Skip to main content

Attention-Driven Multi-channel Deformable Registration of Structural and Microstructural Neonatal Data

  • Conference paper
  • First Online:
Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2022)

Abstract

Image registration of structural and microstructural data allows accurate alignment of anatomical and diffusion channels. However, existing techniques employ simple fusion-based approaches, which use a global weight for each modality, or empirically-driven approaches, which rely on pre-calculated local certainty maps. Here, we present a novel attention-based deep learning deformable image registration solution for aligning multi-channel neonatal MRI data. We learn optimal attention maps to weigh each modality-specific velocity field in a spatially varying fashion, thus allowing for local fusion of structural and microstructural images. We evaluate our proposed method on registrations of 30 multi-channel neonatal MRI to a standard structural and microstructural atlas, and compare it against models trained without the use of attention maps on either single or both modalities. We show that by combining the two channels through attention-driven image registration, we take full advantage of the two complementary modalities, and achieve the best overall alignment of both structural and microstructural data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    developingconnectome.org.

  2. 2.

    gin.g-node.org/alenaullauus/4d_multi-channel_neonatal_brain_mri_atlas.

References

  1. Avants, B., Duda, J.T., Zhang, H., Gee, J.C.: Multivariate normalization with symmetric diffeomorphisms for multivariate studies. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 359–366. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75757-3_44

    Chapter  Google Scholar 

  2. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  4. Christiaens, D., et al.: Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI. Neuroimage 225, 117437 (2021)

    Article  Google Scholar 

  5. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  6. Edwards, A.D., et al.: The developing human connectome project neonatal data release. Front. Neurosci. 16, 886772 (2022)

    Article  Google Scholar 

  7. Forsberg, D., Rathi, Y., Bouix, S., Wassermann, D., Knutsson, H., Westin, C.-F.: Improving registration using multi-channel diffeomorphic demons combined with certainty maps. In: Liu, T., Shen, D., Ibanez, L., Tao, X. (eds.) MBIA 2011. LNCS, vol. 7012, pp. 19–26. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24446-9_3

    Chapter  Google Scholar 

  8. Grigorescu, I., et al.: Diffusion tensor driven image registration: a deep learning approach. In: Špiclin, Ž, McClelland, J., Kybic, J., Goksel, O. (eds.) WBIR 2020. LNCS, vol. 12120, pp. 131–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50120-4_13

    Chapter  Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Irfanoglu, M.O., et al.: DR-TAMAS: diffeomorphic registration for tensor accurate alignment of anatomical structures. Neuroimage 132, 439–454 (2016)

    Article  Google Scholar 

  11. Kingma, D.P., Rezende, D.J., Mohamed, S., Welling, M.: Semi-supervised learning with deep generative models (2014). arXiv:1406.5298

  12. Krebs, J., Mansi, T., Mailhé, B., Ayache, N., Delingette, H.: Unsupervised probabilistic deformation modeling for robust diffeomorphic registration. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 101–109. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_12

    Chapter  Google Scholar 

  13. Lowekamp, B., Chen, D., Ibanez, L., Blezek, D.: The design of SimpleiTK. Front. Neuroinform. 7, 45 (2013)

    Article  Google Scholar 

  14. Makropoulos, A., et al.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33(9), 1818–1831 (2014)

    Article  Google Scholar 

  15. Pérez-García, F., Sparks, R., Ourselin, S.: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Programs Biomed. 208, 106236 (2021)

    Article  Google Scholar 

  16. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  17. Smith, L.N.: Cyclical learning rates for training neural networks (2015)

    Google Scholar 

  18. Tournier, J.D., et al.: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)

    Article  Google Scholar 

  19. Uus, A., et al.: Multi-channel 4D parametrized atlas of macro- and microstructural neonatal brain development. Front. Neurosci. 15, 721 (2021)

    Article  Google Scholar 

  20. Uus, A., et al.: Multi-channel registration for diffusion MRI: longitudinal analysis for the neonatal brain. In: Špiclin, Ž, McClelland, J., Kybic, J., Goksel, O. (eds.) WBIR 2020. LNCS, vol. 12120, pp. 111–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50120-4_11

    Chapter  Google Scholar 

  21. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  22. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network (2015). arXiv:1505.00853

  23. Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med. Image Anal. 10(5), 764–785 (2006). The Eighth International Conference on Medical Imaging and Computer Assisted Intervention - MICCAI 2005

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Medical Sciences Springboard Award [SBF004\(\backslash \)1040], Medical Research Council (Grant no. [MR/K006355/1]), European Research Council under the European Union’s Seventh Framework Programme [FP7/20072013]/ERC grant agreement no. 319456 dHCP project, the EPSRC Research Council as part of the EPSRC DTP (grant Ref: [EP/R513064/1]), the Wellcome/EPSRC Centre for Medical Engineering at King’s College London [WT 203148/Z/16/Z], the NIHR Clinical Research Facility (CRF) at Guy’s and St Thomas’, and by the National Institute for Health Research Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Grigorescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grigorescu, I. et al. (2022). Attention-Driven Multi-channel Deformable Registration of Structural and Microstructural Neonatal Data. In: Licandro, R., Melbourne, A., Abaci Turk, E., Macgowan, C., Hutter, J. (eds) Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2022. Lecture Notes in Computer Science, vol 13575. Springer, Cham. https://doi.org/10.1007/978-3-031-17117-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17117-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17116-1

  • Online ISBN: 978-3-031-17117-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics