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Abstract. A central challenge in training one-shot learning models is
the limited representativeness of the available shots of the data space.
Particularly in the field of network neuroscience where the brain is rep-
resented as a graph, such models may lead to low performance when
classifying brain states (e.g., typical vs. autistic). To cope with this,
most of the existing works involve a data augmentation step to increase
the size of the training set, its diversity and representativeness. Though
effective, such augmentation methods are limited to generating samples
with the same size as the input shots (e.g., generating brain connectiv-
ity matrices from a single shot matrix). To the best of our knowledge,
the problem of generating brain multigraphs capturing multiple types
of connectivity between pairs of nodes (i.e., anatomical regions) from
a single brain graph remains unsolved. In this paper, we unprecedent-
edly propose a hybrid graph neural network (GNN) architecture, namely
Multigraph Generator Network or briefly MultigraphGNet, comprising
two subnetworks: (1) a many-to-one GNN which integrates an input
population of brain multigraphs into a single template graph, namely a
connectional brain temple (CBT), and (2) a reverse one-to-many U-Net
network which takes the learned CBT in each training step and out-
puts the reconstructed input multigraph population. Both networks are
trained in an end-to-end way using a cyclic loss. Experimental results
demonstrate that our MultigraphGNet boosts the performance of an in-
dependent classifier when trained on the augmented brain multigraphs in
comparison with training on a single CBT from each class. We hope that
our framework can shed some light on the future research of multigraph
augmentation from a single graph. Our MultigraphGNet source code is
available at https://github.com/basiralab/MultigraphGNet.

Keywords: Multigraph augmentation from a single graph · One-shot learning
· Brain connectivity · Connectional brain template

1 Introduction

Brain graphs present powerful tools in modeling the relationship between differ-
ent anatomical regions of interest (ROIs) as well as fingerprinting neural states
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(e.g., typical and atypical) [1]. Recently, graph neural network (GNN) models
have achieved remarkable results across different brain graph learning tasks [2]
such as time-dependent prediction [3,4], super-resolution [5,6] and classification
[7,8]. Despite their ability to extract meaningful and powerful representations
from labelled brain graph data, they might fail to handle training data with a
limited number of samples. Particularly, such data-hungry architectures might
struggle to converge and produce a good performance within a few-shot learning
(FSL) paradigm [9,10,11] –let alone one-shot learning [12].

Such problem is usually remedied by data augmentation where labeled sam-
ples are generated from the available shots to better generalize to unseen distri-
butions of testing samples. Several FSL works [13] proposed novel methods to
solve medical image-based learning tasks. For instance, [14] presented a learning-
based method that is trained on a few samples while leveraging data augmen-
tation and unlabeled image data to enhance model generalizability. [15] used
the meta-train data from common diseases for rare disease diagnosis and tack-
led the low-data regime problem while leveraging meta-learning. [16] presented
a novel task-driven and semi-supervised data augmentation scheme to improve
medical image segmentation performance in a limited data setting. However, to
the best of our knowledge and as revealed by this recent GNN in network neuro-
science review paper [2], one-shot GNN learning remains unexplored in the field
of network neuroscience –with the exception of [12] where one-shot GNN ar-
chitectures are trained for brain connectivity regression and classification tasks.
Specifically, representative connectional brain templates (CBTs) [17] were used
to train GNN architectures in one-shot fashion. Such graph templates present a
compact representation of a particular brain state.

However, this landmark work did not resort to any data augmentation strate-
gies or generative models to better estimate the unseen distributions of the
classes to discriminate. Besides, existing graph augmentation methods are lim-
ited to generating graphs with the same size as the input shots (e.g., gener-
ating brain connectivity matrices from a single shot matrix). To the best of
our knowledge, the problem of generating brain multigraphs capturing multiple
types of connectivity between pairs of nodes (i.e., anatomical regions) from a
single brain graph remains unsolved. Note that a brain multigraph is encoded
in a tensor, where each frontal view captures a particular type of connectivity
between pairs of brain ROIs (e.g., morphological or functional). In this paper,
we set out to boost a one-shot brain graph classifier by learning how to generate
multi-connectivity brain multigraphs from a single template graph. Specifically,
we propose a hybrid graph neural network (GNN) architecture, namely Multi-
graph Generator Network or briefly MultigraphGNet, comprising two subnet-
works: (1) a many-to-one GNN which integrates an input population of brain
multigraphs into a single CBT graph using deep graph normalizer (DGN) [18],
and (2) a reverse one-to-many convolutional neural network (CNN) which takes
the learned CBT in each training step and outputs the reconstructed input
multigraph population. Our prime contributions are listed below:



1. We are the first to learn how to generate brain multigraphs from a single
graph template (namely CBT).

2. We propose a hybrid cyclic GNN architecture for multigraph graph augmen-
tation from a single CBT.

3. We show that the augmented brain multigraphs can boost the performance
of an independent classifier across various evaluation metrics.

2 Methodology

In this section, we explain our proposed MultigraphGNet in detail. We represent
tensors by calligraphic font capital letters, e.g., X , matrices by boldface capital
letters, e.g., X, vectors by boldface lowercase letters, e.g., x and scalars by letters,
e.g., x. Table 1 summarizes the mathematical notations we used throughout the
paper.

Table 1: Mathematical notations followed in the paper
Mathematical notation Definition

S Training set
nr Number of region of interests (ROIs) in the brain
nv Number of connectomic views in the brain multigraph (tensor)
Xs Brain graph tensor ∈ Rnr×nr×nv of subject s
Xv

s Brain graph matrix ∈ Rnr×nr of the view v and subject s
Cs Subject-driven connectional brain template (CBT) ∈ Rnr×nr of the subject s

X̂s Reconstructed brain graph tensor ∈ Rnr×nr×nv for the subject s

Problem statement. A brain connectome can be encoded in a single view
(i.e., matrix) or multiple views (i.e., matrices forming a tensor) so that each view
sits on a different manifold and captures a specific relationship, e.g., morpholog-
ical or functional, between anatomical brain regions of interest. Since multiview
connectomic data is scarce, we set out to learn how to predict brain connectivity
tensors (i.e., multigraphs) from a single graph template (i.e., brain connectivity
matrix). Thus, we propose a one-to-many brain graph augmentation approach.
Specifically, given a set of multi-view brain graphs where each view models a spe-
cific relationship between pairs of brain ROIs, our goal is to first collapse these
graphs to a single view graph-based representation, i.e., connectional brain tem-
plate (CBT), then, reconstruct the original brain graphs using the generated
CBT, so that we can augment new multi-view brain graphs by adding small
noise to the global CBT which can be considered as an average connectome over
all subjects and views.

Definition 1. Let Cs denote a subject-driven connectional brain template,
which is a centered representation of subject s with respect to the training pop-
ulation tensor (i.e., multigraph) distribution. Specifically, Cs is encoded in a
single-view brain connectivity matrix which is a normalized graph-based repre-
sentation of the multi-view brain graph (i.e., tensor) of subject s.
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2.1 CBT Learning

The first block (Fig. 1-A) of our MultigraphGNet utilizes the Deep Graph Nor-
malizer (DGN) [18] network to produce a subject-driven CBT Cs for each train-
ing subject s. We represent a brain graph view i as Gi(Vi, Ei) where Vi is the set
of nr nodes each corresponds to a brain ROI and E is a set of edges each encoding
a particular type of relationship between two ROIs (e.g., structural). Thus, we
can define a multi-view brain graph for subject s as a tensor Xs ∈ Rnr×nr×nv ,
where nr and nv denote the number of ROIs and views, respectively. Since
self-connections do not carry important information, we set the diagonal en-
tries in the tensor to zero. The DGN network takes a node embedding matrix
V0 ∈ Rnr×d0 , where d0 is the initial node embedding size and a multi-view edge
embedding tensor X . Since we do not have any node/ROI features initially, we
set the V0 to 1. DGN utilizes 3 edge-conditioned graph convolution layers [19]
with a ReLU at the end of each layer to learn the node embeddings. Each layer
l ∈ {1, 2, 3} includes a dense filter neural network F l : Rnv 7→ Rdl×dl−1 that im-
plements the message passing between ROIs i and j given the edge embeddings
eij ∈ Rnv×1 as follows

vli = Θl.vl−1i +
1

|N (i)|

( ∑
j∈N (i)

F l(eij ; W
l)vl−1j + bl

)

F l(eij ; W
l) = Θij ,

where vli is the node embedding corresponding to the ith ROI in layer l. The
dense filter neural network F l with weights Wl and bias bl produces new edge
weights in each layer for the edges between node i and its neighbour j ∈ N (i).
The resulting node embeddings tensor V 3 ∈ Rnr×d3 is first repeated horizontally
to get a tensor, then, we compute the element-wise absolute difference between
its transpose. Here we use the absolute difference since the original brain con-
nectivity tensors were generated using this operation. One can use any other
operation that is differentiable for the back propagation process. The final out-
put is obtained by summing along the z-axis which gives us the subject-driven
CBT Cs ∈ Rnr×nr for subject s.

We use the Subject Normalization Loss (SNL) as proposed in the DGN. SNL
for training subject s is defined as the mean Frobenius distance between the
learned CBT and each training subject view as follows:

SNLs =
1

nv × |S|

nv∑
v=1

∑
i∈S
||Cs −Xv

i ||F × λv,

where S is the training set and λv is the loss weight computed for each view v
as follows:

λv =

1
µv

max
{

1
µj

}nv

j=1

,



where µv is computed by taking the mean of edge attributes for view v. Next, we
define and optimize the DGN Loss using the following objective function [18]:

LDGN =
1

|S|
∑
s∈S

SNLs

2.2 Reverse Mapping

The second block (Fig. 1-B) of our MultigraphGNet aims to reverse the DGN
process, thus we call it reverse DGN (RDGN) network by taking the learned
CBT Cs and mapping it back into the original brain multigraph tensor Xs for
subject s. We use the U-Net [20] architecture to design the RDGN, which consists
of an encoder and a decoder. Specifically, in each iteration of the optimization
process, the encoder takes the learned CBT and applies the same convolution
operation with a kernel size of 3, stride and padding of 1 two times, each followed
by a ReLU non-linearity and a batch normalization layer. To down-sample the
resulting feature map, we use a max pooling layer with a kernel size and stride of
2. The number of output channels is doubled at the end of the down-sampling.
We repeat this process 4 times to get the feature map with 1024 channels. In
the decoder part, we first up-sample using a 2×2 transposed convolutional layer
with a stride of 2 that halves the number of output channels which is followed
by a concatenation with the feature map from the counterpart in the encoder.
As for the decoder, we apply the same convolution operation twice. This process
is repeat 4 times, as well. The final layer consists of a 1×1 convolution layer that
outputs the reconstructed tensor X̂s ∈ Rnr×nr×nv . To preserve the similarity to
the original tensor, we additionally minimize the L1 distance, i.e., mean absolute
error (MAE), between the original (X ) and reconstructed (X̂ ) tensor views as
follows:

LL1 = ||X − X̂ ||1
We train the DGN and RDGN in an end-to-end and fully cyclic manner to
ensure that the generated CBT can well collapse the multiple views into a single
connectivity matrix, which in turn is used to reconstruct back the original brain
multigraph using the U-Net augmentation process. Thus, we define our RDGN
loss as follows:

Lcyclic = LDGN + λLL1

2.3 Multigraph data augmentation from a single graph

The trained RDGN is able to generate multiple views from a given single-view
CBT, which makes it possible to predict a multigraph from a single representa-
tive template graph. Hence, by slightly modifying the an particular input CBT,
RDGN can produce unique brain multigraphs where it acts as a one-to-many
augmentation network. To augment new brain multigraphs from a single CBT,
we first obtain a subject-driven CBT for each training subject as follows:

SCBT =
{

Cs|∀s ∈ S
}



Cs = DGN(Xs)

Next, we construct a global CBT C by taking the element-wise median of all the
subject-driven CBTs in SCBT . C can be considered as an average brain network
over all the training brain multigraph set. To create diversity in our augmented
multigraphs, we add a small noisy matrix Wi ∼ N (µC, σ

2
C) to the global CBT

for each augmented new sample i as follows:

C̃i = C + cWi,

where µC denotes the CBT mean and σC its standard deviation. c is a scaling
coefficient to control the added noise. Note that we re-sample the added noise
in each augmentation step. We augment new samples as follows:

Saug =
{
X̂i|i ∈ {1, 2, . . . , k}

}
X̂i = RDGN(C̃i),

where k is the number of samples that we want to augment.

3 Experimental results and discussion

Evaluation dataset. We evaluated our framework on the Autism Brain Imag-
ing Data Exchange (ABIDE-I) public dataset1 using a random subset including
150 normal control (NC) and 150 subjects with autism spectrum disorder (ASD),
each wit 6 views of morphological brain connectomes (extracted from the max-
imum principal curvature, the mean cortical thickness, the mean sulcal depth,
the average curvature, the minimum principle area and the cortical surface area)
of the left cortical hemispheres (LH). The cortical surface is split into 35 ROIs
via Desikan-Killiany atlas [21] after the reconstruction from T1-weighted MRI
using the FreeSurfer pipeline [22]. Next, the brain network is obtained by taking
the absolute difference between the cortical measurements in each pair of ROIs.
We used 5-fold cross-validation with 5 different seeds to evaluate the generaliz-
ability of our MultigraphGNet. We implemented our framework in PyTorch and
PyTorch-Geometric [23] libraries.

Hyperparameters. In DGN, we used 3 edge-conditioned graph convolution
layers followed by ReLU non-linearity and each layer has an output node embed-
ding size of 36, 24 and 5, respectively. In RDGN, we used a U-Net architecture.
For the optimizer, we chose AdamW [24] with a learning rate of 0.001, beta1
and beta2 of 0.9 and 0.999, and a weight decay of 0.01. We set λ = 1 in the total
loss function and c = 0.2 for the added noise in the CBT augmentation using
RDGN.

Evaluation and comparison methods. To evaluate the effectiveness of
our brain multigraph augmentation strategy from a single CBT, we trained two
support vector machine (SVM) classifiers in each cross-validation fold. Note that

1 http://preprocessed-connectomes-project.org/abide/

http://preprocessed-connectomes-project.org/abide/


Table 2: Testing classification results of independent SVM classifiers trained
using (i) a single CBT from each class and (ii) samples augmented using the
trained RDGN network. We report the average accuracy, precision, recall and
F1 score obtained when training on 10, 25 and 50 augmented samples. Each row
displays the mean of the results over the 5 cross-validation folds with different
random seeds for the train-test split.

One-shot CBT Augmented multigraphs

Acc Prec Rec F1 Acc Prec Rec F1

Seed #1 0.929 0.944 0.916 0.928 0.989 0.953 0.993 0.989

Seed #2 0.960 0.993 0.928 0.959 0.956 0.939 1.000 0.964

Seed #3 0.948 0.993 0.903 0.944 0.971 0.985 0.955 0.968

Seed #4 0.961 0.981 0.941 0.960 0.965 0.991 0.935 0.958

Seed #5 0.954 0.992 0.915 0.952 0.968 0.961 0.979 0.969

Avg. 0.950 0.981 0.921 0.949 0.970 0.966 0.972 0.970

we provided the same seeds in both DGN/RDGN and SVM training so that
neither our augmentation framework nor the classifier have seen the test set
before.

One-shot CBT. We generated two global CBTs CASD and CNC using the
trained DGN for ASD and NC training sets, respectively. We vectorized the
upper-triangular part of both CBTs to get two feature vectors cASD, cNC ∈
R

nr×nr−1
2 . In the testing step, we created a subject-driven CBT using the trained

DGN for each brain multigraph in the test set since the SVM was not trained
on multiple views.

Augmented samples. We augmented k = 10, 25, 50 multigraphs as explained
in the Section 2.3 and vectorized the upper-triangular parts of each view to get

the feature vector xi ∈ R
nv×nr×nr−1

2 for each augmented sample i ∈ {1, 2, . . . , k}.
Next, we trained a new SVM classifier on the augmented set and tested it on the
left-out test set. In this case, there is no need for generating subject-driven CBTs
in the testing phase since the SVM was already trained on multi-view tensors. We
report the comparison between the classification accuracy, precision, recall and
F1 scores for the both methods in the Table 2 for both methods. It can be clearly
seen that our framework is able to reconstruct the initial brain graph views and
produces relevant features for the ASD/NC classification task. While one-shot
CBT is considerably enough to distinguish between ASD and NC subjects, our
framework further boosts the independent classifier performance by augmenting
multiple multi-view brain connectomes using only one single-view CBT.

Visual inspection. In Fig. 2, we show the original and reconstructed brain
multigraph tensor including 6 views as well as the learned CBT for a randomly
selected ASD testing subject. In addition, we report the mean absolute error
(MAE) between reconstructed and original views. Obviously, RDGN network is
able to expand and decode the CBT into multiple views with a low error.



Fig. 2: Visual inspection of the reconstructed brain multigraph from a single
CBT. On top, we display the brain tensor including 6 connectivity views for a
randomly selected ASD testing sample. In the middle, we present the subject-
driven CBT obtained using the trained DGN network. In the bottom, we com-
pare the reconstructed views by the trained RDGN network given the learned
CBT as input. We also measure the MAE between the corresponding ground-
truth and predicted views.

Limitations and future directions. Although the L1 Loss between the the
ground truth and reconstructed views produced very promising reconstructions
and is resistant to data outliers, it only considers the element-wise similarity
in connectivity weights without examining the topological properties (e.g., hub-
ness) of the augmented multigraphs. Hence in our future work, we will add a
topological sub-loss to the cyclic loss in our reconstruction block. Furthermore,
the RDGN can be further boosted by adding a discriminator network to the
U-Net under an adversarial learning paradigm as in [4]. We also will replace the
convolutional U-Net with a graph U-Net [25] for further improvement.

4 Conclusion

In this paper, we introduced the first study that provides a one-to-many U-Net
augmentation framework for generating multi-view brain graphs from a single



connectional template to boost one-shot learning classifiers. Given the high-cost
of connectomic data collection and processing, our framework offers an affordable
approach to learning how in a frugal setting with limited data. We showed that
the augmented samples are able to improve the classification results of autistic
subjects. In our future work, we will evaluate our MultigraphGNet on subjects
with different neurological disorders such as Alzheimer’s Disease (AD) or mild
cognitive impairment (MCI) and assess the generalizability of model to different
classes.

5 Supplementary material

We provide three supplementary items for reproducible and open science:

1. A 7-mn YouTube video explaining how our framework works on BASIRA
YouTube channel at https://youtu.be/LQZBVwo_iNU.

2. MultigraphGNet code in Python on GitHub at https://github.com/basiralab/
MultigraphGNet.

3. A GitHub video code demo on BASIRA YouTube channel at https://

youtu.be/iNNFNlML_CU.
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