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Preface

This book provides an introduction to common programming tools and methods in
numerical mathematics and scientific computing. In contrast to widespread standard
approaches, it does not focus on a specific language, but rather aims to explain the
central underlying concepts.

In general, new concepts are first introduced in the particularly user-friendly Python
language and then transferred and expanded in various scientific programming en-
vironments from C / C ++, Julia and MATLAB to Maple.

This approach can best be illustrated with a recurring leitmotif: the numerical ap-
proximation of differential equations.

In the basic Python chapter, we introduce the function concept and illustrate how
derivatives can be approximated using discrete difference quotients.

In the chapter on Scientific Python, we expand this idea in the approximation of
ordinary differential equations. In comparison we show how the same sample prob-
lems can be solved with integrated solver operators.

We then extend the manual approximation methods to partial equations and their
solution using the finite difference method. To prepare for this, the necessary linear
algebra algorithms and matrix constructions, such as Poisson matrices, are devel-
oped along the way. In particular, we show that the use of sparse matrices leads to a
significant acceleration of the computation.

The chapter on Symbolic Python shows how symbolic solvers can facilitate or re-
place the numerical solution process.

In addition, in this symbolic context we can easily explain the Galerkin method
and thus pave the way for the introduction of the finite element method later.

In the C chapter we show how the sparse matrices that were already used in Python
can be generated by machine-oriented, low-level programming using pointer con-
structions to implement linked lists.

The Julia chapter illustrates how the fundamental programming techniques dis-
cussed so far can be formulated in a promising newcomer to mathematical program-
ming, which aims to combine the elegance of Python with the performance of C/C++.
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We then show how corresponding ideas are implemented in commercial program-
ming environments such as MATLAB and Maple.

In the Maple chapter, we expand the Galerkin method introduced in Python to the
finite element method. In this way the reader is already well prepared for the general
discussion in the FEniCS chapter.

In the chapters on distributed programming we show how classical sequential
methods can be adopted to distributed and parallel computation, which is becoming
increasingly important in the recent machine development, where multicore proces-
sors have found their way even into standard home computers. We discuss different
approaches in Python, C/C++ and Julia.

The book closes with an advanced programming topic, the FEniCS project, which
combines many of the previously developed techniques for the automated solution
of partial differential equations using the finite element method.

The book is based on material from courses held by the author in the Department of
Mathematics at the University of Bonn. Originally primarily intended for students of
mathematics - at both bachelor and master level - the courses also attracted partic-
ipants from other fields, including computer science, physics and geology.

The book is primarily aimed at students of mathematics and disciplines in which
mathematical methods play an important role. A certain level of mathematical matu-
rity is recommended. Technically, however, only very basic ideas from linear algebra
and analysis are assumed, so that the book can also be read by anyone with a solid
high-school education in mathematics who wants to understand how mathematical
algorithms can be performed by digital computers. Programming experience is not
required.

The book is written in such a way that it can also serve as a text for private self-study.
With the exception of a few advanced examples in the MATLAB and Maple chapters,
you can run all programs directly on your home computer, based on free open source
programming environments.

The book can therefore also serve as a repetition and to improve the understanding
of basic numerical algorithms.
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