2204.08042v2 [cs.CR] 23 Jul 2022

arxXiv

BLEWhisperer: Exploiting BLE Advertisements
for Data Exfiltration

Ankit Gangwal', Shubham Singh!, Riccardo Spolaor?*, and
Abhijeet Srivastaval

! International Institute of Information Technology, Hyderabad, India
gangwal@iiit.ac.in,
{shubham.singh, abhijeet.srivastava}@students.iiit.ac.in
2 Shandong University, Qingdao Campus, China
rspolaor@sdu.edu.cn
* Corresponding author

Abstract. Bluetooth technology has enabled short-range wireless com-
munication for billions of devices. Bluetooth Low-Energy (BLE) variant
aims at improving power consumption on battery-constrained devices.
BLE-enabled devices broadcast information (e.g., as beacons) to nearby
devices via advertisements. Unfortunately, such functionality can become
a double-edged sword at the hands of attackers.

In this paper, we primarily show how an attacker can exploit BLE adver-
tisements to exfiltrate information from BLE-enable devices. In partic-
ular, our attack establishes a communication medium between two de-
vices without requiring any prior authentication or pairing. We develop a
proof-of-concept attack framework on the Android ecosystem and assess
its performance via a thorough set of experiments. Our results indicate
that such an exfiltration attack is indeed possible though with a limited
data rate. Nevertheless, we also demonstrate potential use cases and en-
hancements to our attack that can further its severeness. Finally, we
discuss possible countermeasures to prevent such an attack.

Keywords: Advertisements - BLE - Bluetooth - Exfiltration.

1 Introduction

Bluetooth is a pervasive wireless technology that is widely used for building Per-
sonal Area Network (PAN). Bluetooth open standard [9] specifies two paradigms:
Bluetooth Classic (BT) and Bluetooth Low Energy (BLE). While BT is suitable
for high-throughput communication, BLE is designed for low-power communi-
cation. BLE protocol enables two devices to exchange data with one device
acting as a client and another one as a server. According to the current speci-
fications [9], Bluetooth 5.2 quadruples the transmission range (LE coded eight
symbols per bit) compared to the last generation (i.e., Bluetooth 4.2) [8]. Stud-
ies [3, [10] estimate that manufacturers will ship nearly 6.3 Billion Bluetooth-
enabled devices by 2025, among which 6 Billion devices will support BLE. On
another side, mobile devices have adopted the Bluetooth technology to offer wire-
less connectivity among devices and with other peripherals, such as headphones.

2 A. Gangwal et al.

Among mobile Operating Systems (OS), Android covers the largest share of
the market [25]. As of Q3 2021, Android’s share of mobile OS worldwide was
72.84% [25] with 17.5% devices running on Android 11, 35.9% devices using
Android 10, and 46.6% devices still operating with Android 9 or below [24].
Generally, mobile devices are shipped with few apps pre-installed, and end-users
can install different apps to enhance/customize user-experience. Depending upon
granted permissions, such apps can also use the device’s Bluetooth radio.
Bluetooth technology has evolved greatly over time and continuous efforts
have been made to make its entire stack secure. Nonetheless, about 75 Bluetooth-
related CVEs [20] were reported in the year 2021 alone. BLE advertisements are
no exception. Disclosing a device’s presence via advertising can lead to privacy
and security attacks; an adversary can monitor advertisements to gather infor-
mation about the advertising BLE device [19, 32]. The core BLE specification
stipulates some privacy provisions (in particular, whitelisting and address ran-
domization) to tackle these threats. Device whitelisting focuses on device pairing
while address randomization hinders others from tracking a device over time.

Motivation: Each connection in BLE communication starts its lifetime by ad-
vertising primary information. In particular, BLE advertisements enable devices
to exchange their capabilities, characteristics, etc. even before pairing happens.
However, such information exchange mechanism lacks proper security measures
to prevent its misuse. So, it is necessary to investigate to what extents an attacker
can exploit such functionality and its consequent security risks.

In this paper, we investigate the possibility of exploiting BLE advertisements
as a communication channel between attacker and target device; using which an
attacker may issue commands to perform some tasks, deliver arbitrary pay-
load when other channels (e.g., WiFi and data) are restrained, bypass address
randomization defense, etc. Specifically, our attack utilizes service data type of
BLE advertisements that can carry arbitrary values in its Service Data field,
which makes it suitable to transmit custom data. Furthermore, we employ non-
connectable BLE advertisements to enable our attack even if the victim device
is connected /paired to another Bluetooth device. Our attack prototype targets
Android OS to cover the majority of mobile devices. We begin with BLE legacy
advertisements, which are supported by both Bluetooth 4.2 (adopted in 2014 []])
and the latest Bluetooth 5 family [9]. We also demonstrate our attack leveraging
extended advertisements of Bluetooth 5, which further increases its data transfer
capabilities. Our attack requires the attacker to be in the Bluetooth range of a
victim and that the victim has installed our app, which we call victim’s app. To
communicate, the attacker and victim’s app use BLE advertisements.

Contribution: The major contributions of our work are as follows:

1. We primarily demonstrate how an adversary can exploit BLE advertisements
as a communication channel between attacker and target device. We propose
a data exfiltration attack via BLE advertisements that does not require
authentication or pairing. We fully implemented all the components required
for such an attack. To prevent misuse, source code is available on request.

BLEWhisperer 3

2. To thoroughly assess our proposed attack, we designed two experiments that
we conduct on five smartphones for both BLE legacy and extended adver-
tisements. Our results show that such an attack indeed poses a threat.

3. We also discuss further enhancements, key use cases, and possible counter-
measures of our proposed attack.

Organization: The remainder of this paper is organized as follows. Section
summarizes the background for BLE and related works. We explain our threat
model and the core idea of our attack in Section [3} Section [gives the details of
our proof-of-concept implementation. Section [5| reports our experimental evalu-
ations. Section [6] presents salient add-ons, use cases, potential limitations, and
countermeasures for our attack. Finally, Section [7] concludes the paper.

2 Background

In this section, we present the primer for BLE advertising in Section [2.1] and a
summary of related works in Section [2.2

2.1 Bluetooth Low Energy (BLE)

BLE [11] is a low-power wireless technology typically used for short-distance
communication. Both BLE and BT operate in the same 2.4 GHz ISM band.

Advertising: BLE advertisements are used to notify nearby devices of the
availability to make a connection. Here, a Bluetooth device can assume two
major roles: advertiser (as peripheral or broadcaster) and scanner (as central
or observer). Advertisers create and transmit the advertisements while scan-
ners receive these advertisements. BLE has 40 RF channels, where 3 channels
(i.e., channels 37, 38, and 39) are used for advertisements. In BLE, the time
interval between advertisements has a fixed interval as well as a random de-
lay [8]. Legacy Protocol Data Unit (PDU) advertisements (i.e., ADV_DIRECT_IND,
ADV_IND, ADV_NONCONN_IND, ADV_SCAN_IND) are available for all Bluetooth ver-
sions, have backward compatibility with older versions, and are used on the Pri-
mary advertising channels. Extended PDU advertisements (i.e., ADV_EXT_IND,
AUX_ADV_IND, AUX_SCAN_IND, AUX,CHAIN,IND)7 introduced in Bluetooth 5.0, en-
able advertising on Secondary advertising channels (in addition to Primary ad-
vertising channels) to increase advertising data capacity.

Packet format: The core Bluetooth specification document [8] defines the link
layer packet in BLE with preamble, access address, PDU, and CRC. PDU for
advertising channel (called advertising channel PDU) includes a 2-byte header
and a variable payload (from 6 to 37 bytes), whose actual length is defined by
the 6-bit Length field of advertising channel PDU header (cf. Fig. [1). Since BLE
supports a number of standard advertisement data types (e.g., manufacturer
specific data, service solicitation, service data, LE supported features) that can
be sent in an advertisement, the content of advertising channel PDU payload
depends on the chosen advertisement data types.

4 A. Gangwal et al.

Link layer |Preamble|Access Address| PDU CRC
packet format | (1 byte) (4 bytes) (2~257 bytes)|(3 bytes)
A
-
Advertising Header Payload
channel PDU (16 bits) | (Length field in the Header)
A

C nY

PDU Type| RFU [TxAdd|RxAdd|Length| RFU
PDU header |~ uidPel bits) | (1o | G bty | (6 oiey | 2 bits)

Fig. 1. BLE packet structure [g].

Universally Unique Identifier (UUID): A client searches for services based
on some desired characteristics. A BLE profile can offer one or more services,
and each service can have one or more characteristics. Each service distinguishes
itself from other services using a unique 16-bytes hexadecimal ID, called UUID.
While standard services can use 2- or 4-bytes UUID to make room for more data
in advertisements, custom services require a full 16-bytes UUID.

2.2 Related works

Researchers have been working towards enhancing the security of the Bluetooth
technology by exploring possible exploits and attacks. In what follows, we report
the main works related to our paper. BIAS [5] bypasses the authentication step to
impersonate an already paired benign Bluetooth device. Similarly, BLESA [29]
exploits a BLE protocol vulnerability to inject malicious data when a smart-
phone reconnects to a paired device. BLURtooth [6] proposes cross-transport
attacks on active session and leads to device impersonation, malicious session
establishment, and manipulation of Bluetooth traffic. BlueDoor [27] targets con-
nected BLE devices and mimics a low-capacity device to undermine the process
of key negotiation and authentication. LIGHTBLUE [30] is a framework for
performing automatic profile-aware debloating of Bluetooth application stack.
However, LIGHTBLUE is not designed for general users since it requires ad-
vanced technical skills, such as phone rooting, installing modified firmware, etc.
BadBluetooth [3I] attack can steal information, sniff network traffic, and inject
voice command on a device with compromised firmware. With the help of spe-
cialized hardware and software components, BLE-guardian framework [12] jams
the advertising channel to hide a device’s presence from curious adversaries.
BlueShield [28] presents a monitoring framework that detects spoofed BLE ad-
vertisements against a stationary BLE network in indoor environments. Armis
demonstrated an airborne attack vector called BlueBorne [7]. In the context
of smartphones, BlueBorne CVEs affect devices running upto Android 8.0 and
iOS 10. Singh et al. [23] present mobile phone-based botnets that utilize Blue-
tooth connection alongside cellular channel for communication. The Bluetooth
standards and connection establishment mechanisms have evolved since the time
of the study and become more complex and restrictive.

To summarize, existing works target already paired devices [5l 6, 27, 29],
require a compromised firmware [30] B1], specialized hardware components [12],
or only work under specific settings [23, 28]. To the best of our knowledge,
we are the first to investigate the misuse of BLE advertisements to create a
communication channel and its security implications.

BLEWhisperer 5

3 System architecture

In this section, we present the system’s architecture for our attack. Section [3.1]
elaborates the threat model, Section [3.2] explains the core idea our work, and
Section discusses different phases of our attack.

3.1 Threat model

Our attack relies on two practical assumptions: (i) the victim eventually comes
in the Bluetooth range of the attacker and (ii) the victim installs our benign-
looking app, i.e., victim’s app, which can come from the genuine application
store. Overall, the attacker shares a context with the victim.

Victim’s app requires following permissions [4]: (i) Bluetooth permissions (i.e.,
BLUETOOTH and BLUETOOTH_ADMIN) to administer/toggle Bluetooth radio, and
(ii) location permission (i.e., ACCESS_FINE_LOCATION) to scan Bluetooth adver-
tisements. Both the Bluetooth-related permission are normal® while the location
permission is designed to be dangerous®. Most of today’s apps (navigation, taxi,
food delivery, contact tracing, etc.) rely on location services to provide their ser-
vice or to verify user’s location. Therefore, victim’s app can come in a variety of
forms to request the location permission. Depending on the OS version, location
service may be required to turned on (cf. Section . Some scenarios where
apps verify user’s location include attendance app for students in a classroom,
sign-on app for employees in an office, boarding pass app for airline passengers,
and apps for public events (e.g., conference, concerts, museum).

As the majority of malware rely on an Internet connection to steal user
data, a network-based Intrusion Detection System (IDS) can identify such ex-
filtration attempts and trigger an alert. Hence, data exfiltration via BLE may
be a viable solution when the Internet connection is monitored, restricted, or
unavailable (e.g., in an airplane, air-gapped networks).

3.2 The core idea

Among various BLE advertisement data types, service data type allows us to set
arbitrary values in its Service Data field; which makes it suitable to transmit
custom messages. Fig. [2] shows the format of advertising channel PDU for the
service data type (cf. Fig. for 2-byte header field structure) in legacy advertise-
ments. Here, advertising channel PDU payload contains 6-bytes AdvA field (i.e.,
advertiser’s address) and upto 31-bytes AdvData field (i.e., advertised data). Ad-
vData field contains 1-byte Length field, 1-byte Type field, and 29-bytes Data
field. Data field contains 16-bytes Service UUID and 13-bytes Service Data.

3Normal permissions are granted without explicit user consent /interaction.
4Dangerous permissions are granted only if user explictily consents to it.

6 A. Gangwal et al.

Advertisin, Header | Payload
channel FDU | (16 bits) | (37 bytes)

AdvA AdvData ‘
(6 bytes) (31 bytes)
A
P
Length | Type Data
(1byte) | (1byte) | (29 bytes)
A
[S—— R Y
i Service UUID! Service Data !
(16 bytes) ' (13 bytes)

Fig. 2. Advertising channel PDU for service data type [§].

The core idea of our attack is to leverage the Service Data field to transport
custom message payloads. Our attacker advertises service data type with an
attacker-chosen fixed Service UUID (hardcoded in wictim’s app) and Service
Data field carrying commands encoded to bytes. It is worth mentioning that the
requested Bluetooth permissions enable victim’s app to toggle Bluetooth on/off
without user’s intervention. By using non-connectable BLE advertisements, our
attack can work even if the victim device is connected to other Bluetooth devices.

Our attack setting involves an attacker device and one or more victim de-
vices. A victim device is an Android device with our victim’s app installed. The
attacker device is a Windows laptop with a Bluetooth interface. Both devices
act as BLE advertisers and scanners from time to time. Attacker sends the com-
mands as advertisement broadcast with a particular Service UUID. Victim’s app
scans for advertisements; it responds when attacker’s UUID is matched. Con-
versely, to transmit data from victim to attacker, victim’s app advertises data
in the same manner (i.e., in Service Data field of service data type), but with
victim-specific UUID in the Service UUID field.

UUIDs and their roles: UUID plays a crucial role in our attack. Hence, it is
important to understand the roles of different UUIDs. UUID 4 is an attacker-
chosen fixed UUID hardcoded in wvictim’s app. UUID 4 is what wvictim’s app
listens for. UU I Dy is victim-specific UUID that is generated by victim device’s
OS; it may change across different connections. I Dy is a victim-specific identifier
generated by wvictim’s app, and it is permanent for a victim device. We map
UUIDy to IDy to identify/track the same victim across different connections.
However, the first time a victim’s device responds, its I Dy is unknown to the
attacker. Therefore, victim’s app uses a special pattern “UUIDy , 0x000000 ||
IDy”, ie., it sends 0x000000 concatenated with I Dy (in Service Data field)
from its current UUIDy (in Service UUID field) to signify to attacker that after
0x000000 (a pre-decided value) is an I Dy, and the attacker maps the two values.

Increased impact with BLE 5: Along with longer transmission range and
higher data throughput, Bluetooth 5 also offers advertising extensions. Instead
of advertising only on the three advertising channels (i.e., channels 37, 38, and
39), BLE 5 allows to chain together advertisements and utilize other 37 RF
channels for advertisements. Moreover, advertising channel PDU payload for
BLE 5 can hold up to 254 bytes of AdvData [9] (cf. Fig. [3]), which is about 8
times of 31 bytes of AdvData in BLE4 [g].

In our prototype, we considered both the legacy and extended advertise-
ments. The former is compatible with the widest range of mobile devices, and
the latter is becoming increasingly common among newer devices.

BLEWhisperer 7

isil Header Payload
Advertising channel PDU ‘ 2 byte) ’ (max 2)‘% 5 bytes) ‘
Al
f
Extended Header Length + AdvMode | Extended Header AdvData
(1 byte) (0~63 bytes) (max 254 bytes)

Fig. 3. Advertising channel PDU for BLE 5.2.

3.3 Attack phases

In the default state, a victim device scans for BLE advertisements with attacker’s
UUID (i.e., UUID 4) to receive instructions. Fig. [4| shows different phases of our
attack. We now elaborate each phase in detail.

Victim device 1 (App) Victim device 1 (App)
Attacker device Victim device 2 (App) Attacker device Victim device. I.Di (App)
000 -
Vicim device n (App) Phase: Transfer (from victin) BMMCEUCL A2

UUID, : Attacker's fixed UUID UUID, : Victim-specific UUID BLE role: Scanner BLE role: Advertiser

ID, : Victim-specific identifier
Payload
segmentation

Pkt PKt,, PKt, ..., PKt,

Phase: Discovery

BLE role: Advertiser

................ uuID,,, 01l Pk

GHSEIEREE T : "W Transferring the
Uuip - Victim device out of ; o . 4/ payload via
4. 009 S attacker's range, ie., : iRr:r(r:\e;::?/i Mia':vlgmsements H advertisements’
BLE role: Scanner adve_mzemenls arenot ; v LD, 0 I PH, Service Data
 receive 9 /
Phase: Validation & Recovery
Packets sequence BLE role: Scanner
validation | eeeeeeeeaeas
Payload 3
reconstruction Standby for
+ additional -
: requests 3
Missing pkt = idMy,idM,, ... , idM,]
repl
S = SO . 0000000 |1y Sending reply BLE role: Advertiser
UIDy (broadcast)) u {
Requesting missing UIDA' 0x04 | /‘dM0 ,,,,, idM g
Update the list of packets m
ST IS BLE role: Scanner BLE role: Advertiser
Phase: Selection : Waiting for missing packets - LuID M | My
.................... o
BLE role: Advertiser __ BLE role: Scanner Uy oM, \ M, Re-sending the
* Waiting o be seected - ing i — |m
e e :
Ul victim device ID, ° M
L 001y L e
v
Victim ID, matches ? ?—

(a) Discovery & Selection. (b) Transfer, Validation, & Recovery.

Fig. 4. Phases of our attack

* Discovery phase: In the first phase of our attack (i.e., Discovery phase in
Fig. , the attacker device starts with advertiser mode, where it broadcasts
an advertisement containing UUID,4 and our custom discovery command as
byte 0x00. After sending this discovery advertisement, the attacker switches to
scanner mode to scan for any reply advertisement from victim devices in the
transmission range. In case of no response is received within an interval of time,
the attacker switches back to the advertiser mode and repeats the process (i.e.,

8 A. Gangwal et al.

discovery broadcasting and scanning for reply). Victim devices in the transmis-
sion range would receive the discovery advertisement. Subsequently, the victim
devices switch to advertiser mode, broadcast a reply advertisement containing
UUIDy, a special pattern (cf. Section , and I Dy ; switch again to scanner
mode and wait to be selected by the attacker device. The attacker maintains a
list of victim devices currently in range (using the mapping of UUI Dy to IDy).
When one or more advertisement replies are received, the attacker updates such
a list by adding the relevant victim devices’ information. At the same time, when
a victim device does not reply to a discovery advertisement, then the attacker
would consider that victim device as unreachable (i.e., out of range).

e Selection phase: To select a victim device (i.e., Selection phase in Fig. ,
the attacker device switches to advertiser mode, broadcasts selection command
as byte 0x01 and target victim’s 1Dy . After receiving this selection announce-
ment, victims check if they are selected by comparing their I Dy, and only the
selected one is involved in subsequent phase. Meanwhile the others victim de-
vices wait for the next discovery advertisement (i.e., a new Discovery phase).
After sending the selection announcement, the attacker instructs the selected
victim to start data transmission and switches to scanner mode.

o Transfer phase: The selected victim device segments the payload to be exfil-
trated into n enumerated segments of maximum size z bytes, then it switches to
advertiser mode. Each advertisement from the victim has its UU I Dy in Service
UUID field while Service Data field contains segment’s number and segment’s
content (i.e., Transfer phase in Fig. . In this phase, the victim device broad-
casts all the enumerated segments in a sequence. At the same time, attacker
receives and saves segments into memory. At the end of transmission, victim
device switches to scanner mode and wait for further instructions. Henceforth,
we refer as packets to the advertisements sent by wvictim’s app that include a
segment of payload to be exfiltrated.

o Validation & Recovery phases: Due to possible transmission problems, some
packets may not be well received by the attacker. For this reason, the attacker
runs Validation & Recovery phases (shown in Fig. . The attacker verifies
if all the packets have been received correctly (i.e., validation). If packets are
missing, the attacker device in advertiser mode requests the victim device to
send the missing packets (i.e., recovery) by sending a sequence with the missing
packets’ numbers; then attacker waits in scanner mode. Once the victim de-
vice receives such a request, it switches to advertiser mode to send the missing
packets and waits for further instructions in scanner mode. The attacker verifies
correct reception of all packets. If any packet is still missing, the attacker repeats
the recovery and validation steps until all packets have been received correctly.
Finally, the attacker reconstructs the payload from the entire packet sequence.

4 Proof-of-concept implementation of the attack

To carry out our attack, we design and implement a proof-of-concept framework.
In this section, we describe the implementation of our framework’s components
at the attacker side (in Section [4.1)) and victim side (in Section {4.2]).

BLEWhisperer 9

4.1 Attacker side: AT A4,: and ATscqn

On the attacker side, we developed two applications: AT 4qy: and AT scqn. AT adqut
is in charge of broadcasting advertisements and acts as a controller for the data
transmission by victim’s app. ATscqn acts as a receiver and it continuously listens
for advertisements from a wvictim’s app (filtered by UUIDy). We implemented
AT pgyt in C# and AT seqn in Python 3.10.1 using the Bleak libraries [2]. All ad-
vertisements from AT 44,: contain UUID 4 as the Service UUID and a command
(with its arguments) encoded as bytes in Service Data field. AT 44,: can issue
four types of commands: victim’s app’s discovery, target selection, start/stop
transmission, and packet retransmission request. Next, we describe the details
of these commands from both AT 44,+ and ATs.q, points of view.

o Victim’s apps’ discovery (command byte 0x00): AT a4, sends an adver-
tisement to discover the presence of all victim’s app(s) in range. Such advertise-
ment includes our discovery command as byte 0x00 in Service Data field. In the
meantime, ATg..n, monitors reply advertisements from in-range victim devices
and updates the mapping of UUIDy to IDy . In particular, ATs.q, filters such
replies via an identifier (i.e., fixed starting bytes 0x000000) in Service Data field.

e Target selection (command byte 0x01): The attacker can select a particular
victim from the list of currently in-range victim devices. To do so, AT 44, sends
an advertisement that includes this command as byte 0x01 followed by I Dy of
target victim device in Service Data field. From now on, only the target victim’s
app would respond to further commands.

o Start and stop transmission (commands bytes 0x02 and 0x03, respectively):
AT p4,¢ sends an advertisement that includes the command to start payload
transmission (i.e., byte 0x02) or to stop an ongoing one (i.e., byte 0x03) in
Service Data field. In particular, the start transmission command also sends
along parameter ¢, which specifies victim’s data transmission speed in terms
of time interval between its successive advertisements. ATg..n, would collect
advertisements coming from target’s UUI Dy, which is mapped to IDy .

o Retransmission request (command byte 0x04) AT 54yt can request retrans-
mission of one or more missing packets from wvictim’s app. Since victim’s app
includes corresponding segment’s number in a packet, AT aq4,+ can issue a re-
transmission request with command byte 0x04 followed by segment numbers of
missing packets and parameter ¢t in Service Data field. Similar to the start/stop
transmission command, AT's.., would also collect retransmitted advertisements.

Listing in Appendix [A] shows advertisement manipulation by AT4qo:.

4.2 Victim side: Victim’s app

On the victim side, we developed victim’s app running on an BLE-enabled An-
droid device. We implemented this app using Android Studio Version 2020.3.1.
We built our wvictim’s app using SDKv30 and SDK minVer26. UUID 4 is hard-
coded (a standard practice) in wvictim’s app, so it can recognize advertisements
from the attacker. Victim’s app includes both a scanner mode (to listen to
ATpgyt commands) and an advertiser mode (to send advertisements). We re-
port the configuration codes for the scanner and advertiser modes of victim’s

10 A. Gangwal et al.

app in Listings [A-2] and [A73] respectively in Appendix [A] Now, we describe in
detail wvictim’s app actions according to AT 44,¢ commands.

e Response to discovery command: Upon receiving discovery command, vic-
tim’s app builds and sends a response advertisement, which contains UUI Dy (OS
enforced, can change overtime) as the Service UUID and 0x000000 followed by
its I Dy in the Service Data field.

o Selected as target: Upon receiving a target selection command (that con-
tains target’s IDy), a victim’s app matches its own I Dy against the one in the
advertisement. If it matches, then this victim’s app expects further commands
from the attacker. From now on, only the target victim’s app responds to further
commands. All other victim devices wait for a new Discovery phase.

e Data transmission: With a start command from AT 44.:, the attacker tells
the target to transmit payload through packets. Since the data to be exfiltrated
has to be segmented over multiple packets, we store the segment’s number in the
first byte of the Service Data field of each packet. The segment’s number helps
to identify any duplicate as well as lost packets to be retransmitted. Since the
Service Data field can contain at most 13 bytes in total, each packet consists of
1 byte of segment’s number and 12 bytes of segment’s data. Moreover, wvictim’s
app also scans (i.e., bidirectional radio) for advertisements from AT 44,+ With a
command to stop the transmission.

o Retransmission request: Responding to a retransmission request, victim’s
app creates and sends missing packets identified by segment numbers.

To reduce the number of explicit retransmission requests in recovery phase,
we designed wvictim’s app to transmit the entire sequence of payload packets a
certain number of consecutive times defined by parameter R; i.e., victim’s app
transmits all the payload packets and repeats the process R times. Thus, ATscqn
can receive a specific packet R times at most. Alternatively, parameter T" defines
the timeout until which victim’s app keeps on sending all the payload packets,
i.e., R=o00till T. AT 44,+ can issue a stop transmission command when required.

5 Experimental evaluation

We describe our hardware setup and experimental method in Section We
report the analysis of our results for BLE legacy and extended advertisements
in Section and Section [5.3] respectively.

5.1 Hardware setup and experimental method

In our experiments, we run AT 44,; and ATsqq, on a desktop with AMD Ryzen
9 5900X, 64 GB RAM, and Intel Wi-Fi 6 AX200 network card that enables
Bluetooth 5.2. We install wictim’s app on five smartphones that run the original
stock Android-based OS from their manufactures. Table [1| reports the configu-
rations for these mobile devices in terms of release year, OS, Bluetooth version
supported, and the selected BLE advertising method.

BLEWhisperer 11

Table 1. Configurations of victim mobile devices.

Device Model Release Date Android Ver. Operating System Bluetooth Ver.

Oneplus6 2018.05 10 H20S 10.0.11 5.0
Oneplus8 2020.04 11 H20S 11.0.13 5.1
OppoReno4 2020.06 11 ColorOS 11 5.1
RedmilOxpro 2020.05 11 MIUI 12.5.4 5.1
VivoiQooZ1 2020.05 11 OriginOS 1.0 5.0

We primarily test the performance of our attack by varying the parame-
ter ¢ (i.e., time between victim’s successive advertisements). We use a ran-
domly generated text [I] for the payload to be transmitted. We set R = 3
and t = [1,2, 3] seconds while we set the maximum size z of segments accord-
ing to BLE technology used. For each mobile device, we repeat our experiments
three time for each value of t. Our experiment settings (i.e., R = 3) enable three
transmissions of all the payload packets, thus, ATs.q, can receive duplicate pack-
ets twice. It is worth mentioning that we exclude duplicate packets to evaluate
the effective performance of our attack. We stop few seconds after victim’s app
transmits the last packet in sequence. We evaluate the performance according to
a thorough set of metrics, i.e., data transfer rate, packet loss, packet inter-arrival
time, total transmission time, and percentage of payload received over time.

5.2 Experimental results - Legacy advertisements

Considering BLE legacy advertising, it allows to (i) cover a wider range of
Bluetooth-enabled devices, and (ii) show the lower bounds for our attack. In
these experiments, we transmit a payload with a fixed length of 1236 bytes, which
is divided by wvictim’s app into a total of 103 advertisements (i.e., z = 12 bytes).
We report the evaluation results in Fig. |5l In Fig. we report the average
data transfer rate for the three values of t. We can notice that the overall data
transfer rate with ¢ = 1 second is about 3 bytes/sec while it is reduced to half for
t = 3 (i.e., around 1.5 bytes/sec). While we achieve a higher transfer rate with
t = 1, we also have a higher percentage of packet loss as reported in Fig.
However, the percentage of lost packets is drastically reduced by setting t = 2
and t = 3, i.e., around 5.5% and 2.2% on average, respectively. In terms of time,
we can observe that both the average packet inter-arrival time (in Fig. |5(c)
and the average time for three full payload (R = 3) transmissions (in Fig.
increase with the value of t; while it remains stable among the different device
models. In light of these results, we can argue that ¢ = 2 is a reasonable trade-off
between data transfer rate, limited packet loss, and total transmission time.

As a further analysis, we report in Fig. [6] the percentage of received unique
packets over time. Differently from the previous experiments, here we keep re-
transmitting the entire sequence of payload packets (i.e., R = o0) until a time-
out (T) at 1250 seconds. As a confirmation of our previous results, we receive on
average 80% of the total packets in 320 seconds, 93% packets in 520 seconds, and
98% packets in 850 seconds, for t = 1, 2, and 3, respectively. This analysis also
highlights that we receive the majority of packets (i.e., around 80%) within the
first 320 seconds independently from the value of ¢. The remaining 20% pack-
ets suffer longer transmission time primarily due to blind retransmission of the

12 A. Gangwal et al.

| OnePlus6 B OnePlus8 [[]]] OppoReno4 B Redmi10xPro VivoiQooZ1 [7]

35

Data rate (bytes/sec)
Loss (%)

Successive advt. interval (s) Successive advt. interval (s)
(a) Average data transfer rate. (b) Average packet loss.
1500
B 2 1000 |- R
2 @2 K&
2 2
£ g 500 gg
0
Successive advt. interval (s) Successive advt. interval (s)
(c) Average packet inter-arrival rate. (d) Average transmission time.

Fig. 5. Our attack’s performance (duplicates excluded) for BLE legacy.

entire packet sequence, augmented by natural transmission losses. As a possible
strategy to avoid such a situation, an attacker can set an optimal transmission
timeout, and then request retransmission of only missing packets.

Successive advt. interval = 1s Successive advt. interval = 2s Successive advt. interval = 3s
100 100 100

80 - 80 1 80 1

60 1 60 60

40 40 40 1

—e— OnePlus6
—%— OnePlus8
—4— OppoReno4 204
—— RedmilOxPro
—&— VivoiQooZ1l

—e— OnePlus6
—%— OnePlus8
—4— OppoReno4 204
—— RedmilOxPro
—&— VivoiQooZ1l

—e— OnePlus6
—%— OnePlus8
—4— OppoReno4
—— RedmilOxPro
—&— VivoiQooZ1l

Total packets (%)
Total packets (%)
Total packets (%)

201

0 T T T T 0 T T T ™ 0 T T T T
0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250
Time (s) Time (s) Time (s)
(a) For t = 1s. (b) For t = 2s. (c) For t = 3s.

Fig. 6. Total packets (%) received (duplicates excluded) over time for BLE legacy.

5.3 Experimental results - Extended advertisements

Bluetooth extended advertising [9] allows us to improve the data transfer rate
for our attack compared to legacy advertisements [§]. We set the maximum size z
of segments according to the Maximum Advertising Data Length (MADL) sup-
ported by the considered devices and taking relevant extended headers into ac-
count. We could set maximum z = 237 bytes for Group A devices (i.e., Oneplus6,
Oneplus8, and OppoReno4) and maximum z = 170 bytes for Group B devices
(i.e., RedmilOxpro and VivoiQooZ1). In these experiments, we transmit a fixed
length payload of 6180 bytes (5 times of payload used in BLE legacy experi-

BLEWhisperer 13

ments), which is divided by wvictim’s app into a total of 37 and 27 advertisements
for z = 170 and z = 237 bytes, respectively. Fig. [7] reports our results.

| OnePlus6 B OnePlus8 [[]] OppoReno4 BB Redmil0xPro VivoiQooz1 [7] I

35

Loss (%)

888 8882 8888
0 R INZBEER M IR LR
1 2 3
Successive advt. interval (s) Successive advt. interval (s)
(a) Average data transfer rate. (b) Average packet loss.
15 1500

1000

Time (sec)
Time (sec)

Successive advt. interval (s) Successive advt. interval (s)

(c) Average packet inter-arrival rate. (d) Average transmission time.
Fig. 7. Our attack’s performance (duplicates excluded) for BLE extended.

As expected MADL, and thus z, has a significant impact on the overall per-
formance. As reported in Fig. we achieve an average data transfer rate of
up to 236 and 60 bytes/sec for devices in Group A and Group B, respectively.
Compared to legacy advertising, it corresponds to an improvement of 78 times
for Group A and 20 times for Group B. In Fig. we notice that Group A expe-
rience almost no packet loss while Group B suffers at most 7% packet loss, which
is also significantly lower than the one from legacy advertising. Considering the
time-related metrics, average packet inter-arrival rate (cf. Fig. [7(c)|) almost coin-
cides with interval ¢, and it determines the total transmission time (cf. Fig.
also according to transfer rate of devices in Group A and Group B.

Fig. [§| reports the percentage of unique packets received over time for ex-
tended advertising with R = co and timeout 7' = 125 seconds (1/10"" of T set
in BLE legacy experiments). In Group A, we receive the 90% of packets within
about 25, 50, and 75 seconds for t = 1, 2, and 3, respectively. Considering the
same values of t, we receive all packets within about 60, 100, and 120 seconds
in Group B. Comparing with the results of the same study on legacy adver-
tising (cf. Fig. @, we argue that extended advertising enables a more reliable
transmission due to low packet loss rate and reasonable total transmission time.
Therefore, we do not need to apply the strategy based on timeout and selective
packet retransmissions discussed in Section [5.2

6 Discussion

Here, we discuss the potential application of our attack in the real world, methods
to boost the transfer speed for exfiltration of large files, constraints related to
the Android OS versions, and possible countermeasures against our attack.

14 A. Gangwal et al.

Successive advt. interval = 1s Successive advt. interval = 2s Successive advt. interval = 3s
100 A 100 A 100

80 1 80 1 80 1
2 604 £ 60 £ 60
53 53 3
< < <
]] ©
® ® ®
a a a
s 401 —e— OnePlus6 K] 401 —e— OnePlus6 K] 401 —e— OnePlus6
Q Q Q

—— OnePlus8
204 —4— OppoReno4 204
—— RedmilOxPro
—=— VivoiQooZ1

—*— OnePlus8
—— OppoReno4 204
—— RedmilOxPro
—&— VivoiQooZ1

—*— OnePlus8
—4— OppoReno4
—— RedmilOxPro
—&— VivoiQooZ1

0 T T T T 0 T T T T 0 T T T T
0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
Time (s) Time (s) Time (s)
(a) For t = 1s. (b) For t = 2s. (c) For t = 3s.

Fig. 8. Total packets (%) received (duplicates excluded) over time for BLE extended.

6.1 Attack scenarios

We use our attack with extended advertisements to exfiltrate sensitive informa-
tion from a victim’s device. On a OnePlus6 device, we configure our wvictim’s
app to exfiltrate several types of sensitive information as use cases. We quantify
both the size of such information and the time required for the exfiltration using
BLE extended. It is important to note that the following use cases do not require
additional permissions unless explicitly specified.

o Get device build information: An installed app can access information about
the current build (e.g., OS Version, API level, security patch level) through
Build [13] class of Android SDK. An adversary can use our attack to gain access
to such information and exploit a vulnerability specific to that build. Due to its
small size, our attack can exfiltrate such information in two seconds at most.

o Get list of installed apps: Any installed app can access the list of apps
currently installed on the device using PackageManager [16] class. An adversary
can use such a list of installed apps to exploit known vulnerabilities in the in-
stalled packages or even to predict user traits from the list of installed apps [22].
On OnePlus6, we successfully exfiltrate a list of 496 apps installed (i.e., package
names; comprising 3.9KB in compressed form) in less than 17 seconds.

o Extract information accessible to victim’s app: Victim’s app disguises as a
benign app, which may require some permissions depending on the context. E.g.,
victim’s app pretending to be a fitness app might ask for storage permission. Our
attack can exfiltrate such context-specific information accessible to victim’s app.
E.g., we successfully exfiltrate one thousand contacts (i.e., full name, email, and
phone number; comprising 17.1KB in compressed form) in about 75 seconds.
As another example, we exfiltrate one thousand calendar events (in an ICS file;
comprising 65.3KB in compressed form) in about 285 seconds. Moreover, an
attacker can leverage our mapping of UUI Dy to IDy (cf. Section to bypass
Bluetooth’s address randomization defense that prevents device tracking [12].

e Deliver malicious payload: Our attack opens an avenue to deliver mali-
cious payload to victim devices. The attacker can broadcast a malicious payload
through a series of advertisements from its UUID 4; this process is similar to our
regular attack, only the roles of sender and receiver have reversed. Alternatively,

BLEWhisperer 15

the attacker can deliver larger payload via a WiFi network connection by using
socket programming, where our attack is used as C&C to steer WiFi/LocalOn-
lyHotspot connections (cf. Section . Once the malicious payload is delivered,
InMemoryDexClassLoader [I5] can execute it via ByteBuffer [I4]. Since all the
components are in the buffer, we do not need storage permissions.

6.2 Boosting data transfer speed

Despite the improved transfer rates enabled by extended advertisements, our
attack may not be suitable to exfiltrate large files, e.g., high-resolution photos.
So, we investigate whether our proposed attack can be further strengthened in
terms of data rate. We identify two viable solutions to boost the data transfer
speed using other faster wireless communication channels (e.g., WiFi), where
our attack is leveraged as C&C to enable the alternative wireless channel.

1. Connecting to an attacker-controlled WiFi network: Android 9 and below
allow us to toggle WiFi connection without user’s permission and to connect
to a particular WiFi Access Point (AP) by specifying its SSID and password.
The attacker can create an AP and send commands to the victim device (via
our attack) asking it to connect to the AP. Then, this connection can be used
for fast data extraction, e.g., over a peer-to-peer WiFi file sharing system.
Listing[A.4)in Appendix[A]shows turning WiFi on and connecting to a partic-
ular SSID. Additional permissions required here are ACCESS_NETWORK_STATE,
ACCESS_WIFI_STATE, CHANGE_WIFI_STATE, and INTERNET (only to open net-
work sockets). All these permissions are normal permissions.

2. Using startLocalOnlyHotspot: Android 10+ may restrict the above mentioned
method of connecting to an arbitrary WiFi AP because the decision [18] to
select/prefer an AP is made by the underlying OS. To overcome this restric-
tion, victim’s app can create a local hotspot (irrespective of Internet access)
using startLocalOnlyHotspot [I7] Upon successful creation of hotspot, the
reservation object returns SSID, security type, and credentials for connect-
ing to such hotspot. Victim’s app can pass these credentials to attacker via
our attack channel. Then, attacker can exploit this hotspot connection in the
same way as attacker-controlled WiFi AP (discussed above). Listing in
Appendix [A] demonstrates using startLocalOnlyHotspot. Additional permis-
sions required here are CHANGE WIFI_STATE, INTERNET (only to open network
sockets), and ACCESS_FINE LOCATION; the first two permissions are normal
permissions while the last one is already available with victim’s app.

6.3 Android version-specific requirements

Our attack require Bluetooth (i.e., BLUETOOTH and BLUETOOTH_ADMIN) and lo-
cation (i.e., ACCESS_FINE_LOCATION) permissions. Both Bluetooth-related per-
missions are normal and will remain the same for Android 12 (API level 31).
Location permission is classified as dangerous, hence victim’s app disguises as
benign app to obtain this permission. Till Android 9, location permission is only

16 A. Gangwal et al.

obtained, but location service is not required to be turned on. But in Android
10+, location service needs to be turned on to get scanning results. It can be
seen as a limitation, and to bypass it the attacker must disguise victim’s app as
a genuine app that needs location service to be on (e.g., as contact tracing app).

6.4 Countermeasures

Our proposed attack primarily exploits Bluetooth channel. According to the
Android permission documentation [4], BLUETOOTH and BLUETOOTH_ADMIN are
normal permissions and will be the same for Android 12 (API level 31). Although
starting Android 12, BLUETOOTH_ADVERTISE has become a dangerous permission,
we recommend that BLUETOOTH permission itself is made a dangerous permission
so that the user is notified if an application accesses Bluetooth in any form.
Permissions can be obtained from an average user by using apt pretexts [21] [26].
Hence, our attack remains valid even with the new permissions introduced in
Android 12 (APT level 31). We propose several concrete OS-based, and thus
user-independent, countermeasures to limit the capabilities of our attack:

1. The OS should inherently prevent continuous advertising by apps and/or
increase the time interval between advertisements.

2. As advertisements are mainly used to broadcast connection parameters and
preferences, it is reasonable to expect that the advertisement content - differ-
ently from our attack - would not change frequently. So, the OS can impose
a limit on the frequency of such changes in consecutive advertisements.

3. The content of advertisements should undertake strict control. The OS can
employ semantic checks or taint analysis to identify anomalous content that
could indicate a data exfiltration attempt.

4. The OS can also restrict the content of advertisements to a list of prede-
termined values. Despite an attacker can still use such values as a basis to
encode the to-be-transferred information (e.g., value#1 = ‘0’ and value#2
= ‘1"), such a measure will drastically reduce the throughput of our attack.

7 Conclusion

BLE extends BT stack with limited energy requirements and provide convenient
functionalities, making it suitable for many industrial and consumer applica-
tions. Among such functionalities, BLE advertisements ease the discovery of
other in-range devices. In this paper, we proposed an attack that exploits BLE
advertisements’ Service Data field to establish a communication medium between
unpaired devices. We discussed how an attacker can leverage this communica-
tion channel as a building block for data exfiltration from a device and cater to
even more dangerous attacks. While our proof-of-concept implementation con-
siders legacy BLE advertising to cover the widest range of BLE devices, its data
transfer rate can be increased by using extended advertisements in BLE 5.0.
Therefore, we argue that misuse of BLE advertisements poses a significant se-
curity threat, which can be limited by adopting our proposed countermeasures.

[1]
2]

Bibliography

Lorem Ipsum Generator. https://www.lipsum.com

Bluetooth Low Energy platform Agnostic Klient (Bleak) Libraries Ver-
sion 0.13.0. https://bleak.readthedocs.io| (2021)

ABI Research: Bluetooth and Wi-Fi Industrial Device Shipments World
Markets, Forecast: 2017 to 2025. https://www.abiresearch.com/market-
research/data-access/| (2021)

Android Developers Reference: Android Manifest Permission. https://
developer.android.com/reference/android/Manifest.permission/
Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: BIAS: Bluetooth Imper-
sonation Attacks. In: 41st IEEE S&P. pp. 549-562 (2020)

Antonioli, D., Tippenhauer, N.O., Rasmussen, K., Payer, M.: Blurtooth:
Exploiting Cross-transport Key Derivation in Bluetooth Classic and Blue-
tooth Low Energy. arXiv preprint:2009.11776 pp. 1-14 (2020)

Armis: BlueBorne Technical White Paper. https://www.armis.com/
research/blueborne/| (2017)

Bluetooth SIG: Bluetooth Core Specification Version 4.2. https://
www.bluetooth.com/specifications/specs/core-specification-4-2/
(2014)

Bluetooth SIG: Bluetooth Core Specification Version 5.2. https://
www.bluetooth.com/specifications/specs/core-specification-5-2/
(2019)

Bluetooth SIG: Bluetooth Market Update. https://www.bluetooth.com/
wp-content/uploads/2021/01/2021-Bluetooth Market Update.pdf
(2021)

Bluetooth SIG: Bluetooth ~ Wireless Technology. https://
www.bluetooth.com/learn-about-bluetooth/tech-overview/ (2022)
Fawaz, K., Kim, K.H., Shin, K.G.: Protecting Privacy of BLE Device Users.
In: 25th USENIX Security. pp. 1205-1221 (2016)

Google: Build. https://developer.android.com/reference/android/
os/Build

Google: ByteBuffer. https://developer.android.com/reference/java/
nio/ByteBuffer

Google: InMemoryDexClassLoader. https://developer.android.com/
reference/dalvik/system/InMemoryDexClassLoader

Google: PackageManager. https://developer.android.com/reference/
android/content/pm/PackageManager

Google: startLocalOnlyHotspot. https://developer.android.com/
reference/android/net/wifi/WifiManager#startLocalOnlyHotspot
Google: Wi-Fi Suggestion API for Internet Connectivity. https://
developer.android.com/guide/topics/connectivity/wifi-suggest
Lester, S.: The FEmergence of Bluetooth Low FEnergy. https:
//www.contextis.com/us/blog/the-emergence-of-bluetooth-low—
energy| (2015)

https://www.lipsum.com
https://bleak.readthedocs.io
https://www.abiresearch.com/market-research/data-access/
https://www.abiresearch.com/market-research/data-access/
https://developer.android.com/reference/android/Manifest.permission/
https://developer.android.com/reference/android/Manifest.permission/
https://www.armis.com/research/blueborne/
https://www.armis.com/research/blueborne/
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://www.bluetooth.com/specifications/specs/core-specification-5-2/
https://www.bluetooth.com/specifications/specs/core-specification-5-2/
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/java/nio/ByteBuffer
https://developer.android.com/reference/java/nio/ByteBuffer
https://developer.android.com/reference/dalvik/system/InMemoryDexClassLoader
https://developer.android.com/reference/dalvik/system/InMemoryDexClassLoader
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/android/net/wifi/WifiManager#startLocalOnlyHotspot
https://developer.android.com/reference/android/net/wifi/WifiManager#startLocalOnlyHotspot
https://developer.android.com/guide/topics/connectivity/wifi-suggest
https://developer.android.com/guide/topics/connectivity/wifi-suggest
https://www.contextis.com/us/blog/the-emergence-of-bluetooth-low-energy
https://www.contextis.com/us/blog/the-emergence-of-bluetooth-low-energy
https://www.contextis.com/us/blog/the-emergence-of-bluetooth-low-energy

18
[20]

[21]

[22]

[23]

A. Gangwal et al.

MITRE Corporation: Bluetooth-related CVEs. https://cve.mitre.org/
cgi-bin/cvekey.cgiTkeyword=bluetooth (2022)

Redmiles, E.M., Mazurek, M.L., Dickerson, J.P.: Dancing Pigs or External-
ities? Measuring the Rationality of Security Decisions. In: 19th ACM EC.
pp. 215-232 (2018)

Seneviratne, S., Seneviratne, A., Mohapatra, P., Mahanti, A.: Predicting
User Traits from a Snapshot of Apps Installed on a Smartphone. ACM
Mobile Computing and Communications Review 18(2), 1-8 (2014)

Singh, K., Sangal, S., Jain, N., Traynor, P., Lee, W.: Evaluating Bluetooth
as a Medium for Botnet Command and Control. In: 7th DIMVA. pp. 61-80
(2010)

StatCounter: Mobile & Tablet Android Version Market Share World-
wide. https://gs.statcounter.com/android-version-market-share/
mobile-tablet/worldwide (2021)

Statista: Android - Statistics & Facts. https://www.statista.com/topics/
876/android/ (2021)

Tuncay, G.S., Qian, J., Gunter, C.A.: See No Evil: Phishing for Permissions
with False Transparency. In: 29th USENIX Security. pp. 415-432 (2020)
Wang, J., Hu, F., Zhou, Y., Liu, Y., Zhang, H., Liu, Z.: BlueDoor: Breaking
the Secure Information Flow via BLE Vulnerability. In: 18th MobiSys. pp.
286—298 (2020)

Wu, J., Nan, Y., Kumar, V., Payer, M., Xu, D.: Blueshield: Detecting Spoof-
ing Attacks in Bluetooth Low Energy Networks. In: 23rd RAID. pp. 397-411
(2020)

Wu, J., Nan, Y., Kumar, V., Tian, D.J., Bianchi, A., Payer, M., Xu, D.:
BLESA: Spoofing Attacks against Reconnections in Bluetooth Low Energy.
In: 14th USENIX WOOT. pp. 1-12 (2020)

Wu, J., Wu, R., Antonioli, D., Payer, M., Tippenhauer, N.O., Xu, D., Tian,
D.J., Bianchi, A.: LIGHTBLUE: Automatic Profile-Aware Debloating of
Bluetooth Stacks. In: 30th USENIX Security. pp. 1-18 (2021)

Xu, F., Diao, W., Li, Z., Chen, J., Zhang, K.: BadBluetooth: Breaking
Android Security Mechanisms via Malicious Bluetooth Peripherals. In: 26th
NDSS. pp. 1-15 (2019)

Ziegeldorf, J.H., Morchon, O.G., Wehrle, K.: Privacy in the Internet of
Things: Threats and Challenges. Security and Communication Networks
7(12), 2728-2742 (2014)

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=bluetooth
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=bluetooth
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://www.statista.com/topics/876/android/
https://www.statista.com/topics/876/android/

BLEWhisperer 19

Appendix A Code snippets

Here, we report the code required for: (i) advertisement manipulation by AT gy
in Listing |A.1} (ii) wvictim’s app scanner mode configuration in Listing |A.2
(iii) victim’s app advertiser mode configuration in Listing|A.3| (iv) turning WiFi
on and connecting to a specific SSID in Listing and (v) starting start-
LocalOnlyHotspot and getting credentials for the hotspot in Listing

using Windows.Devices.Bluetooth.Advertisement;

private static BluetoothLEAdvertisementPublisher blePublisher = new
BluetoothLEAdvertisementPublisher();

private static void sendCommandAdvt(Guid advertiserUUID, Byte[] command, String VictimId){

List<byte> data2send = new List<byte>();

data2send.AddRange (advertiserUUID.ToByteArray())

data2send.AddRange (command)

if (command!= (byte)0){

data2send.AddRange (Encoding.UTF8.GetBytes (VictimId))}

IDataWriter dataWriter = new DataWriter();

dataWriter.WriteBytes(data2send.ToArray());

IBuffer buffer = dataWriter.DetachBuffer();

BluetoothLEAdvertisementDataSection dataSection = new
BluetoothLEAdvertisementDataSection(BitConverter.GetBytes(33) [0], buffer);

blePublisher.Advertisement.DataSections.Clear(); //remove default content of ServiceData

blePublisher.Advertisement.DataSections.Add(dataSection); //add command

blePublisher.Start();

¥

Listing A.1. DataSection content manipulation AT aq.:

BluetoothAdapter bluetoothAdapter = BluetoothAdapter.getDefaultAdapter();
ScanSettings scanSettings = new ScanSettings.Builder()

.setScanMode (ScanSettings.SCAN_MODE_BALANCED)

.setCallbackType (ScanSettings.CALLBACK_TYPE_ALL_MATCHES)

.setMatchMode (ScanSettings .MATCH_MODE_AGGRESSIVE)
.setNumeMatches(ScanSettings.MATCH_NUM_DNE_ADVERTISEMENT)
.setReportDelay(OL) .build();

BluetoothLeScanner bluetoothLeScanner = bluetoothAdapter.getBluetoothLeScanner();
List<ScanFilter> scanFilters = new ArrayList<>();

ScanFilter scanFilter = new ScanFilter.Builder().build();
scanFilters.add(scanFilter);
bluetoothLeScanner.startScan(scanFilters,scanSettings,leScanCallback);

Listing A.2. Victim’s app’s BluetoothLeScanner

BluetoothLeAdvertiser advertiser = bluetoothAdapter.getBluetoothLeAdvertiser();
AdvertiseSettings settings = new AdvertiseSettings.Builder()
.setAdvertiseMode (AdvertiseSettings.ADVERTISE_MODE_BALANCED)
.setTxPowerLevel (AdvertiseSettings.ADVERTISE_TX_POWER_HIGH)
.setConnectable(false) .build();
AdvertiseCallback advertiseCallback = new AdvertiseCallback() {
@0verride
public void onStartSuccess(AdvertiseSettings settingsInEffect) {
super.onStartSuccess(settingsInEffect);
Log.d("Advertisement","Advertise Started");}
@Override
public void onStartFailure(int errorCode) {
super.onStartFailure (errorCode) ;
Log.d("Advertisement","Advertise error "+errorCode);
}
};

Listing A.3. Setting AdvertiseSettings and AdvertiseCallback on victim’s app

20 A. Gangwal et al.

WifiManager wifiManager = (WifiManager) getSystemService (WIFI_SERVICE);
wifiManager.setWifiEnabled (true);

String ssid = "LAPTOP-NTT7FOC3 1338";

WifiConfiguration wifiConfiguration = new WifiConfiguration();
wifiConfiguration.SSID = ssid;

wifiConfiguration.preSharedKey = "08(2aR00";

int netID = wifiManager.addNetwork(wifiConfiguration) ;
wifiManager.disconnect();
wifiManager.enableNetwork(netID,true);

Log.d("WIFI net ID",String.valueOf(netID));
wifiManager.reconnect();

Listing A.4. Turning WiFi on and connecting to a specific SSID

WifiManager wifiManager = (WifiManager)
getApplicationContext () .getSystemService(Context.WIFI_SERVICE) ;

wifiManager.startLocalOnlyHotspot(new WifiManager.LocalOnlyHotspotCallback() {

@0verride

public void onStarted(WifiManager.LocalOnlyHotspotReservation reservation) {

super.onStarted(reservation) ;

Log.d("HOTSPOT" ,reservation.getWifiConfiguration().toString());

WifiConfiguration config = reservation.getWifiConfiguration();

String SSID= config.SSID;

String password=config.preSharedKey;

}, new Handler());

Listing A.5. Starting startLocalOnlyHotspot and getting credentials for the hotspot

	BLEWhisperer: Exploiting BLE Advertisements for Data Exfiltration

