Texts in Computational
Science and Engineering

25

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose

Tamar Schlick

More information about this series at http://www.springer.com/series/5151

http://www.springer.com/series/5151

Einar Smith

Introduction to the Tools
of Scientific Computing

@ Springer

Einar Smith

Fraunhofer Institut fiir Algorithmen
und Wissenschaftliches Rechnen SCAI
Sankt Augustin, Germany

Institut fir Numerische Simulation
Rheinische Friedrich-Wilhelms-Universitdt Bonn
Bonn, Germany

ISSN 1611-0994 ISSN 2197-179X (electronic)
Texts in Computational Science and Engineering
ISBN 978-3-030-60807-1 ISBN 978-3-030-60808-8 (eBook)

https://doi.org/10.1007/978-3-030-60808-8
Mathematics Subject Classification (2010): 97N80

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-60808-8

Preface

This book provides an introduction to common programming tools and methods in
numerical mathematics and scientific computing. In contrast to widespread standard
approaches, it does not focus on a specific language, but rather aims to explain the
central underlying concepts.

In general, new concepts are first introduced in the particularly user-friendly Python
language and then transferred and expanded in various scientific programming en-
vironments from C / C ++, Julia and MATLAB to Maple.

This approach can best be illustrated with a recurring leitmotif: the numerical ap-
proximation of differential equations.

In the basic Python chapter, we introduce the function concept and illustrate how
derivatives can be approximated using discrete difference quotients.

In the chapter on Scientific Python, we expand this idea in the approximation of
ordinary differential equations. In comparison we show how the same sample prob-
lems can be solved with integrated solver operators.

We then extend the manual approximation methods to partial equations and their
solution using the finite difference method. To prepare for this, the necessary linear
algebra algorithms and matrix constructions, such as Poisson matrices, are devel-
oped along the way. In particular, we show that the use of sparse matrices leads to a
significant acceleration of the computation.

The chapter on Symbolic Python shows how symbolic solvers can facilitate or re-
place the numerical solution process.

In addition, in this symbolic context we can easily explain the Galerkin method
and thus pave the way for the introduction of the finite element method later.

In the C chapter we show how the sparse matrices that were already used in Python
can be generated by machine-oriented, low-level programming using pointer con-
structions to implement linked lists.

The Julia chapter illustrates how the fundamental programming techniques dis-
cussed so far can be formulated in a promising newcomer to mathematical program-
ming, which aims to combine the elegance of Python with the performance of C/C++.

vi Preface

We then show how corresponding ideas are implemented in commercial program-
ming environments such as MATLAB and Maple.

In the Maple chapter, we expand the Galerkin method introduced in Python to the
finite element method. In this way the reader is already well prepared for the general
discussion in the FEniCS chapter.

In the chapters on distributed programming we show how classical sequential
methods can be adopted to distributed and parallel computation, which is becoming
increasingly important in the recent machine development, where multicore proces-
sors have found their way even into standard home computers. We discuss different
approaches in Python, C/C++ and Julia.

The book closes with an advanced programming topic, the FEniCS project, which
combines many of the previously developed techniques for the automated solution
of partial differential equations using the finite element method.

The book is based on material from courses held by the author in the Department of
Mathematics at the University of Bonn. Originally primarily intended for students of
mathematics - at both bachelor and master level - the courses also attracted partic-
ipants from other fields, including computer science, physics and geology.

The book is primarily aimed at students of mathematics and disciplines in which
mathematical methods play an important role. A certain level of mathematical matu-
rity is recommended. Technically, however, only very basic ideas from linear algebra
and analysis are assumed, so that the book can also be read by anyone with a solid
high-school education in mathematics who wants to understand how mathematical
algorithms can be performed by digital computers. Programming experience is not
required.

The book is written in such a way that it can also serve as a text for private self-study.
With the exception of a few advanced examples in the MATLAB and Maple chapters,
you can run all programs directly on your home computer, based on free open source
programming environments.

The book can therefore also serve as a repetition and to improve the understanding
of basic numerical algorithms.

Acknowledgments

The author wishes to thank Helmut Griebel and Marc Alexander Schweitzer from the
Institute for Numerical Simulation at the University of Bonn for the opportunity to
hold the programming courses and for their help in contacting Springer Verlag.

I would like to thank the course participants for their lively collaboration and crit-
ical comments, which have helped to transform the loose lecture notes into a com-
prehensive presentation. In particular, I would like to thank Angelina Steffens for
proofreading the manuscript.

Preface vii

Very useful was also the correspondence with Chris Rackauckas, the author of the
Julia differential equation package in Chapter 8, and Lisandro Dalcin, the author of
the Python MPI implementation in Chapter 11.

I am also grateful for helpful suggestions from the anonymous referees.

My special thanks go to Martin Peters, Ruth Allewelt and Leonie Kunz from Springer-
Verlag for their support and encouragement while preparing the book.

Bonn, September 2020 Einar Smith

Contents

1

Introduction i e 1

Part I Background

2

Mathematical Foundations of Programming 9
2.1 A Simple Machine Model i, 9
2.2 Digital Computers.oviuiuiiiiiiiiiiiii i 14

PartII Core Languages

3

Python, the Fundamentals............... 19
3.1 PythonInterpreterc.ouiueiiuinrineininnenennens 20
3.2 Elementary Data TYPesoueiniintineiniinienennennens 21
3.3 Variables and Value Assignments........... ..., 25
3.4 Control Structures. ...t 26
3.5 Collection Types: Lists, Tuples, Dictionaries and Sets 30
36 Functionsoo i 34
3.7 String Formattingo o 38
3.8 Writingand Reading Filesl 39
3.9 Object-Oriented Programming and Classes...................... 42
310 EXErCisesooiiini i 47
Python in Scientific Computation................. 51
41 NumPy ... 51
4.2 Conjugate Gradient........... o i 58
A3 SCPY 60
44 Linear Algebra........ ... 60
4.5 Graphics with Matplotlib........... ... i i 68
4.6 Nonlinear Equations, Optimization............................. 70
4.7 Numerical Integration, Ordinary Differential Equations 73
4.8 Partial Differential Equations, 81

Contents

4.9 Round oft: Random Numbers............c.cooiiiiiiiiiie..., 87
4.10 EXEICISES ...\ 88
Python in Computer Algebra 93
5.1 Symbolic Calculation, Numbers......... ..., 93
52 Equation Systems i 99
5.3 Linear Algebra...... ...t 101
54 Calculus ..o 106
5.5 Ordinary Differential Equations.................... 108
5.6 Galerkin Method......... ... i 109
5.7 EXEICISES ..\t 113
TheCLanguage it 115
6.1 Basics...... ... 116
6.2 Control Structures: Branches, Loopst 118
6.3 Functions 121
6.4 ATTAYS ..ottt 122
6.5 Pointers........... ... 125
6.6 SEIUCTUIES ...\ttt ettt 128
6.7 Files, Inputand Output ...ttt 131
6.8 ConCluSIONottt 132
The C++Language.ttt 133
7.1 Transferfrom C..... ... 133
7.2 BasicS. ... 134
7.3 Lambda EXpressions..............eeuuiiiieinieeniieanneennn. 136
74 DataTypevector ...t 137
7.5 Reference Operator..............coviuiuiniinininiinaninnn... 139
7.6 ClaSSeS . .. u ettt ettt e 140
7.7 HeaderFilest 144
7.8 Summaryand Outlook........... ... i 145
7.9 EXEICISESot 146
Julia . o 149
8.1 Basics...... oo 149
8.2 Control Structures: Branching, Loops, 152
83 Functionsciiiiiiiiiiiiiii 154
8.4 Collection TYPes . ..o .vvntit it 158
8.5 Composite Types. ... 162
8.6 Linear Algebra...... ..ot 165
8.7 Ordinary Differential Equations.................. ...y 170
8.8 Partial Differential Equationsc.coiiiiiiiiiiinen, 175
8.9 WorkingwithFiles i i 177

8.10 EXeICiSeS ..ottt e 179

Contents Xi

Part III Commercial Computing Environments

9 MATLAB .. 185
9.1 BasiCS. ...t 185
9.2 Vectorsand Matriceseeiuuiiieinneenineenneennn. 187
9.3 Control Structures: Branching, Loops 192
9.4 Functionsc.c.eiiiiiiiiiiiiiiiiiiiiiiiiii i 194
9.5 M-Files ..ot 196
9.6 Linear Algebra........ ..o 199
9.7 Ordinary Differential Equations................................ 201
9.8 Partial Differential Equationsc.coiiiiiiiiiienen, 205
9.9 EXEICISES .. \vvii i 207

10 Maple ... e 211
TO.1 BasiCs. .ttt 211
10.2 Functions ... 213
10.3 Linear Algebrat 216
104 Calculus ... 221
10.5 Interpolation with Spline Functions 224
10.6 Differential Equations.ottt 227
10.7 Galerkin Method 229
10.8 Finite Element Method i, 230
10.9 EXEICISes . ..ot 233

Part IV Distributed Computing

11 A Python Approach to Message Passing............................. 239
11.1 Introduction to the Message Passing Interface.................... 239
11.2 Communicating Processeso, 241
11.3 Integral ApproxXimationo.ueuuinrinuennennennennn. 246
11.4 Vector Dot Product...........cooiiiiiiiiiiiiiiiiiine, 248
11.5 Laplace EQUAtionscouiuutmuitiniii i 251
11.6 Conjugate Gradient Method, 254
11.7 EXEICISES . 256

12 Parallel Computing in C/C++......ooiiiiiii i, 259
12.1 Integral Approximation of 71, 260
12.2 Scatterand Gather.. ...t 262
12.3 Conjugate Gradient.o.uvuuitiiininnnnnenn.. 263
12.4 Shared Memory Programmingc..cooiiuiiinno.... 265
12.5 Parallelizing Loopsc.ooviiiii i 268
12.6 Integral Approximation of 71cooviiiiii ... 271
12.7 Parallelized Function Modules, 271
12.8 Hybrid Message Passing and Shared Memory Programming 273
12,9 EXercCises ...t 274

xii Contents

13 Distributed ProcessinginJulia.............. L. 277
13.1 Point-to-Point Communication, 278
13.2 Distributed Loops, Reductionsc..ooiiiiiii.... 278
13.3 Monte Carlo Method i 279
13.4 Fibonacci Function.............. ... i 281
13.5 Shared Arrays. ...t 281
13.6 Distributed Arraysouiiiiiiiiii i 283
13.7 EXEICISES .\ 286

Part V Specialized Programming Environments

14 Automated Solution of PDEs with FEniCS 289
14.1 Finite Element Method, One-Dimensional 290
14.2 FEniCS Implementation, One-Dimensional 293
14.3 Poisson Equationso, 296
14.4 Time-Dependent Poisson Equation............., 300
14.5 Nonlinear EQUations.ouuiitiiiinniniineineennenn.. 304
14.6 Neumann Boundary Conditions 308
14.7 Stokes EQUationcoueiiiiiiiiniiiii i 311
14.8 Adaptive Mesh Refinementc.ccoiiiiininen... 316
14.9 User Defined Meshes ..., 318
14.10Final Note: Parallel Processing in FEniCS 323
T4.11EXEICISES . .o oo i it 323
References.oouoiu it e 327
IndexX . ..o 329
Subjects and Persons.ouuii i e 329
Python. . ..o 332
Gt 337
JULIA .o 339
MATLAB .ot 342

	Preface
	Acknowledgments

	Contents

