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Abstract. Ghosh, Kamara and Tamassia (ASIA CCS 2021) presented
a Graph Encryption Scheme supporting shortest path queries. We show
how to perform a query recovery attack against this GKT scheme when
the adversary is given the original graph together with the leakage of
certain subsets of queries. Our attack falls within the security model used
by Ghosh et al., and is the first targeting schemes supporting shortest
path queries. Our attack uses classical graph algorithms to compute the
canonical names of the single-destination shortest path spanning trees
of the underlying graph and uses these canonical names to pre-compute
the set of candidate queries that match each response. Then, when all
shortest path queries to a single node have been observed, the canonical
names for the corresponding query tree are computed and the responses
are matched to the candidate queries from the offline phase. The output
is guaranteed to contain the correct query. For a graph on n vertices,
our attack runs in time O(n3) and matches the time complexity of the
GKT scheme’s setup. We evaluate the attack’s performance using the
real world datasets used in the original paper and show that as many as
21.9% of the queries can be uniquely recovered and as many as 50% of
the queries result in sets of only three candidates.

Keywords: Encrypted databases · Leakage-abuse attacks · Cryptanalysis

1 Introduction

Graphs are a powerful tool that can be used to model many problems related
to social networks, biological networks, geographic relationships, etc. Plaintext
graph database systems have already received much attention in both industry
(e.g. Amazon Neptune [2], Facebook TAO [23], Neo4j [18]) and academia (e.g.
GraphLab [15], Trinity [22]). With the rise of data storage outsourcing, there is an
increased interest in Graph Encryption Schemes (GES). A GES enables a client
to encrypt a graph, outsource the storage of the encrypted graph to an untrusted
server, and finally to make certain types of graph queries to the server. Current
GES typically support one type of query, e.g. adjacency queries [6], approximate
shortest distance queries [16], and exact shortest path queries [12,24].
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In this paper, we analyse the security of the GES of Ghosh, Kamara and
Tamassia [12] from ASIA CCS 2021. We refer to this scheme henceforth as the
GKT scheme . The GKT scheme encrypts a graph G such that when a shortest
path query (u, v) is issued for some vertices u and v of G, the server returns
information allowing the client to quickly recover the shortest path between u
and v in G. The scheme pre-computes a matrix called the SP-matrix from
which shortest paths can be efficiently computed, and then creates an encrypted
version of this matrix which we refer to as the encrypted database (EDB). EDB
is sent to the server. At query time, the client computes a search token for the
query (u, v); this token is sent to the server and is used to start a sequence of
look-ups to EDB. Each look-up results in a new token and a ciphertext encrypting
the next vertex on the shortest path from u to v. The concatenation of these
ciphertexts is returned to the client.

The GKT scheme [12] is very elegant and efficient. For a graph on n vertices,
computing the SP-matrix takes time O(n3) and dominates the setup time. Build-
ing a search token involves computing a pseudo-random function. Processing a
query (u, v) at the server requires t look-ups in EDB, where t is the length of the
shortest path from u to v. Importantly, thanks to the design of the scheme, query
processing can be done without interaction with the client, except to receive the
initial search token and to return the result. This results in EDB revealing at
query time the sequence of labels (tokens) needed for the recursive lookup and
the sequence of (encrypted) vertices that is eventually returned to the client.

We exploit the query leakage of the GKT scheme to mount a query recovery
(QR) attack against the scheme. Our attack can be mounted by the honest-but-
curious server and requires knowledge of the graph G. This may appear to be a
strong requirement, but is in fact weaker than is permitted in the security model
of [12], where the adversary can even choose G. Assuming that the graph G is
public is a standard assumption for many schemes that support private graph
queries [12,17,21]. This model is perfect for routing and navigation systems in
which the road network may easily be obtained online via Google Maps or Waze,
but the client may wish to keep its queries private.

Our attack has two phases. First, it has an offline, pre-processing phase that
is carried out on the graph G. In this phase, we extract from G a plaintext
description of all its shortest path trees. We then process these trees and compute
candidate queries for each query using each tree’s canonical labels. A canonical
label is an encoding of a graph that can be used to decide when graphs are
isomorphic; a canonical label of a rooted tree can be computed efficiently using
the AHU algorithm [1]. This concludes the offline phase of the attack. Its time
complexity is O(n3) where n is the number of vertices in G, and matches the run
time of our overall attack and the run time of the GKT scheme’s setup. Both
our attack and the setup are lower bounded by the time to compute the all-pairs
shortest paths, which takes O(n3) time for general graphs [11].

The second phase of the attack is online: As queries are issued, the adversary
constructs a second set of trees that correspond to the sequence of labels computed
by the server when processing each query i.e. the per-query leakage of the scheme.
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This description uses the labels of EDB (which are search tokens) as vertices; two
labels are connected if the first points to the second in EDB. When an entire tree
has been constructed, the adversary can then run the AHU algorithm again to
compute the canonical names associated with this query tree . An entire query
tree Q can be built when all queries to a particular destination have been issued.
This is realistic in a routing scenario where many trips may share a common
popular destination (e.g. an airport, school, or distribution center).

By correctness of the scheme, there exists a collection of isomorphisms mapping
Q to at least one tree computed in the offline phase. Such isomorphisms also
map shortest paths to shortest paths. We thus perform a matching between the
paths in the trees from the online phase to the trees in the offline phase. This
can be done efficiently using a modified AHU algorithm [1] that we develop and
which decides when one path can be mapped to another by an isomorphism of
trees. This yields two look-up tables which, when composed, map each path in
the first set of trees to a set of candidate paths in the second set. We use the
search token of the queries associated with Q to look up the possible candidate
queries in the tables computed in the online phase, and output them. The output
is guaranteed to contain the correct query.

In general, the leakage from a query can be consistent with many candidates,
and the correct candidate cannot be uniquely determined. Graph theoretically,
this is because there can be many possible isomorphisms between pairs of trees
in our two sets. If we consider the chosen graph setting, it is easy to construct
a graph G where, given any query tree Q of G, its isomorphism is uniquely
determined and there is a unique candidate for each query of Q, i.e. we can
achieve what we call full query recovery (FQR). In other cases, the query
leakage may result in one or only a few possible query candidates, which may
be damaging in practice. In order to explore the effectiveness of our attack, we
support it with experiments on 8 real-world graphs (6 of which were used in [12])
and on random graphs. Our results show that for the given real-world graphs,
as many as 21.9 % of all queries can be uniquely recovered and as many as half
of all queries can be mapped to at most 3 candidate queries. Our experimental
results show that QR tends to result in smaller sets of candidate queries when
the graphs are less dense, and that dense graphs tend to have more symmetries.

We summarize our core contributions as follows:

1. We present the first attack against a GES that supports shortest path queries,
and the second known attack against GESs, to our knowledge.

2. We use the GKT scheme’s leakage to mount an efficient query recovery attack
against the scheme. We explain how, for our real world datasets, the set of
all query trees can be recovered with as few as 68.1% of the queries.

3. We make use of the classical AHU algorithm for the graph isomorphism
problem for rooted trees and develop a new algorithm for deciding when a
path in one tree can be mapped onto a path in another under an isomorphism.

4. We evaluate our attack against real-world datasets and random graphs.
5. We motivate the need for detailed cryptanalysis of GESs.

All proofs can be found in the full version [10].
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1.1 Prior and Related Work

Chase and Kamara present the first graph encryption scheme that supports both
adjacency queries and focused subgraph queries [6]. Poh et al. give a scheme for
encrypting conceptual graphs [19]. Meng et al. present three schemes that support
approximate shortest path queries on encrypted graphs, each with a slightly
different leakage profile [16]. To reduce storage overhead, their solution leverages
sketch-based oracles that select seed vertices and store the exact shortest distance
from all vertices to the seeds; these distances are then used to estimate shortest
paths in the graph. Ghosh et al. [12] and Wang et al. [24] present schemes that
support exact shortest path queries on encrypted graphs. Other solutions for
privacy preserving graph structures use other techniques (e.g. [20,25]), however,
these approaches have different security goals.

The leakage of GESs was first analyzed by Goetschmann [13]. The author
considers schemes that support approximate shortest path queries that use sketch-
based distance oracles (e.g. [16]), presents two methods for estimating distances
between nodes, and gives a query recovery attack that aims to recover the vertices
in an encrypted query.

2 Preliminaries

Notation. For some integer n, let [n] = {1, 2, . . . , n}. We denote concatenation
of two strings a and b as a||b.
Graphs. A graph is a pair G = (V,E) consisting of a vertex set V of size n and
an edge set E of size m. A graph is directed if the edges specify a direction from
one vertex to another. Two vertices u, v ∈ V are connected if there exists a
path from u to v in G. In this paper, we assume that all graphs G are connected
for simplicity of presentation. However our attack and its constituent algorithms
directly apply to multi-component graphs too.

A tree is a connected, acyclic graph. A rooted tree T = (V,E, r) is a
tree in which one vertex r has been designated the root. For some rooted tree
T = (V,E, r) and vertex v ∈ V we denote by T [v] the subtree of T induced by v
and all its descendants.

Given a graph G = (V,E) and some vertex v ∈ V , we define a single-
destination shortest path (SDSP) tree for v to be a directed spanning tree
T such that T is a subgraph of G, v is the only sink in T , and each path from
u ∈ V \ {v} to v in T is a shortest path from u to v in G. An example of an
SDSP tree can be found in Figure 1b.

We also define two binary options on graphs. Given two graphs G = (V,E) and
H = (V ′, E′), the union of G and H is defined as G∪H = (V ∪V ′, E∪E′). Given
a graph G = (V,E) and a subgraph H = (V ′, E′) such that V ′ ⊆ V,E′ ⊆ E, the
graph subtraction of H from G is defined as G \H = (V \ V ′, E \ E′).
Dictionaries. A dictionary D is a map from some label space L to a value
space V. If lab 7→ val, then we write D[lab] = val.
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Hash functions. A set H of functions U → [M ] is a universal hash function
family if, for every distinct x, y ∈ U the hash function family H satisfies the
following constraint: Prh←H [h(x) = h(y)] ≤ 1/M.

2.1 Graph Isomorphisms

Our approach will make heavy use of graph isomorphisms.

Definition 1. An isomorphism of graphs G1 = (V1, E1) and G2 = (V2, E2) is
a bijection between vertex sets φ : V1 → V2 such that for all u, v ∈ V1, (u, v) ∈ E1

if and only if (φ(u), φ(v)) ∈ E2. If such an isomorphism exists, we write G1
∼= G2.

Definition 2. An isomorphism of rooted trees T1 = (V1, E1, r1) and T2 =
(V2, E2, r2) is an isomorphism φ from T1 to T2 (as graphs) such that φ(r1) = r2.

2.2 Canonical Names

A canonical name Name(·) is an encoding mapping graphs to bit-strings such
that, for any two graphs H and G, Name(G) = Name(H) if and only if G ∼= H.
For rooted trees Aho, Hopcraft, and Ullman (AHU) [1] describe an algorithm
for computing a specific canonical name in O(n) time. We refer to this as the
canonical name and describe it next.
The AHU Algorithm. We use a modified AHU algorithm, which we denote
as ComputeNames, to compute the canonical names of rooted trees (and their
subtrees) and determine if they are isomorphic. ComputeNames takes as input
a rooted tree T = (V,E, r), a vertex v ∈ V , and an empty dictionary Names.
It outputs the canonical name of the subtree T [v] (which we also refer to as
the canonical name of v) and a dictionary Names that maps each descendent u
of v to the canonical name of T [u]. The algorithm proceeds from the leaves to
the root. It assigns the name ‘10’ to all leaves of the tree. It then recursively
visits each descendent u of v and assigns u a name by sorting the names of its
children in increasing lexicographic order, concatenating them into an intermedi-
ate name children_names and assigning the name ‘1||children_names||0’ to u
(see Figure 1b for an example). The canonical name of T , Name(T ), is the name
assigned to the root r. Pseudocode for the AHU algorithm can be found in the
full version [10].

2.3 Threat Model and Assumptions

We consider a passive, persistent, honest-but-curious adversary that
has compromised the server and can observe the initial search tokens issued, all
subsequent search tokens revealed during query processing, and the responses.

We assume that the adversary knows the graph G that has been encrypted
to create EDB. This is a strong assumption, but fits within the security model
used in [12] (where G can even be chosen) and is realistic in many navigation
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scenarios. We further assume that the adversary sees enough queries to construct
at least one query tree. We emphasize that computing a complete query tree does
not require observing all possible queries to the root; observing just the queries
starting at the leaf nodes of the tree is sufficient for constructing a query tree.
In SDSP trees with few leaves, only a small fraction of queries is thus needed.
We assume that the all-pairs shortest path algorithm used in constructing the
SP-matrix from G during setup is deterministic and that it is known to the
adversary. Such an assumption is reasonable since many shortest path algorithms
are deterministic, including Floyd-Warshall [11].

3 The GKT Graph Encryption Scheme

3.1 GKT Scheme Overview

The GKT scheme supports single pair shortest path (SPSP) queries. The
graphs may be directed or undirected, and the edges may be weighted or un-
weighted. An SPSP query on a graph G = (V,E) takes as input a pair of
vertices (u, v) ∈ V × V , and outputs a path pu,v = (u,w1, . . . , wℓ, v) such that
(u,w1), (w1, w2), . . . , (wt−1, v) ∈ E and pu,v is of minimal length.

SPSP queries may be answered using a number of different data structures.
The GKT scheme makes use of the SP-matrix [7]. For a graph G = (V,E), the
SP-matrix M is a |V | × |V | matrix defined as follows. Entry M [i, j] stores the
second vertex along the shortest path from vertex vi to vj ; if no such path exists,
then it stores ⊥. An SPSP query (vi, vj) is answered by computing M [i, j] = vk
to obtain the next vertex along the path and then recursing on (vk, vj) until ⊥ is
returned. At a high level, the GKT scheme proceeds by computing an SP-matrix
for the query graph and then using this matrix to compute a dictionary SPDX′.
This dictionary is then encrypted using a dictionary encryption scheme (DES)
such as [4,6]. To ensure that the GKT scheme is non-interactive, the underlying
DES must be response-revealing. We provide the syntax of a DES next.

Definition 3. A dictionary encryption scheme (DES) is a tuple of algo-
rithms DES = (Gen,Encrypt,Token,Get) with the following syntax:

– DES.Gen is probabilistic and takes as input security parameter λ, and outputs
secret key sk.

– DES.Encrypt takes as input key sk and dictionary D, and outputs an encrypted
dictionary ED.

– DES.Token takes as input key sk and label lab, and outputs a search token tk.
– DES.Get takes as input search token tk and encrypted dictionary ED, and

returns plaintext value val.

While the GKT scheme is response-hiding (i.e. the shortest path is not returned
in plaintext to the client), the underlying DES must be response-revealing (i.e.
the values in its encrypted dictionary ED are revealed at query time). We provide
a detailed description of the GKT scheme in Appendix A.
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3.2 Leakage of the GKT Scheme

Ghosh et al. [12] provide a formal specification of their scheme’s leakage.
Informally, the setup leakage of their scheme is the number of vertex pairs in
G that are connected by a path, while the query leakage consists of the query
pattern (which pairs of queries are equal), the path intersection pattern (the
overlap between pairs of shortest paths seen in queries), and the lengths of the
shortest paths arising in queries. See [12, Section 4.1] for more details.

Recall that in the GKT scheme, the server obtains EDB by encrypting the
underlying dictionary SPDX′, in which labels are of the form lab = (vi, vj) and
values are of the form val = (tk, c), using a DES. Here tk is a token obtained
by running DES.Token on a pair (w, vj) and c is obtained by symmetrically
encrypting (w, vj). Since EDB is obtained by running DES on SPDX′, this means
that the labels in EDB are derived from tokens obtained by running DES.Token
on inputs lab = (vi, vj). Moreover, these tokens also appear in the values in EDB
that are revealed to the server at query time, i.e. the entries (tk, c).

In turn, the query leakage reveals to the server the token used to initiate a
search, as well as all the subsequent pairs (tk, c) that are obtained by recursively
processing such a query. Let us denote the sequence of search tokens associated
with the processing of some (unknown) query q for a shortest path of length t as
s = tk1∥tk2∥ . . . ∥tkt+1 ∈ {0, 1}∗. We refer to this string as the token sequence
of q. Since the search tokens correspond to the sequence of vertices in the queried
path, there are as many tokens in the sequence as there are vertices in the shortest
path for the query. Note that, by correctness of DES used in the construction of
EDB, no two distinct queries can result in the same token sequence.

Notice also that token sequences for different queries can be overlapping;
indeed since the tokens are computed by running DES.Token on inputs lab = (vi, v)
where v is the final vertex of a shortest path, two token sequences are overlapping
if and only if they correspond to queries (and shortest paths) having the same
end vertex. Hence, given the query leakage of a set of queries, the adversary can
compute all the token sequences and construct from them n′ ≤ n directed trees,
{Qi}i∈[n′], each tree having at most n vertices and a single root vertex. The
vertices across all n′ trees are labelled with the search tokens in EDB and there
is a directed edge from tk to tk′ if and only if tk and tk′ are adjacent in some
token sequence. (Each tree has at most n vertices because of our assumption
about G being connected.) We call this set of trees the query trees . Each query
tree corresponds to the set of queries having the same end vertex. Each tree has
a single sink (root) that corresponds to a unique vertex v ∈ V . The tree paths
correspond to the shortest paths from vertices w ∈ V \ {v} to v, such that w and
v are connected in G. Ghosh et al. [12] also discuss these trees but they do not
analyze the theoretical limits of what can be inferred from them.

We denote the leakage of the GKT scheme on a graph G after issuing a set of
SPSP queries Q as L(G,Q). We stress that our attacks are based only on the
leakage of the scheme, as established above, and not on breaking the underlying
cryptographic primitives of the scheme.
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3.3 Implications of Leakage

Suppose that all queries have been issued and that we have constructed all query
trees {Qi}i∈[n]. We observe that there exists a 1-1 matching between the query
trees {Qi}i∈[n] and the SDSP trees {Tv}v∈V of G such that each matched pair of
trees is isomorphic. The reason is that the query trees are just differently labelled
versions of the SDSP trees; in turn, this stems from the fact that paths in the
query trees are in 1-1 correspondence with the shortest paths in G.

This now reveals the core of our query recovery attack, developed in detail in
Section 4 below. The server with access to G first computes all the SDSP trees
offline. As queries are issued, it then constructs the query trees one path at a
time. Once a complete query tree Q is computed (recall that each query tree must
have n vertices since G is connected) the server finds all possible isomorphisms
between Q and the SDSP trees. Then, for each token sequence in Q, it computes
the set of paths in the SDSP trees to which that token sequence can be mapped
under the possible isomorphisms. This set of paths yields the set of possible
queries to which the token sequence can correspond. This information is stored
in a pair of dictionaries, which can be used to look up the candidate queries.

To illustrate the core attack idea, Figure 1 depicts (1a) a graph G, (1b) its
SDSP tree for vertex 1 (with vertex labels and canonical names), and (1c) the
matching query tree (without vertex labels). It is then clear that the leakage from
the unique shortest path of length 2 in Figure (1c) can only be mapped to the
corresponding path with edges (4, 5), (5, 1) in Figure (1b) under isomorphisms,
and similarly the shortest path of length 1 that is a subpath of that path of
length 2 can only be mapped to path (5, 1). On the other hand, the 3 remaining
paths of length 1 can be mapped under isomorphisms to any of the length 1
paths (2, 1), (3, 1), or (6, 1) and so cannot be uniquely recovered.

Since the adversary only learns the query trees and token sequences from the
leakage, the degree of query recovery that can be achieved based on that leakage
is limited. In Section 5, we show that in practice this is often not an issue since
many queries result in only a very small number of candidate queries.

4 Query Recovery

4.1 Formalising Query Recovery Attacks

Query recovery in general is the goal of determining the plaintext value of queries
that have been issued by the client. We study the problem of query recovery in
the context of GESs, specifically, the GKT scheme: given G, the setup leakage
and the query leakage from a set of SPSP queries, our goal is to match the leakage
for each SPSP query with the corresponding start and end vertices (u, v) of a
path in G. As noted above, there may be a number of candidate queries that
can be assigned to the leakage from each query. We now formally describe the
adversary’s goals.

Definition 4. (Consistency) Let G = (V,E) be a graph, Q = {q1, . . . , qk} be the
set of SPSP queries that are issued, and S = {s1, s2, . . . , sk} be the set of token
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(a) Graph G.
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(b) SDSP tree T1. (c) Leakage.

Fig. 1: (a) Original graph G, (b) its corresponding SDSP tree for vertex 1 in
G with the canonical names labeling all the vertices of the tree, and (c) the
matching query tree that is leaked during setup (without any vertex labels).

sequences of the queries issued. An assignment π : S → V ×V is a mapping from
token sequences to SPSP queries. An assignment π is said to be consistent with
the leakage L(G,Q) if it satisfies L(G,Q) = L(G, π(S)).

Informally, consistency requires that, for each si ∈ S, the query π(si) specified
by assignment π could feasibly result in the observed leakage L(G,Q).

Definition 5. (QR) Let G = (V,E) be a graph, Q = {q1, . . . , qk} be a set of
SPSP queries, and S the corresponding set of token sequences. Let Π be the
set of all assignments consistent with L(G,Q). The adversary achieves query
recovery (QR) when it computes and outputs a mapping: s 7→ {π(s) : π ∈ Π}
for all s ∈ S.

Informally, the adversary achieves query recovery if, for each s ∈ S (a set of
token sequences resulting from queries in Q), it outputs a set of query candidates
{π(s) : π ∈ Π} containing every query that is consistent with the leakage.
Note that this implies that the output always contains the correct query (and
possibly more). This is the best the adversary can do, given the available leakage.
Note, however, that there is some information not conveyed in this mapping. In
particular, by fixing an assignment for a given token sequence, we may fix or
reduce the possible assignments for other query responses.

We now define a special type of QR when there exists only one assignment
consistent with the query leakage, i.e. all queries can be uniquely recovered.

Definition 6. (FQR) Let G = (V,E) be a graph, Q = {q1, . . . , qk} be a set of
SPSP queries, and S the corresponding set of token sequences. Let Π be the set
of assignments consistent with L(G,Q). We say that the adversary achieves full
query recovery (FQR) when it (a) achieves QR, and (b) |Π| = 1.

That is, there is a unique assignment of token sequences to queries consistent
with the leakage. Whether FQR is always possible (i.e. for every possible set
of queries Q) depends on the graph G. Specifically, we will see that FQR is
always possible if and only if each SDSP tree arising in G is non-isomorphic and
there exists one unique isomorphism from each SDSP tree to its corresponding
query tree. It is easy to construct graphs for which these conditions hold (see
Section 4.9). For such graphs, our QR attack always achieves FQR.
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4.2 Technical Results

We develop some technical results concerning isomorphisms of trees and the
behaviour of paths under those isomorphisms that we will need in the remainder
of the paper. For any rooted tree T = (V,E, r) and any u ∈ V , let T [u] ⊆ T
denote the subtree induced by u and all its descendants in T .

Lemma 1. Let T = (V,E, r) and T ′ = (V ′, E′, r′) be rooted trees. Let pu,r =
(u,w1, . . . , wt, r) and pv,r′ = (v, w′1, . . . , w

′
ℓ, r
′) be paths in T and T ′, respectively.

If there exists an isomorphism φ : T → T ′ such that φ(u) = v, then t = ℓ and
φ(wi) = w′i for all i ∈ [t].

Given a rooted tree T = (V,E, r) and any u ∈ V , let PathNameT (u) denote
the concatenation of the canonical names of vertices along the path from u to r
in T , separated by semicolons:

PathNameT (u) = Name(T [u])∥“; ”∥Name(T [w1])∥“; ”∥ . . . ∥Name(T [r]). (1)

Computing path names forms the core of our QR attack. Before we explain
how we use them, we prove a sequence of results about the relationship between
path names and isomorphisms. In Section 4.4 we explain how to apply a universal
hash function to the path names to compress their length to O(log n) bits.

Proposition 1. Let T = (V,E, r) and T ′ = (V ′, E′, r′) be isomorphic rooted
trees and let C and C ′ denote the set of children of r and r′, respectively. There is
an isomorphism from T to T ′ if and only if there is a perfect matching from C to
C ′ such that for each matched pair ci ∈ C, c′i ∈ C ′, there exists an isomorphism
φi : T [ci]→ T [c′i].

Lemma 2. Let T = (V,E, r) and T ′ = (V ′, E′, r′) be isomorphic rooted trees.
Let u and v be children of r and r′, respectively. Suppose that σ is an isomorphism
from T [u] to T ′[v]. Then there exists an isomorphism φ from T to T ′ such that
φ|T [u] = σ and φ(u) = v.

We now come to our main technical result:

Theorem 1. Let T = (V,E, r) and T ′ = (V ′, E′, r′) be rooted trees and let
u ∈ V and v ∈ V ′. There exists an isomorphism φ : T → T ′ mapping u to v if
and only if PathNameT (u) = PathNameT ′(v).

Theorem 1 also gives us a method for identifying when there exists only a
single isomorphism between two rooted trees. Suppose that T = (V,E, r) and
T ′ = (V ′, E′, r′) are isomorphic rooted trees and that every vertex v ∈ V has
a distinct path name; then there exists exactly one isomorphism from T to T ′.
Intuitively, a vertex in T can only be mapped to a vertex in T ′ with the same
path name. So if path names are unique, then each vertex in T can only be
mapped to a single vertex in T ′, meaning there is only a single isomorphism
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available. The converse also holds: if there exists exactly one isomorphism from
T to T ′, then every vertex v ∈ V necessarily has a distinct path name. This
observation will be useful in characterizing when query reconstruction results in
full query recovery. We summarise with:

Corollary 1. Let T = (V,E, r) and T = (V ′, E′, r′) be isomorphic rooted trees.
Every vertex v ∈ V has a unique path name in T if and only if there exists a
single isomorphism from T to T ′.

4.3 Overview of the Query Recovery Attack

Our QR attack takes as input the graph G, a set of token sequences corresponding
to the set of issued queries, and comprises of the following steps:

0. Preprocess the graph offline (Algorithm 2). Compute the SDSP trees
{Tv}v∈V of graph G. Then compute a multimap M that maps each path
name arising in the Tv to the set of SPSP queries whose start vertices have
the same path name.

1. Compute the query trees online. The trees are constructed from the
token sequences as the queries are issued.

2. Process the query trees (Algorithm 3). Compute a dictionary D that
maps each token sequence to the path name of the start vertex of the path.

Both the preprocessing step and the online steps take time O(n3) where n is the
number of vertices in the graph. Note that steps 0 and 2 are trivially parallelizable.
In the case that the APSP algorithm is randomized, the adversary can simply
run the attack multiple times to account for different shortest path trees.

4.4 Computing the Path Names

Before diving into our attack, we describe our algorithm for computing path names
which we use as a subroutine of our attack. Algorithm 1 (ComputePathNames)
takes as input a rooted tree T = (V,E, r) and outputs a dictionary mapping each
vertex v ∈ V to its path name. First, we call ComputeNames and obtain a
dictionary Names that maps each vertex v ∈ V to the canonical name of subtree
T [v]. We will use a function h drawn from a universal hash function family H
to compress the path names from O(n2) to O(log n). We initialize an empty
dictionary PathNames and set PathNames[r] = h(Names[r]). We then traverse T
in a depth first search manner; when a new vertex v is discovered during the
traversal, we set PathNames[v] to the hash of the concatenation of the name of v
and the path name of its parent u i.e.

PathNames[v] = h(Names[v]∥PathNames[u]). (2)

When all vertices have been explored, PathNames is returned. The pseudocode
can be found in Algorithm 1.
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Lemma 3. Let G = (V,E) be a graph and let {Tr}r∈V be the set of SDSP
trees of G. Let PathNames be the union of the outputs of running Algorithm 1
on each tree in {Tr}r∈V . Let H be a universal hash function family mapping
{0, 1}∗ → {0, 1}6 logn. Then for randomly sampled h← H the expected number
of collisions in PathNames is at most O(1/n).

We note that to achieve a smaller probability of collision, one can choose a
hash function family H whose output length is c log n where c > 6. For simplicity
we invoke the universal hash function using SHA-256 truncated to 128 bits.

Lemma 4. Let T = (V,E, r) be a rooted tree on n vertices and H be a universal
hash function family mapping {0, 1}∗ → {0, 1}6 logn. Upon input of T , Algorithm 1
returns a dictionary of size O(n log n) mapping each v ∈ V to a hash of its path
name in time O(n2).

4.5 Preprocess the Graph

We first preprocess the original graph G = (V,E) into the n SDSP trees.
Since the adversary is assumed to have knowledge of G, this step can be done
offline. We use the same all-pairs shortest paths algorithm used at setup on G
to compute the n SDSP trees {Tv}v∈V , where tree Tv is rooted at vertex v. For
unweighted, undirected graphs, we can use breadth first search for a total run
time of O(n2 + nm) where m = |E|; for general weighted graphs this step has a
run time of O(n3) [11].

Next, we compute the path names of each vertex in {Tr}r∈V , and then
construct a multimap M that maps the (hashed) path name of each vertex in
{Tr}r∈V to the set of SPSP queries whose start vertices have the same path
name. We leverage Theorem 1 to construct this map.

We initialize an empty multimap M. For each r ∈ V we compute PathNames
by running Algorithm 1 (ComputePathNames) on Tr. For each vertex v in
Tr we compute path_name ← PathNames[v], and check whether path_name
is a label in M. If yes, M[path_name] ← M[path_name] ∪ {(v, r)}. Otherwise
M[path_name]← {(v, r)}. The pseudocode can be found in Algorithm 2.

Lemma 5. Let G = (V,E) be a graph on n vertices. Upon input of G, Al-
gorithm 2 returns a multimap of size O(n2 log n) mapping each v ∈ V to its
corresponding path name in time O(n3).

4.6 Process the Search Tokens

We must now process the tokens revealed at query time. Recall that the tokens are
revealed such that, the response to any shortest path query can be computed non-
interactively. When a search token tk is sent to the server, the server recursively
looks up each of the encrypted vertices along the path. The adversary can thus
compute the query trees using the search tokens revealed at query time. First, it
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initializes an empty graph G′. As label-value pairs (lab, val) are revealed in EDB,
the adversary parses tkcurr ← lab and (tknext, c) ← val, and adds (tkcurr, tknext)
as a directed edge to G′. At any given time, G′ will be a forest comprised of
n′ ≤ n trees, {Qi}i∈[n′], such that each Qi has at most n nodes. Identifying the
individual trees in the forest can be done in time O(n2). The adversary can
compute the query trees online and the final step of the attack can be run on any
set of query trees. A complete query tree corresponds to the set of all queries to
some fixed destination. For ease of explanation, we assume Algorithm 3 takes as
input the set of complete query trees constructed from the leakage.

4.7 Map the Token Sequences to SPSP Queries

In the last step, we take as input the set of query trees {Qi}i∈[n′] constructed
from the leakage. We use the path names of each vertex in the {Qi}i∈[n′], to
construct a dictionary D that maps each token sequence s to the path name of
the starting vertex of the corresponding path in its respective query tree.

We first initialize an empty dictionary D. For each complete query tree Qi,
we compute PathNames ← ComputePathNames(Qi) and take the union of
PathNames and D. The pseudocode can be found in Algorithm 3.

Theorem 2. Let G = (V,E) be a graph and EDB be an encryption of G using
the GKT scheme. Let {Qi}i∈[n′] be the query trees constructed from the leakage
of queries issued to EDB. Upon input of G, Algorithm 2 returns a dictionary M
mapping each path name to a set of SPSP queries in time O(n3). Upon input of
G and {Qi}i∈[n′], Algorithm 3 returns a dictionary D mapping token sequences
to path names in time O(n3). Moreover, the outputs D and M have the property
that, for any token sequence s corresponding to a path (v, r) in a query tree and
for every query (v′, r′) ∈ M[D[s]], there exists an isomorphism φ from Q to Tr′

such that φ(v) = v′ and φ(r) = r′.

4.8 Recover the Queries

Once the map between each node (token) in a query tree and its corresponding
path name has been computed, the attacker can use M and D to compute the
candidate queries of all queries in the complete query trees. Given M and D
(outputs of Algorithms 2 and 3, respectively) and an observed token s matching
a query in the query trees for some unknown query, the adversary can find the
set of queries consistent with s by simply computing M[D[s]].

4.9 Full Query Recovery

We conclude this section with a discussion of when FQR is possible. By
the correctness of our attack, this is the case for a graph G, a set of com-
plete query trees {Qi}i∈[n′], and associated token sequences S when for M ←
PreprocessGraph(G), D ← QueryMapping(G, {Qi}i∈n′) and all s ∈ S we
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have |M[D[s]]| = 1. We can also phrase a condition for FQR feasibility in graph-
theoretic terms. Recall Corollary 1, which states that given two isomorphic rooted
trees T and T ′, if each vertex in T has a unique path name, then there exists
only one isomorphism from T to T ′. We deduce that FQR is always achievable
for any set of complete query trees, when all n2 vertices in the SDSP trees have
unique path names. Formally, we have the following:

Corollary 2. Let G = (V,E) be a graph and let {Tv}v∈V be the set of SDSP
trees of G. Suppose every vertex in

⋃
v∈V Tv has a unique path name (and in

particular, each T ∈ {Tv}v∈V has a unique canonical name). Then FQR can
always be achieved on any complete query tree(s). The converse is also true.

Our attack achieves FQR whenever possible. For example, let G be the family
of graphs having one central vertex c and any number of paths all of distinct
lengths appended to c. Our attack achieves FQR for all graphs G ∈ G.

5 Experiments

Implementation Details. We implemented our attacks in Python 3.7.6 and
ran our experiments on a computing cluster with a 2 x 28 Core Intel Xeon Gold
6258R 2.7GHz Processor (Turbo up to 4GHz / AVX512 Support), and 384GB
DDR4 2933MHz ECC Memory. To generate the leakage, we implemented the
GES from [12] and we used the same machine for the client and the server. The
cryptographic primitives were implemented using the PyCryptodome library
version 3.10.1 [9]; for symmetric encryption we used AES-CBC with a 16B key
and for collision resistant hash functions we used SHA-256. For the DES, we
implemeted Πbas from [4] and generated the tokens using HMAC with SHA-256
truncated to 128 bits. The shortest paths of the graphs were computed using the
single_source_shortest_path algorithm from the NetworkX library version
2.6.2 [8]. We used our own implementation of the AHU algorithm. Our attack is
highly parallelizable, and we exploited this when implementing our attack.

We evaluate our attacks on 8 real world datasets, the details of the datasets
can be found in Appendix C. We also deployed our attacks on random graphs,
the results of which can be found in the full version[10].

5.1 Query Reconstruction Results

We carried out our attack on the Internet Routing, CA-GrQc, email-EU-Core,
facebook-combined, and p2p-Gnutella08 datasets; The online portion of the
attack (Algorithm 3) given all queries ran in 0.087s, 0.093s, 5.807s, 102.670s, and
339.957s for each dataset, respectively. For the first four datasets, we also ran
attacks given 75% and 90% of the queries averaged over 10 runs and sampled as
follows: The start vertex was chosen uniformly at random and the end vertex
was chosen with probability linearly proportional to its out degree in the original
graph. This simulates a more realistic setting in which certain “highly connected”
destinations are chosen with higher frequency. The results of these experiments
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Fig. 2: CDFs for QR of the data sets after observing (top) 75%, (middle) 90%,
and (bottom) 100% of the queries. On the x axis we plot the number of candidate
queries output by our attack and on the y axis we plot the percent of total queries.
The red dotted lines indicate the 50th, 90th, and 99th percentiles. Because of
Ca-GrQC’s high symmetry, complete query trees could only be constructed after
at least 80% of the queries were observed and hence its first graph is omitted.

InternetRouting Ca-GrQc email-EU-core facebook-combined

75% of the Queries (averaged over 10 runs)

3

90% of the Queries (averaged over 10 runs)

100% of the Queries

can be found in Figs. 2 and 3. Queries can be reconstructed with just 75% of the
queries. In fact, with high probability, we start seeing complete query trees with
as few as 20% of the queries for the facebook-combined dataset.

For the remaining datasets we ran simulations to demonstrate the success
that an adversary could achieve given 100% of the queries. Our simulations were
carried as follows. Given G, the SDSP trees and the path names for each vertex
in these trees were computed, and then a dictionary mapping each query in G to
the set of candidate queries was constructed by identifying queries whose starting
vertices have the same path name. The simulations only used the plaintext graph
and the results show the success that an adversary would achieve in an end-to-end
attack. In practice, our attack can be run on larger datasets by writing the map
out to a back-end key-value store. These results can be found in Fig. 3.
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In Table 1 we report the percent of uniquely recoverable queries when the
attack is run on the set of all query trees. Uniquely recoverable queries are
queries whose responses result in only one candidate. CA-GrQc had the smallest
percentage of uniquely recoverable queries (0.145%) and the p2p-Gnutella04
had the largest percentage (21.911%). The small percentage for CA-GrQc can
be attributed to its high density (d = 0.995), where density is defined as d =
2m/(n · (n − 1)). The CA-GrQc graph is nearly complete, and its SDSP trees
display a high degree of symmetry. In fact, many of the query trees are isomorphic
to the majority of SDSP trees, and the majority of SDSP trees have a star shape.
Each non-root vertex in a star tree has the same path name, resulting in a large
number of possible candidates per token sequence.

In Figs. 2 and 3, we plot the CDFs of our experiments. The Gnutella data
sets exhibit a high recovery rate as a result of asymmetry and low density. 50%
percent of all queries for p2p-Gnutella08, p2p-Gnutella04, p2p-Gnutella25, p2p-
Gnutella30 result in at most 4, 3, 5, 5 candidate query values, respectively. Details
of the 50th, 90th, and 99th percentiles can be found in Table 1.

6 Discussion
We have given a query recovery attack against the GKT graph encryption scheme
from [12]. The attack model we consider is strong, but it fits within the model
used in [12]. A variant of our attack for a network adversary is described in the
full version [10]. Ghosh et al. [12] recommend combining the scheme with other
mitigation techniques, like refreshing the key periodically; while this reduces the
chance that an adversary sees a complete query tree, we note that this is not
very efficient. The question of whether more practical techniques can be applied
remains open.

This paper highlights the need for detailed cryptanalysis of GESs. The value
of such analysis was recognised in [12] but omitted on the grounds that the
impact of the leakage is application-specific. Our view is that such analysis should
be done in tandem with security proofs (establishing leakage profiles) at the same
time as schemes are developed. Of course, attacks should be assessed with respect
to real-world datasets whenever possible, as we do here. We note that our attack
works when a complete tree has been observed; one interesting open question
is to extend our attack to arbitrary subsets of queries: then the adversary can
construct query subtrees and attempt to identify isomorphic embeddings of them
into the SDSP trees. Our attack leaves open the question of whether other GESs
can be similarly attacked.
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B Pseudocode for Attack

Algorithm 1: ComputePathNames
Input: Rooted tree T = (V,E, r).
Output: Dictionary PathNames.
1: // Compute the canonical name of T [v] for all v ∈ V .
2: Initialize empty dictionaries Names and PathNames and empty stack S
3: Names← ComputeNames(T, r,Names)
4: h← H
5: // Concatenate the canonical names into path names.
6: S.push(r); Mark r as explored
7: PathNames[r]← h(Names[r])
8: while S ̸= ∅ do
9: v ← S.pop( )

10: if v is not explored then
11: Let u be the parent of v
12: PathNames[v] = h(Names[v]PathNames[u])
13: Mark v as explored
14: for children w of v do S.push(w)
15: return PathNames

Algorithm 2: PreprocessGraph
Input: A graph G.
Output: A multimap M mapping path names to sets of SPSP queries.
1: // Compute the set of SDSP trees from G.
2: Initialize an empty multimap M
3: Compute {Tv}v∈V by running all-pairs shortest path on G
4: for r ∈ V do
5: PathNames← ComputePathNames(Tr)
6: // Map path names to candidate queries.
7: for (v, path_name) in PathNames do
8: if path_name is a label in M then
9: M[path_name]← M[path_name] ∪ {(v, r)}

10: else M[path_name]← {(v, r)}
11: return M

C Datasets

We evaluate our attacks on 6 of the same data sets as [12], the InternetRouting
dataset from the University of Oregon Route Views Project, and the facebook-
combined dataset [14]. InternetRouting and CA-GrQc were extracted using the
dense subset extraction algorithm by Charikar [5] as implemented by Ambavi et
al. [3]. Details about these datasets can be found in Table 1.
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Algorithm 3: QueryMapping
Input: A graph G and a set of query trees {Qi}i∈[n′] with n′ ≤ n.
Output: A dictionary D mapping search tokens to path names.
1: Initialize empty dictionary D
2: for i ∈ [n′] do
3: // Compute the path names of each vertex in the query trees.
4: PathNames← ComputePathNames(Qi)
5: D← D ∪ PathNames
6: return D

Table 1: The datasets used in our experiments; n denotes the number of vertices
and m the number of edges of the graph dataset. “% Unique” denotes the percent
of queries that have one candidate. “% Min” denotes the minimum percent of
queries needed to construct the set of all query trees (see Section 2.3).

Dataset n m % Unique % Min Percentile
50 90 99

InternetRouting 35 323 2.353 % 94.1 % 40 84 90

CA-GrQc 46 1030 0.145 % 99.8 % 1845 1845 1845

email-Eu-core 1005 16,706 6.507 % 78.0 % 16 69 190

facebook-combined 4039 88,234 0.206 % 99.3 % 1826 11,424 20,480

p2p-Gnutella08 6301 20,777 21.463 % 69.7 % 4 12 64

p2p-Gnutella04 10,876 39,994 21.911 % 68.1 % 3 9 32

p2p-Gnutella25 22687 54705 16.075 % 73.7 % 5 18 54

p2p-Gnutella30 36682 88328 14.671 % 74.6 % 5 24 60

Fig. 3: CDFs for QR after observing 100% of queries. An asterisk indicates that
the results were obtained by simulating the attack (see Section 5 for details).

p2p-Gnutella08 p2p-Gnutella04∗ p2p-Gnutella25∗ p2p-Gnutella30∗


