Skip to main content

Learning Subject-Specific Functional Parcellations from Cortical Surface Measures

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13564))

Included in the following conference series:

Abstract

Cortical parcellations that are tailored to individual subjects have been shown to improve functional connectivity prediction of behavior and provide useful information about brain function and dysfunction. A hierarchical Bayesian (HB) model derived from resting-state fMRI (rs-fMRI) is a state-of-the art tool for delineating individualized, spatially localized functional parcels. However, rs-fMRI acquisition is not routine in clinical practice and may not always be available. To overcome this issue, we hypothesize that functional parcellation may be inferred from more commonly acquired T1- and T2-weighted structural MRI scans, through cortical labeling with deep learning. Here, we investigate this hypothesis by employing spherical convolutional neural networks to infer individualized functional parcellation from structural MRI. We show that the proposed model can achieve comparable parcellation accuracy against rs-fMRI derived ground truth labels, with a mean Dice score of 0.74. We also showed that our individual-level parcellations improve areal functional homogeneity over widely used group parcellations. We envision the use of this framework for predicting the expected spatially contiguous areal labels when rs-fMRI is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arslan, S., et al.: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. Neuroimage 170, 5–30 (2018)

    Article  Google Scholar 

  2. Eickhoff, S.B., Yeo, B.T., Genon, S.: Imaging-based parcellations of the human brain. Nat. Rev. Neurosci. 19(11), 672–686 (2018)

    Article  Google Scholar 

  3. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth (1909)

    Google Scholar 

  4. Shen, X., et al.: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage 82, 403–415 (2013)

    Article  Google Scholar 

  5. Schaefer, A., et al.: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28(9), 3095–3114 (2018)

    Article  Google Scholar 

  6. Yeo, B.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. (2011)

    Google Scholar 

  7. Bijsterbosch, J.D., et al.: The relationship between spatial configuration and functional connectivity of brain regions. Elife 7, e32992 (2018)

    Google Scholar 

  8. Wang, D., et al.: Parcellating cortical functional networks in individuals. Nat. Neurosci. 18(12), 1853–1860 (2015)

    Article  Google Scholar 

  9. Salehi, M., et al.: There is no single functional atlas even for a single individual: functional parcel definitions change with task. NeuroImage 208, 116366 (2020)

    Google Scholar 

  10. Kong, R., et al.: Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cereb. Cortex 31(10), 4477–4500 (2021)

    Article  Google Scholar 

  11. Lang, S., Duncan, N., Northoff, G.: Resting-state functional magnetic resonance imaging: review of neurosurgical applications. Neurosurgery 74(5), 453–465 (2014)

    Article  Google Scholar 

  12. Gordon, E.M., et al.: Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26(1), 288–303 (2016)

    Article  Google Scholar 

  13. Chong, M., et al.: Individual parcellation of resting fMRI with a group functional connectivity prior. Neuroimage 156, 87–100 (2017)

    Article  MathSciNet  Google Scholar 

  14. Birn, R.M., et al.: The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 83, 550–558 (2013)

    Article  Google Scholar 

  15. Gonzalez-Castillo, J., et al.: The spatial structure of resting state connectivity stability on the scale of minutes. Front. Neurosci. 8, 138 (2014)

    Article  Google Scholar 

  16. van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  17. Glasser, M.F., van Essen, D.C.: Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. J. Neurosci. 31(32), 11597–11616 (2011)

    Article  Google Scholar 

  18. Di Biase, M.A., et al.: Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia. Mol. Psychiatry 27(4), 2052–2060 (2022)

    Article  Google Scholar 

  19. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  20. Griffanti, L., et al.: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95, 232–247 (2014)

    Article  Google Scholar 

  21. Lyu, I., et al.: Hierarchical spherical deformation for cortical surface registration. Med. Image Anal. 57, 72–88 (2019)

    Article  Google Scholar 

  22. van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  23. Robinson, E.C., et al.: MSM: a new flexible framework for multimodal surface matching. Neuroimage 100, 414–426 (2014)

    Article  Google Scholar 

  24. Jiang, C., et al.: Spherical CNNs on unstructured grids. arXiv preprint arXiv:1901.02039 (2019)

  25. Parvathaneni, P., et al.: Cortical surface parcellation using spherical convolutional neural networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 501–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_56

    Chapter  Google Scholar 

  26. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  27. Boukhdhir, A., et al.: Unraveling reproducible dynamic states of individual brain functional parcellation. Netw. Neurosci. 5(1), 28–55 (2021)

    Article  Google Scholar 

  28. Dadi, K., et al.: Fine-grain atlases of functional modes for fMRI analysis. NeuroImage 221, 117126 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roza G. Bayrak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bayrak, R.G., Lyu, I., Chang, C. (2022). Learning Subject-Specific Functional Parcellations from Cortical Surface Measures. In: Rekik, I., Adeli, E., Park, S.H., Cintas, C. (eds) Predictive Intelligence in Medicine. PRIME 2022. Lecture Notes in Computer Science, vol 13564. Springer, Cham. https://doi.org/10.1007/978-3-031-16919-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16919-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16918-2

  • Online ISBN: 978-3-031-16919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics