
Meta-RegGNN: Predicting Verbal and Full-Scale
Intelligence Scores using Graph Neural

Networks and Meta-Learning

Imen Jegham ID 1,2,3 and Islem Rekik ID 2?
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Abstract. Decrypting intelligence from the human brain construct is
vital in the detection of particular neurological disorders. Recently, func-
tional brain connectomes have been used successfully to predict behav-
ioral scores. However, state-of-the-art methods, on one hand, neglect the
topological properties of the connectomes and, on the other hand, fail
to solve the high inter-subject brain heterogeneity. To address these lim-
itations, we propose a novel regression graph neural network through
meta-learning namely Meta-RegGNN for predicting behavioral scores
from brain connectomes. The parameters of our proposed regression
GNN are explicitly trained so that a small number of gradient steps
combined with a small training data amount produces a good gener-
alization to unseen brain connectomes. Our results on verbal and full-
scale intelligence quotient (IQ) prediction outperform existing methods
in both neurotypical and autism spectrum disorder cohorts. Furthermore,
we show that our proposed approach ensures generalizability, particu-
larly for autistic subjects. Our Meta-RegGNN source code is available at
https://github.com/basiralab/Meta-RegGNN.

Keywords: Meta-learning · Graph Neural Networks · Behavioral score predic-
tion · Brain connectivity regression · Functional brain connectomes

1 Introduction

Autism, or Autism Spectrum Disorder (ASD), is a neurodevelopmental disorder
that affects how a person feels, thinks, interacts with others, and encounters their
environment. Research has shown that subjects with ASD have higher rates of
health issues throughout childhood, adolescence, and adulthood and this can
lead to a high risk of early mortality. ASD diagnosis remains a challenging task
due to the wide range in the severity of its symptoms and the lack of a patho-
physiological marker [1,2]. Recently, machine learning techniques have become
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a primary route for computer-aided diagnosis, and have been broadly used to
analyze autism disorders [3,4,5]. Intelligence, in particular, is a key aspect of
ASD. State-of-the-art methods successfully used functional brain connectomes
to predict cognitive measures such as Intelligence Quotient (IQ) scores in both
disordered and healthy cohorts [6,7,8]. Indeed, functional brain connectomes
describe the brain network structure and are derived from resting-state mag-
netic resonance imaging (MRI). They are modeled as graphs whose nodes depict
anatomical regions of interest (ROIs) and edges represent the correlations in
activity between ROI pairs [9].

To improve generalizability across contexts and populations, Shen et al. [10]
developed a data-driven protocol for Connectome-based Predictive Modeling
(CPM) of brain-behavior relationships by training linear regression model using
cross-validation. To ameliorate the obtained results, Dryburgh et al. [6] studied
how neural correlates of intelligence scores are altered by atypical neurodevel-
opmental disorders by performing their analysis in both Neuro Typical (NT)
subjects and subjects with ASD. For that, they adopted CPM and evaluated neg-
ative and positive correlations of brain regions separately. However, these meth-
ods flatten the brain connectome matrix though vectorization which neglects
the graph structure of the connectomes. Thus, the local and global topological
properties of the connectomes that are rich of information are not exploited.

To overcome this issue, Graph Neural Networks (GNNs) have been proposed.
They can handle complex graph data and have proven their exclusive ability in
learning in non-Euclidean spaces including graphs with complex topologies and
a wide range of graphs [11]. GNN is firstly proposed in 2005 [12] to be then
elaborated on in detail [13]. GNNs are a class of deep learning techniques with
graph convolutional layers that outperform existing methods in a large range of
computer vision applications [14]. Recently, they have received large attention
thanks to their exclusive ability in effectively modeling the correlation between
samples. They provide an efficient solution to integrate diverse information. How-
ever, a lack of works that explored GNN for the prediction of cognitive scores
has been noticed. Hanik et al. [7] was the first to propose a GNN architecture,
called RegGNN, specialized in regressing brain connectomes to a cognitive score
to predict. To better improve the performance of GNN, they also proposed a
learning-based sample selection method that selects training samples with the
highest predictive power. However, existing GNN-based models present a major
drawback which is the lack of flexibility which means that the model fails to be
used for independent testing [15].

As a key challenge for the cognitive score prediction is high heterogeneity
across individual brains, standard learning approaches fail when applied in dif-
ferent conditions than used for training. To decrease this covariate shift that
drastically affects the usefulness of machine learning models and improve the
generalizability of proposed methods, meta-learning approaches have been pro-
posed and achieved a tremendous success in recent years [16]. The basic idea
of meta-learning or learn to learn is to gradually enhance the performance of a
model by learning multiple different tasks. It is similar to transfer learning [17].



In transfer learning, model parameters are learned after being trained with lots
of data and then fine-tuned to obtain good parameters, while in meta-learning,
good model parameters that are sensitive to small changes and give large im-
provement on loss function for a particular task are learned. Meta-learning aims
to rapidly learn a new task from a small amount of new data, and the model
is trained by the meta-learner to be able to learn on several existing tasks [18].
There are different meta-learning approaches including one-shot learning with
memory augmented neural networks [19], optimization as a model for few-shot
learning [20] and Model Agnostic Meta-Learning (MAML) [21]. The latter may
be directly applied to any learning model that is trained with a gradient de-
scent procedure. With minimal modification, it can simply manage several archi-
tectures and multiple problem settings, including policy gradient reinforcement
learning, classification and regression. However, despite their important role to
ensure generalizability and solve data fracture problem, this method has not
been previously employed in predicting cognitive scores.

In this paper, we introduce the first regression GNN network through meta-
learning, namely Meta-RegGNN that regresses functional brain connectomes
to predict cognitive scores. Our Meta-RegGNN network on one hand properly
includes the graph structure of functional brain connectomes and effectively
models the correlation between them, and on the other hand, thanks to meta-
learning, makes the regression GNN model more flexible while decreasing the
impact of the high brain variability and domain fracture issues.

The main contributions of our method can be summarized as follows:

1. We introduce a novel meta-learning regression graph neural network that
shows an exclusive ability in modeling the correlation between data and
incorporates global and local topological properties of the functional brain
connectomes to predict behavioral scores.

2. We present the first work on meta-learning for regression graph neural net-
works rooted in inductive learning and which boosts the prediction perfor-
mance by decreasing the effect of sample heterogeneity. This network shows
a good trade-off between flexibility and performance and can be used in
other application fields suffering from high intra-class variability issues.

3. We illustrate a pipeline, consisting of Meta-RegGNN, which outperforms
state-of-the-art models in predicting Verbal Intelligence Quotient (VIQ) and
Full-scale Intelligence Quotient (FIQ) from functional brain connectomes in
neurotypical and autism spectrum disorder cohorts.

2 Methodology

In this section, we detail the architecture and the algorithm of our proposed.
Fig. 1 shows the layout of the overall process of Meta-RegGNN. In our proposed
approach, meta-training is implemented as episodic tasks on support and query
sets. A few-shot learning framework is used for the query set. The goal of this
few-shot regression is to predict the behavioral scores from only a few samples
after training on many samples with similar statistical properties. During the



meta-testing, predicted behavioral scores are obtained using unseen samples that
are provided with the optimized weights obtained from the meta-learning stage.

Fig. 1: Illustration of the proposed meta-training and validation of regression
GNN in a few-shot setting.

• Problem statement. We consider a regression GNN model, denoted
f , that maps brain graphs g to behavioral scores s. During meta-learning,
the regression GNN model is trained to be able to adapt to a large num-
ber of tasks. We present a generic notion of a learning task below. Each task
T = {L(g1, s1, ..., gH , sH), q(g1), q(gt+1|gt, st), H} consists of a loss function L, a
distribution over initial observations q(g1), a transition distribution q(gt+1|gt, st)
and an episode length H (in our case, we can define H = 1 and drop the time-
step t on xt, as the model is used for supervised learning and accepts one input



and gives one output). For regression, the loss function is defined as follows:

LTi =
∑

g(j),s(j)∼Ti

‖f(g(j))− s(j)‖22, (1)

where g(j), s(j) represent respectively the input and output sampled from task
Ti. In our model agnostic meta-learning scenario, we define a distribution over
tasks p(T ) that we want our regression GNN model to adapt to. In the K-shot
learning setting, the regression GNN is trained to learn a new task Ti from p(T )
from only K samples drawn from qi and the feedback LTi produced by Ti. At the
end of meta-training, new tasks are sampled from p(T ), and meta-performance
is measured by the model’s performance after learning from K samples.
•Meta-RegGNN algorithm. The aim of our Meta-RegGNN is to prepare

our regression GNN model for fast adaptation. Thus, the GNN might learn
internal features of functinal brain connectomes that are relevant to all tasks in
p(T ). For that, we first find the RegGNN model parameters that are responsive
to modifications in the given task, so that small modifications in the parameters
produce large improvements on the loss function of any task from p(T ). Let us
consider our regression GNN model represented by a parametrized function fΘ
with parameters Θ. The latter is updated to Θ′ when adapting to a new task
Ti. The updated Θ is defined as:

Θ′i = Θ − γ∇ΘLTi(fΘ), (2)

where γ represents the step size hyperparameter. The meta-optimization is
achieved over the regression GNN model parameters Θ, while the objective is
calculated using the updated regression GNN model parameters Θ’. Indeed, our
Meta-RegGNN aims to optimize the model parameters so that one or a small
number of gradient steps on a new task generate effective behavior.

The meta-optimization through tasks is conceived in order to update the
regression GNN model parameters Θ as follows:

Θ = Θ − η∇Θ
∑

Ti∼p(T )

LTi(fΘ′
i
) (3)

where η presents the meta-step size. The meta-training algorithm is outlined in
Algorithm 1.
• Regression GNN. To properly take into account the graph structure of

the brain connectomes and effectively model the correlation between data sam-
ples, we used a regression GNN network that consists of two graph convolution
layers and a fully connected layer (Fig. 1). Given a correlation matrix of a con-
nectome C is symmetric, that can have zero or positive eigenvalues, we may
simply regularize it to be symmetric positive definite according to:

I ′ = C + µI, (4)

where I represents the identity matrix and µ > 0 [22]. In fact, since positive
correlations have been demonstrated to be more important in analyzing brain



Algorithm 1 Meta-training regression GNN algorithm.

Require: p(T)= Distribution over tasks
Require: γ, η: Step size hyperparameters
1: Initialize Θ randomly
2: while not done do
3: Sample tasks batch Ti ∼ p(T )
4: foreach T i do
5: Randomly choose k samples D = {g(i), s(i)} from T i
6: Evaluate ∇ΘLTi(fΘ) with respect to k using D and LTi in Equation 1
7: Compute adapted parameters Θ′

i according to Equation 2

8: Update Θ according to Equation 3 using LTi in Equation 1

9: end

networks [23], all negative eigenvalues are set to zero to train our regression GNN
[7]. Thus, regression GNN receives the regularized positive adjacency matrix I ′

of a connectome and predicts the corresponding behavioral scores using graph
convolutions. This reduces the size of the brain connectomes and learns an em-
bedding for the brain connectomes. After the first graph convolution operation,
we add a dropout layer for regularization. Finally, the obtained embedding goes
through a fully connected layer which produces a scalar output (IQ scores).

3 Experimental results and discussion

Evaluation dataset. To highlight the utility of our proposed Meta-RegGNN,
we evaluated our method on subjects drawn from the Autism Brain Imaging
Data Exchange (ABIDE) preprocessed dataset [24]. The preprocessed datasets
are available online 1. They contain two cohorts: ASD and NT. The ASD cohort
comprises 202 patients (with mean age = (15.4 ± 3.8)), while the NT cohort
includes 226 subjects (with mean age = (15 ± 3.6)). VIQ and FIQ scores in the
ASD cohort have means 106.102 ± 15.045 and 103.005 ± 16.874 whereas VIQ
and FIQ scores in the NT cohort have means 111.573 ± 12.056 and 112.787 ±
12.018, respectively. The connectomes of the brain were derived from resting-
state fMRI using the parcellation from [25] into 116 ROIs.

Parameter settings. To evaluate the generazabilty and the effectiveness
of our Meta-RegGNN, we used 3-fold cross-validation on ASD and NT cohorts
for VIQ and FIQ prediction. Based on empirical observations, we trained our
proposed method for 300 epochs with a weight decay at 0.0005 and a learning
rate of 0.001. The dropout rate was set to 0.2. For the meta-training, we used one
gradient update with K=5 shots with a step size γ = 10−7 and employed Adam
optimizer as meta-optimizer [26]. For all methods, we state the Mean Absolute
Error (MAE) and the Root Mean Squared Error (RMSE).

Evaluation and comparison method. To benchmark our method, we
chose the first and unique deep learning method proposed in the literature that

1 http://preprocessed-connectomes-project.org/abide/



Fig. 2: Cognitive scores prediction results using different evaluation metrics on
the NT and ASD cohorts.

uses GNN to predict cognitive scores [7] without the proposed sample selection
step. The results for the ASD and NT cohorts for FIQ and VIQ are shown in
Fig. 2. These results present the average of more than 40 random repetitions of
our 3-fold cross-validation.

Compared to the NT cohort, the ASD cohort achieved the worst results across
all methods. The difficulty of predicting behavioral scores in the ASD cohort may
be explained by the high inter-subject heterogeneity [27]. A general improvement
by our Meta-RegGNN is noticed in all learning tasks. Our method dealt with
the correlation of functional brain connectomes and combined the prior knowl-
edge with automatically learned similarity. Therefore, a high improvement in the
ASD cohort is recorded that can be explained by the generalizability improve-
ment. Even with the repeated randomized runs, our Meta-RegGNN displayed
the lowest prediction error across both cohorts and metrics, which indicates the
stability of our model under data distribution shifts. The best results in terms
of MAE and RMSE are noted in the NT cohort which may be explained by the
similarity between neurotypical brains.

Compared with previous studies on predicting behavioral scores, our model
achieved a good trade-off between flexibility and performance requiring fewer
samples for training. Moreover, it can deal with test samples that are different
from those of the training samples (brains diagnosed with Alzheimer’s Disease for
example). Despite its multiple advantages, this prime work needs to be further
validated on other datasets and different brain connectivity classes.

4 Conclusion

In this paper, we proposed the first GNN for regression through meta-learning
namely Meta-RegGNN, for behavioral score prediction from brain connectomes.
Our network nicely provides an efficient solution which handles the the topolog-
ical properties of functional brain connectomes. Furthermore, it ensures model



flexibility and enables inductive learning, thereby enhancing the model generaliz-
ability to unseen data. Our key contributions consist in designing a graph neural
network for regression that predicts behavioral scores and training our GNN via
model agnostic meta-learning. Our proposed method outperforms state-of-the-
art methods in terms of prediction results. In our future work, we will investigate
the explainability aspect of our Meta-RegGNN in order to identify connectivity
biomarkers distinguishing between typical and atypical brain states.

5 Supplementary material

We provide three supplementary items for reproducible and open science:

1. A 7-mn YouTube video explaining how our framework works on BASIRA
YouTube channel at https://youtu.be/MS6oXzr1NNg.

2. Meta-RegGNN code in Python on GitHub at https://github.com/basiralab/
Meta-RegGNN.

3. A GitHub video code demo on BASIRA YouTube channel at https://

youtu.be/Fl7DXVEWA8g.
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