic-3: (11) D ⊢FG Φv(e) −→
k′′

v and k′′ < k′ and
(12) D ⊢FG Φv(ei) −→

ki vi and ki < k′ and
(13) D ⊢FG Φv(e.m(ei

n)) −→k′′+
∑

i
ki v.m(vi

n) −→k′′′′

e′ where
(14) k′ = k′′ +

∑

i ki + k′′′′.

Consider Subcase-Panic-1.
(15) panicTL(Φm, ΦV(E)) via (4), (6) and rule red-rel-exp.
(16) panicTL(Φm, ΦV(Xm,tS E (Ei

n
))) via (15) and we are done here.

Consider Subcase-Panic-2.
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(17) Φm ⊢TL ΦV(E) −→∗ V for some V via (4), (8) and rule red-rel-exp.
(18) Φm ⊢TL ΦV(El) −→

∗ Vl for some Vl via (4), (9) and rule red-rel-exp

for l = 1, .., j − 1.
(19) panicTL(Φm, ΦV(Ej)) via (4), (7), (1) and rule red-rel-exp.

(20) panicTL(Φm, Xm,tS E (Ei
n
)) via (17), (18) and (19) and we are done

here.

Consider Subcase-Panic-3.
(20) v.m(vi

n) ≈ (Xm,tS V ) (Vi
n
) ∈ JtK

〈D,Φm〉
k′′′+1 via the exact same reasoning

steps that lead to (23) as found in the first subcase. (21) Recall k′′′ = min(k −
k′′, k −

∑

i ki)− 1.
(22) Recall k′′′ + 1 > k′ − (k′′ −

∑

i ki) = k′′′′.

(23) panicTL(Φm, Xm,tS E (Ei
n
)) via (13), (20), (22) and rule red-rel-exp

and we are done here.
Case td-call-iface:

〈D,Γ 〉 ⊢exp e : tI  E

(4) type tI interface {Si
q
} ∈ D (5) Sj = m(xi ti

n
) t (for some j ∈ [q])

〈D,Γ 〉 ⊢exp ei : ti  Ei (∀ i ∈ [n])

〈D,Γ 〉 ⊢exp e.m(ei
n) : t case E of KtI (Xval , Xi

q
) → Xj Xval (Ei

n
)

(6) Φv(e) ≈ ΦV(E) ∈ JtIK
〈D,Φm〉
k and (7) Φv(ei) ≈ ΦV(Ei) ∈ JtiK

〈D,Φm〉
k by

induction.
To establish (3) Φv(e) ≈ ΦV(E) ∈ JtK

〈D,Φm〉
k we consider the subcases that

arise in rule red-rel-exp.

Subcase-Terminate:
Suppose (8) D ⊢FG Φv(e.m(ei

n)) −→k′

v′ for some value v′ where (9) k′ < k.
(10) D ⊢FG Φv(e) −→

k′′

v for some v, k′′ where
(11) k′′ < k′

by observing the reduction (8) and the number of steps taken (9).
(12) D ⊢FG Φv(ei) −→

ki vi for some vi, ki where
(13)

∑

i ki < k′

by observing the reduction (8) and the number of steps taken (9).
(14) Φm ⊢TL ΦV(E) −→∗ V for some V where

(15) v ≡ V ∈ JtIK
〈D,Φm〉
k−k′′

via reverse application of rule red-rel-exp on (6) where in the premise the
left-hand side of the implication is satisfied via (10) and (11).

(16) Φm ⊢TL ΦV(Ei) −→
∗ Vi for some Vi where

(17) vi ≡ Vi ∈ JtiK
〈D,Φm〉
k−ki

via reverse application of rule red-rel-exp on (7) where in the premise the
left-hand side of the implication is satisfied via (12) and (13).

(18) methods(D, tI) = {S
q
}

via (4).
(19) Vval = KuS

(V ′) and
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(20) V = KtI (Vval, Yl
q
) for some uS , V ′, Yl

q
and

(21) methodLookup(D, (m,uS)) = func (x uS) m(xi ti
n
) t {return e′} and

(22) v ≡ Vval ∈ JuSK
〈D,Φm〉
k−k′′ and

(23) func (x uS) m(xi ti
n
) t {return e′} ≈ Yj ∈ J m(xi ti

n
) tK

〈D,Φm〉
k−k′′

via reverse application of rule red-rel-iface on (15) where we assume (18)
and (5). Index k − k′′ is the largest index that satisfies the logical relations in
the premise of rule red-rel-iface.

(24) Set k′′′ = min(k − k′′, k −
∑

i ki)− 1 where
(25) 0 ≤ k′′′ < k and
(26) k′′′ < k − k′′ and k′′′ < k − ki
via (9), (11) and (13).

(27) vi ≡ Vi ∈ JtiK
〈D,Φm〉
k′′′

via (17), (26) and the Monotonicity Lemma.

(28) v ≡ Vval ∈ JuSK
〈D,Φm〉
k′′′

via (22), (26) and the Monotonicity Lemma.

(29) 〈x 7→ v, xi 7→ vi
n〉 ≈ Yj Vval (Vi

n
) ∈ JtK

〈D,Φm〉
k′′′

via reverse application of rule red-rel-method on (23) where in the premise
the left-hand side of the implication is satisfied via (26), (27) and (28).

(30) v.m(vi
n) ≈ V ′

j Vval (Vi
n
) ∈ JtK

〈D,Φm〉
k′′′+1

via (29) and Lemma 9.
(31) D ⊢FG v.m(vi

n) −→k′−(k′′+
∑

i
ki) v′

via reduction steps (8), (10) and (12).
(32) k′ − (k′′ +

∑

i ki) < k′′′ + 1
via the following reasoning.

k′′′ + 1
= min(k − k′′, k −

∑

i ki) by definition
= k −max(k′′,

∑

i ki) by min/max distributivity law
≥ k − (k′′ +

∑

i ki) by max approximation
> k′ − (k′′ +

∑

i ki) by k′ < k

(33) Φm ⊢TL Yj Vval (Vi
n
) −→∗ V ′ for some V ′ where

(34) v′ ≈ V ′ ∈ JtK
〈D,Φm〉
k′′′+1−(k′−(k′′+

∑

i
ki))

via reverse application of rule red-rel-exp on (30) where in the premise the
left-hand side of the implication is satisfied via (31) and (32).

(35) k − k′ ≤ k′′′ + 1− (k′ − (k′′ +
∑

i ki))
via the following reasoning.

k′′′ + 1− (k′ − (k′′ +
∑

i ki))
= min(k − k′′, k −

∑

i ki)− (k′ − (k′′ +
∑

i ki)) by definition
= k −max(k′′,

∑

i ki)− (k′ − (k′′ +
∑

i ki)) by min/max distributivity law
= (k − k′) + (k′′ +

∑

i ki)−max(k′′,
∑

i ki) by equivalence
≥ k − k′ by approximation
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(36) v′ ≈ V ′ ∈ JtK
〈D,Φm〉
k−k′

via (34), (35) and the Monotonicity Lemma.
(37) Φm ⊢TL ΦV(case E of KtI (Xval , Xi

q
) → Xj Xval (Ei

n
)) −→∗ V ′

via reduction steps (14), (20) and (33).
Via (36) and (37) we can establish this subcase in statement (3).

Subcase-Diverge and Subcase-Panic are left out as the reasoning is very
close to the reasoning for case td-call-struct.
Case td-sub:

〈D,Γ 〉 ⊢exp e : t E2 D ⊢iCons t <: u E1

〈D,Γ 〉 ⊢exp e : u E1 E2

By induction we obtain that (4) Φv(e) ≈ ΦV(E2) ∈ JtK
〈D,Φm〉
k . From (3), (4)

and Lemma 12 we obtain that Φv(e) ≈ E1 ΦV(E2) ∈ JuK
〈D,Φm〉
k .

We have that ΦV(E1) = E1 and thus we are done for this case.
Case td-assert:

〈D,Γ 〉 ⊢exp e : u E2 D ⊢iDestr u ց t E1

〈D,Γ 〉 ⊢exp e.(t) : t E1 E2

By induction we obtain that (4) Φv(e) ≈ ΦV(E2) ∈ JuK
〈D,Φm〉
k . From (3), (4)

and Lemma 13 we obtain that Φv(e).(t) ≈ E1 ΦV(E2) ∈ JtK
〈D,Φm〉
k .

We have that ΦV(E1) = E1 and thus we are done for this case. ⊓⊔
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