
HAL Id: hal-04003674
https://hal.science/hal-04003674

Submitted on 24 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Continuous Authentication in Secure Messaging
Benjamin Dowling, Felix Günther, Alexandre Poirrier

To cite this version:
Benjamin Dowling, Felix Günther, Alexandre Poirrier. Continuous Authentication in Secure Messag-
ing. Lecture Notes in Computer Science, 2022, Lecture Notes in Computer Science, 13555, pp.361-381.
�10.1007/978-3-031-17146-8_18�. �hal-04003674�

https://hal.science/hal-04003674
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Continuous Authentication in Secure
Messaging

Benjamin Dowling1 , Felix Günther2 , and Alexandre Poirrier3(B)

1 University of Sheffield, London, UK
b.dowling@sheffield.ac.uk

2 ETH Zürich, Zürich, Switzerland
mail@felixguenther.info

3 École polytechnique and Direction Générale de l’Armement, Paris, France
alexandre.poirrier@polytechnique.org

Abstract. Secure messaging schemes such as the Signal protocol rely
on out-of-band channels to verify the authenticity of long-running com-
munication. Such out-of-band checks however are only rarely actually
performed by users in practice.
In this paper, we propose a new method for performing continuous

authentication during a secure messaging session, without the need for an
out-of-band channel. Leveraging the users’ long-term secrets, ourAuthen-
tication Steps extension guarantees authenticity as long as long-term
secrets are not compromised, strengthening Signal’s post-compromise
security. Our mechanism further allows to detect a potential compro-
mise of long-term secrets after the fact via an out-of-band channel.
Our protocol comes with a novel, formal security definition capturing

continuous authentication, a general construction for Signal-like proto-
cols, and a security proof for the proposed instantiation. We further
provide a prototype implementation which seamlessly integrates on top
of the official Signal Java library, together with bandwidth and storage
overhead benchmarks.

Keywords: Secure messaging · Authentication · Compromise
detection · Post-compromise security.

1 Introduction

The Signal end-to-end encrypted messaging protocol [20] is used by billions of
people [28], in the Signal app itself and other messengers such as Facebook
Messenger [11] and WhatsApp [26]. The security of encryption keys used in
the Signal protocol relies on two composed cryptographic protocols. First, a
Diffie–Hellman-style key exchange protocol involving long-term asymmetric keys
(whose public part is distributed via a central Signal server) is used to derive
a shared secret. This initial shared secret is then used by parties in Signal’s
Double Ratchet protocol [17] to derive symmetric keys, used to encrypt messages
between the two communicating parties.
c� The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
V. Atluri et al. (Eds.): ESORICS 2022, LNCS 13555, pp. 361–381, 2022.
https://doi.org/10.1007/978-3-031-17146-8_18

362 B. Dowling et al.

Signal’s Security. There have been numerous analyses of the security of the
Signal protocol, as has been recapitulated in [22], which show that security prop-
erties for messaging protocols come in a variety of flavours with different adver-
sary powers and strengths.

For these analyses, models separate different types of secrets: session secrets
(like ephemeral randomness or state), which are used throughout the Double
Ratchet protocol, and long-term secrets, used only in the initial key agreement.
Some [6,7] study the security of the Signal protocol in its entirety, including the
X3DH key exchange. Others [1,2,10,13,15,18] focus exclusively on the ratcheting
part of the protocol, thus considering only session secrets. Among other security
properties, [6] and [1] confirm that against strong adversaries who control the
network and can adaptively compromise session and long-term secrets, Signal
offers forward secrecy (meaning that the secrecy of messages sent before a secret
leakage are still secure) as well as post-compromise security [7] (meaning that
after users exchange unmodified messages, security is restored or “healed”).

As pointed out by [9], the definition of post-compromise security is quite
restrictive in the sense that the adversary needs to remain completely passive for
security to be restored. Indeed, if the adversary remains active after a state leak-
age and continuously injects forged messages, authenticity is never restored. [9]
instead proposes a protocol relying on an out-of-band channel (like email, SMS,
or an in-person meeting) to detect such active adversaries, leveraging additional
fingerprints computed by the protocol and compared over the out-of-band chan-
nel. However, while detection clearly is a good step towards mitigating attacks,
it does not prevent the actual attack from continuing.

Locking Out Active Adversaries. The question we are interested in for this
work goes one step further:

Can we, post-compromise, lock out even
an active adversary from a messaging communication?

Clearly, the answer in general is: No. An active network adversary that fully
compromises a user’s device, including all session and long-term secrets can,
by design, fully impersonate that user subsequently. Our angle to approach the
above question is to distinguish (and thus better leverage), the difference between
the use of session and long-term secrets in the Signal protocol.

More specifically, what if we can leverage that user long-term secrets are
harder to compromise, e.g., due to stronger randomness sources or better pro-
tection in hardware? Indeed, messaging services like WhatsApp or Signal are now
deployed [27] on devices which have access to secure hardware such as Trusted
Platform Modules (TPM) in which long-term secrets can be stored more safely.
Phones on the other hand can use smart-cards to store their long-term keys. A
typical attack scenario are border searches, where a travelling user would need
to give away their phone or laptop for analysis, risking the leak of their session
secrets. An adversary could then remain an active Man-in-the-Middle (MitM),
possibly on nation-controlled networks, yet long-term keys in smart cards or a

Continuous Authentication in Secure Messaging 363

TPM might not have been leaked. Such a breach of authenticity can have a high
impact in the case of Signal as sessions are typically months or years long.

We can then ask:

Can we, post-compromise, lock out even
an active adversary from a messaging communication
that compromised session, but not long-term secrets?

Notably, the answer for Signal is still: No. We will show how to, generically,
turn this into a Yes.

1.1 Contributions

The main contributions of this paper are

1. a formal, game-based definition of continuous authentication, a post-
compromise security property locking out active adversaries who have not
compromised long-term secrets;

2. a demonstration that protocols similar to Signal do not meet the security
requirement;

3. a generic extension for messaging protocols to provide them with provably-
secure continuous authentication;

4. a prototype implementation of our extension for Signal and an analysis and
benchmark of the overhead it introduces;

5. exposing a discrepancy between the post-compromise security by Signal’s
official library and what is claimed in the literature.

1.2 Further Related Work

The security of real secure messaging implementations is also evaluated in [8],
with a focus on (de)synchronization. Somewhat similar to our setting, their anal-
ysis involves an adversary trying to break post-compromise security by imperson-
ating a compromised user and finding discrepancies between the implementations
and the formal specifications.

Similarly to our approach, [13] proposes a construction for secure messaging
by signing message transcripts, focusing though on healing communication under
passive attacks while we are interested to detect and prevent active attacks.

2 Continuous Authentication

This section presents what locking out an active adversary from a messaging
communication formally means. The basis for this is a formal syntax, follow-
ing [1], that captures generic messaging schemes that operate on an unreliable
channel, derive an initial shared session secret using long-term keys and then
derive further session secrets from previous state, new randomness and possi-
bly long-term keys. This in particular encompasses the Signal Double Ratchet
protocol.

364 B. Dowling et al.

We then put forward a game-based security definition for continuous authen-
tication, which guarantees two core properties:

1. An active MitM adversary that compromised a user’s communication state
gets locked out of the communication unless it has also compromised the
user’s long-term secrets.

2. Users can correctly decide whether long-term secrets have been compromised
in an active attack, via an out-of-band channel.

The first property captures the desired strengthening of messaging protocols.
In the Double Ratchet protocol [17], all secrets are derived from prior established
secret state (the so-called root and chain keys) and new randomness generated by
the users (the Diffie–Hellman ratchet keys). The former is revealed in a full state
compromise and the latter are unauthenticated and can hence be impersonated
by the adversary. Therefore, an adversary can conserve its Man-in-the-Middle
position indefinitely without being detected in-band.

The second property improves on a related issue: If long-term secrets are com-
promised, then security is not restored if users only close their current session
and reopen a new one, but users will instead need to generate and distribute new
long-term keys. This procedure however is cumbersome and typically involves
manual effort, so ideally one would like to better know when it is indeed nec-
essary. Continuous authentication offers such a checking mechanism, enabling
users to only change their long-term secrets if they have indeed been leaked.

2.1 Messaging Schemes

A messaging scheme consists of several algorithms: The core algorithms, fol-
lowing [1], are used to create users (Register), initiate sessions between them
(InitState) and let them send and receive messages (Send and Recv). Our
definition supports an arbitrary number of users, but only two-party sessions
(i.e., no group chats).

In addition to the four core messaging algorithms, our formalization intro-
duces StartAuth, a procedure which can be used to initiate an in-band authen-
tication step1 and DetectOOB, a procedure that compares the states of two
session participants out-of-band and decides whether an adversary has used a
long-term secret to avoid in-band detection.

Moreover, the session state contains an auth flag which is initially set to
None. StartAuth is a special procedure which may set this flag to a value other
than None to indicate that the party is currently performing an authentication
step. An authentication step is passed once the auth flags of both communication
parties are back to None.

In a session between two parties, we define an epoch as a flow of messages,
sent by one party without receiving a reply by their peer. Epochs are numbered:
even epochs correspond to messages sent by the initiator of the conversation and
1 This procedure can leave the state unchanged if the messaging scheme, like the
original Signal protocol, does not support in-band authentication.

Continuous Authentication in Secure Messaging 365

odd epochs to messages sent by the responder. Within an epoch, messages are
again numbered consecutively.

2.2 Security Game

We now present the formal security game capturing continuous authentication,
represented in Definition 1.

The security game creates two users, Alice (A) and Bob (B), and lets the
adversary interact with them using oracles to simulate a communication. As the
final objective is to detect long-term secret compromise, long-term secrets are
distributed honestly to parties. In contrast, medium-term secrets are generated
by parties, but delivered on the communication channel, allowing the adversary
to tamper with them. The adversary is active on the network and can corrupt
devices, leaking their current state. The adversary can also compromise long-
term secrets, which sets a flag compromised in the game, maintaining adversary
knowledge within the game. When the adversary terminates, an out-of-band
detection step (detectTrial, see Algorithm 1) is triggered.

The adversary breaks continuous authentication (we say the adversary
“wins”) by (1) fooling the out-of-band detection DetectOOB to think it com-
promised the long-term keys when it actually did not, or (2) injecting a message
and successfully passing an authentication step (passinj �= ∅), without being
detected.

Note that our model conservatively grants the adversary more power than
may seem reasonable in practice. In particular, the adversary can choose when
in-band and out-of-band detection steps happen (by calling StartAuth and ter-
minating). In practice, in-band detection steps may follow a predefined schedule,
and out-of-band detection steps are performed at the discretion of users.

Oracles and Security Game. The adversary has access to the following ora-
cles, with corresponding counterpart oracles for Bob:

– createState-A creates the initial state of Alice given some public information
of Bob provided by the adversary.

– transmit-A takes a plaintext as input and simulates Alice sending it.
– deliver-A takes a ciphertext as input and simulates Alice receiving it.
– corruptState-A returns the current state of Alice.
– auth-A makes Alice request authentication.
– corruptLTS-A leaks Alice’s long-term secret to the adversary.

For space reasons, we defer their formal definition to Fig. 2 in the appendix.
The security game itself and resulting security notions are defined as follows.

Definition 1. (Continuous Authentication). Let A be a probabilistic
polynomial-time adversary against a messaging scheme MS. It has access to ora-
cles defined above, abbreviated as oraclesMS. The security game is given in Algo-
rithm 1.

366 B. Dowling et al.

1 game Detection-Game(A, MS):
2 (LTIA,LTSA,MTIA,MTSA) $←− MS.Register()
3 (LTIB ,LTSB,MTIB ,MTSB) $←− MS.Register()
4 πA, πB ← None,None
5 win ← False, closed ← False, compromised ← False
6 transA, transB ← ∅, ∅
7 injA, injB, authinj , passinj ← ∅, ∅, ∅, ∅
8 AoraclesMS(LTIA,LTIB ,MTIA,MTIB)
9 detectTrial()
10 return win ∧ ¬closed

11 procedure detectTrial():
12 assert(πA ∧ πB ∧ ¬πA.auth ∧ ¬πB .auth)
13 d ← DetectOOB(πA, πB)
14 if d ∧ ¬compromised:
15 win ← True
16 elif ¬d ∧ passinj �= ∅:
17 win ← True

Algorithm 1: Security game capturing continuous authentication.

The advantage of adversary A against the messaging scheme MS in the detec-
tion game is:

Adv(A) = Pr [Detection-Game(A, MS) = 1].
The messaging scheme MS is said to provide continuous authentication if for

all efficient adversaries A, Adv(A) is small.

The game defines internal variables to keep track of the communication and
of the adversary’s actions:

– (LTIU ,LTSU) is the long-term information and secret of user U and πU its
state.

– win is a flag representing if the adversary has met the winning conditions.
– closed is a flag representing the state of the connection (if it is closed or not).
– compromised records if the adversary has compromised either of the parties’
long-term secrets.

– transU is a set holding ciphertexts created by a legitimate user U .
– injU is a set containing messages injected to user U (which user U accepted)
that are yet to be authenticated. authinj is a set used during authentication
steps which holds all injected messages currently being authenticated. passinj
is a set containing all injected messages that successfully passed authentica-
tion.

Oracle Details. (See Appendix, Fig. 2 for the oracles’ code-based definition.)
The transmit-A/B oracles are a wrapper around Send, which records cipher-

texts created legitimately by users. Similarly, the deliver-A/B oracles are a
wrapper around Recv which add injected ciphertexts to the inj sets.

Continuous Authentication in Secure Messaging 367

When Alice starts an authentication step (which happens when she receives
an authentication message or when auth-A is called), authinj is filled with all
messages that were injected to her. Authenticated messages will be those she
has received in the last epoch and before.

Whenever the adversary calls deliver-A/B, a function is called to check if the
adversary has successfully injected a message and passed an authentication step.
In that case, it adds the injected messages that were successfully authenticated
in passinj and removes them from authinj and inj sets.

The win flag can only be set to True in the detectTrial function. This
happens either if parties output True in the out-of-band detection step but the
long-term secret was not compromised (users produced a false positive) or if
they output False but communication was successfully tampered with and the
authentication step passed (the attacker was successful at avoiding detection).

3 Introducing Authentication Steps

This section presents our proposed Authentication Steps protocol that generically
extends messaging schemes to achieve continuous authentication.

Our extension introduces authentication steps that may happen regularly at
defined epochs in a session or could be user-triggered. These authentication steps
leverage long-term secrets. In Signal, the long-term secret of a user consists of
their private identity key, a Diffie–Hellman exponent. The Authentication Steps
protocol introduces a new type of long-term secret, which is a signing key sigkU .2

The objectives of an authentication step are twofold:

1. to convince parties that they are communicating with the holder of their
peer’s private key, and

2. to detect tampering with messages since the last authentication step.

To that end, each party sends on the in-band channel their own view of the
communication since the last authentication step. These messages are included
alongside regular messages exchanged between users; as we will see, this allows
the authentication steps to seamlessly be integrated on top of the existing Signal
protocol.

In order to maintain forward secrecy, the additional information is derived
from the (public) ciphertexts sent. To save space, intermediate computations
compress those ciphertexts as they are sent or received. Those intermediate
computations and an authentication step are illustrated in Fig. 1.

2 In practice, Signal already re-uses the identity key to sign a user’s medium-term
public key using the XEdDSA [16] signature scheme; we therefore emphasize that
an implementation may similarly reuse that identity key as the signing long-term
key for our authentication steps extension. In practice, this means only maintaining
a single long-term secret for both Signal and our Authentication Steps protocol.

368 B. Dowling et al.

Fig. 1. An example execution of an authentication step. The actual authentication
step is performed during epochs 4 to 6, with authenticated messages from epoch 0
(epoch numbers in boldface). Additional data sent for those messages is included
below arrows. For epochs 4 to 6, Hi,j hashes are still computed by both par-
ties, but they are omitted in this figure as they concern the next authentication
step. [Computation U] for U ∈ {A,B} corresponds to the computation H

(0)
U ←
0||H

�
ε||HU
0,0||HU
0,2||HU
1,0||HU
1,1||HU
2,1||HU
3,0

�
.

Continuous Authentication in Secure Messaging 369

3.1 Recording Ciphertexts

In order to perform authentication steps, parties need to store the transcript of
ciphertexts sent and received. The order in which messages are received is not
relevant as reordering may be caused by the unreliable channel.

Instead of storing ciphertexts as sent, each party computes digests of those
ciphertexts using a hash function and stores those in a dictionary. Concretely, for
every sent or received message, each user U computes and stores HUi,j = H

�
cUi,j

�
,

where H is a cryptographic hash function and cUi,j is the ciphertext corresponding
to message j sent or received in epoch i by user U .

3.2 Authentication Steps

The stored (and hashed) ciphertexts are then used in the actual authentication
step. An authentication step is a 3-pass message exchange and therefore requires
three epochs to complete. In the following, an authentication step is described
wlog. with Alice sending the first authentication message. Figure 1 illustrates an
authentication step, performed in epochs 4 to 6.

The authentication step information is included in every message of the
epoch. That way, the peer receives the authentication information at least once,
as if they do not receive it, the epoch number will not increase. If authentication
information is missing from a message where it should have been included, then
the receiving party should dismiss the message.

In the first epoch, Alice sends the following additional authentication infor-
mation (encrypted along with actual plaintext):

– the indexes of messages that she should have received from Bob, but did not,
denoted SKIPA,

– the index of the most recent message she has received from Bob, denoted
authidx , and

– a signature SIGsigkA(authidx ,SKIPA) over both values.

This allows Bob to know which messages Alice wants to authenticate. When
Bob receives this message, he first verifies the signature using Alice’s signing
public key. In case of success, Bob computes the following hash:

H (nB)
B = nB ||H

�
H (nB−1)
B || ||(i,j)∈I (nB)B H
B
i,j

�
,

where nB is the number of authentication steps Bob has completed and H (nB−1)
B

the hash computed in the previous authentication step (with the convention
H (−1)
B = ε the empty string). The concatenation happens in lexicographic order

over I (nB)
B , the set of all messages sent and received by Bob since last authen-

tication step and until message authidx , and excluding messages with an index
contained in SKIPA.

In the second epoch (with Bob sending messages), Bob sends the following
information (along with the regular message plaintexts):

370 B. Dowling et al.

– the indexes of messages that he should have received from Alice, denoted
SKIPB , and

– a signature SIGsigkB (H
(nB)
B ,SKIPB) over the hash computed and the indexes

of missed messages.

When Alice receives Bob’s message, she extracts the list SKIPB and com-
putes the following hash:

H (nA)
A = nA||H

�
H (nA−1)
A || ||(i,j)∈I (nA)A H
A
i,j

�
,

where, like for Bob, nA is her number of completed authentication steps and
H (nA−1)
A is the previous hash (or H (−1)
A = ε). Alice then checks the signature

received from Bob, using Bob’s public signing key, on data (H (nA)
A ,SKIPB).

In the third epoch, Alice sends a signature SIGsigkA(H
(nA)
A) over her hashed

collection of seen messages. When Bob receives it, he verifies the signature’s
validity on H (nB)
B using Alice’s signing public key.

If at some point a signature verification fails, the verifier closes the connec-
tion. Otherwise, Alice and Bob have passed the authentication step.

Deniable Signing. We emphasize that any unforgeable signature scheme can
be used in the authentication step. In particular, to maintain Signal’s denia-
bility of the initial key agreement (cf. [25]), signatures can be generated using
designated-verifier or 2-user ring signatures [14,19], similarly to their deployment
in recent proposals for Signal-like deniable key exchanges [3,12,23,24].

3.3 Detecting Compromised Long-Term Secrets

In this setting, we assume that Alice and Bob have passed at least one authenti-
cation step. At each authentication step, parties derive a hash H (nA)
A or H

(nB)
B .

Authentication steps succeed if the signatures over those hashes match.
On a high-level, users execute the following protocol: Using the out-of-band

channel, parties compare the last hash they have computed (which they store in
their state until the next authentication step) as well as the number of authen-
tication steps performed. If the hash values and authentication steps counters
match, the users output False, indicating that they do not detect long-term key
compromise, otherwise they output True.

If no adversary tampers with the communication, then exchanged hashes
would match. Conversely, hashes not matching means that an adversary is
present. Moreover, as at least one authentication step has been successful, the
adversary must have been able to forge a signature to avoid in-band detection,
which indicates they know at least one long-term secret. We will formally prove
these two properties of the Authentication Steps protocol next.

Continuous Authentication in Secure Messaging 371

4 Security of the Authentication Steps Protocol

We now formally establish the continuous authentication security (as per Defi-
nition 1) of our Authentication Steps protocol extension given in Sect. 3.

Theorem 1. Assuming a collision resistant hash function H and an existentially
unforgeable signature scheme S, the Authentication Steps protocol presented in
Sect. 3 provides continuous authentication as per Definition 1.

Formally, the advantage of any adversary A in the detection game against
the Authentication Steps protocol is bounded as follows:

Adv(A) ≤ AdvcollB1 (H) + 2 · Adv
EUF-CMA
B2 (S),

for reduction adversaries B1 and B2 given in the proof.

The proof is separated into two cases:

1. users decide one of their long-term secrets is compromised when that is not
the case; and

2. the adversary manages to inject a message and remain undetected.

Due to space restrictions, we defer the detailed proof to Appendix A, and only
give a proof sketch here.

In Case 1, the adversary never corrupts the long-term secret, yet the parties
decide that their long-term secret is compromised. Thus, the hashes that Alice
and Bob exchanged at the end of the game must be different, but both Alice and
Bob verified signatures hashes in the last authentication step. It follows then that
either Alice or Bob received a signature that was not produced by their peer,
and that the adversary must have successfully forged a message under one of
their (non-compromised) signing key. This would violate EUF-CMA security of
the signature scheme, leading to the 2 · AdvEUF-CMA

B2 (S) term in the theorem
bound.

In Case 2, the adversary must have injected a message between Alice and
Bob, but when Alice and Bob exchanged their hashes at the end of the game,
the hash outputs matched. It follows that between Alice’s or Bob’s computations
there must be a hash collision, leading to the AdvcollB1 (H) term in the theorem
bound.

5 Implementation and Benchmarks

We implemented a prototype of our Authentication Steps protocol which inte-
grates seamlessly on top of the official Signal Java library.

Our full implementation can be found on GitHub3, along with build instruc-
tions and our benchmarking tests.

3 https://github.com/apoirrier/libsignal-java-authsteps

372 B. Dowling et al.

Space and Computation Overhead. Authentication steps require additional
data to be computed and stored, such as the ciphertexts hashes between authen-
tication steps.

The storage and bandwidth overhead is a function of the channel reliability
and the average number of messages per authentication step, the latter being the
more influential parameter. Indeed, the sender cannot know in advance which
messages the peer has received, thus there is no alternative but storing every
ciphertext hash individually.

As for computational overhead, computing the ciphertext hashes involves
one hash invocation; additionally, at most one signature and one verification
operation is performed per epoch. The signature scheme employed by Signal is
XEdDSA [16]. Signing and verifying data typically requires the same amount of
computation as the Diffie-Hellman key computation happening in asymmetric
ratchet steps. Thus, the computational overhead is at most the same magnitude
as the original computations in Signal.

Benchmarking the Space Overhead. In order to give an estimate on the
space overhead induced by the Authentication Steps extension, we performed
simulations of communication sessions to evaluate ciphertext size and state sizes.
The message inputs for our simulations are taken from the National University of
Singapore SMS Corpus [4,5], an SMS dataset composed of English text messages.

At the example of a 95%-reliable channel, our results show a mean increase
of 43 bytes (+ 39%) in ciphertext size and 2.6KB (+411%) in session state size
compared to the unmodified Signal protocol. Overheads increase with longer
communication epoch lengths and lower channel reliability.

This overhead can be optimized through the usage of trees (for instance
Merkle trees) to store hashes, and compress them if consecutive sequences of
messages are received. This optimization would be interesting to implement and
benchmark, at the same time it would make the underlying analysis and notions
more complex. Furthermore, this optimization can only be performed on the
receiver’s side, as the sender has no way to know which sent messages will even-
tually be received. Thus, the compression can only happen on at most half of
the conversation, and the space optimisation is bound by a factor 2.

6 Observations on the Official Implementation

While implementing the proposed protocol, we found that the state deletion
strategy in Signal’s official Java implementation [21] is different from the strategy
described in the formal analyses in the literature, such as [1] or [6], even if the
latter claim to be based on the implementation. The official Signal specification
[17] itself is unclear, and the strategy used in the implementation is implied but
not made explicit.

In [1] or [6], post-compromise security kicks in after two epochs, which means
that after two epochs of untampered communication after a state compromise,
security is restored. This happens by the deletion of no longer necessary state

Continuous Authentication in Secure Messaging 373

once an epoch ends. However, the Signal implementation deletes this state only
5 epochs later, which is a hardcoded value4.

Based on this, we observe that the following attack is possible which demon-
strates that the official Signal implementation achieves only slightly weaker post-
compromise security than claimed in the literature. In the middle of a commu-
nication between Alice and Bob, an adversary leaks the state of Alice. Assume
that during this epoch i, Alice sent ni messages to Bob. The adversary can, by
using the leaked state, create a valid ciphertext for message (i, ni+1) (and even
more messages).

Given the literature definition of post-compromise security, as the adversary
remained passive security should be restored at epoch i+ 3. However, with the
Signal implementation, as Bob’s state for epoch i is not yet deleted at epoch
i+ 3, the adversary can successfully inject messages (for epoch i) to Bob.

Note however that security is restored 5 epochs after compromise, therefore
the implementation still guarantees a weaker post-compromise security property.

An Explanation of this Weaker Property, and Fixing it. The Signal
implementation disregards the total number of messages sent in the previous
epoch, which is included alongside messages, and instead keeps the chain key
without computing in advance message keys for missed messages. This saves
computation time and space as the keys are not computed if those messages
never arrive while the immediate decryption property is still valid as the chain
key is kept and message keys can be derived if needed.

To fix this, when a new receiving epoch begins, the value of the total number
of messages can be used to derive all message keys for this epoch and then delete
the chain key from the state. This recovers the strong post-compromise security
as claimed in the literature.

7 Conclusion

Messaging protocols such as Signal that only use their long-term secrets for ses-
sion initiation allow for state-compromising adversaries to permanently take over
a connection as a Man-in-the-Middle. This paper offers a strengthened security
notion, continuous authentication, which locks out an active adversary post-
compromise who has not compromised long-term keys, and enables detection of
long-term secret compromises using an out-of-band channel. Our Authentication
Steps protocol extension generically enables this security in a provably-secure
way, adding regular authentication steps in the protocol that leverages long-term
keys to authenticate users and ensure no tampering has occurred. Moreover, an
out-of-band protocol can be used on top of that to detect adversaries having
used long-term secrets to avoid in-band detection.

4 Cf. line 210 in https://github.com/signalapp/libsignal-protocol-java/blob/fde96d22
004f32a391554e4991e4e1f0a14c2d50/java/src/main/java/org/whispersystems/
libsignal/state/SessionState.java#L210.

374 B. Dowling et al.

Fig. 2. Oracles available to the adversary in the continuous authentication security
game (cf. Definition 1). The MS. prefixes for functions of the messaging scheme are omit-
ted. The CheckAuthStepPassed function checks if the adversary succeeded in injecting
a message which passed an authentication step. Each oracle has a counterpart whose
implementation is similar by swapping A and B in the implementation.

We analysed the overhead introduced by authentication steps, benchmarking
our prototype implementation which seamlessly integrates on top of the official
Signal library. While implementing those benchmarks, we remarked that the
official implementation has a weaker post-compromise security property than
claimed in the literature.

While this paper focuses mainly on the Signal protocol, the concept of con-
tinuous authentication as well as the Authentication Steps protocol is generic.
We envision that it can be adapted to other messaging protocols or protocols
with long-lived connections, like TLS 1.3 resumption sessions, to provide stronger
authenticity guarantees.

The Authentication Steps protocol strongly authenticates the entire tran-
script, even if the underlying channel is unreliable. Another interesting direction
for future work is a conceivable reduced-overhead variant that only authenti-
cates the key material (e.g., the ratchet keys in Signal) in every epoch. Such
variant would still strengthen post-compromise security, yet in a weaker sense
as it would not necessarily allow to detect the injection of messages at the end
of compromised epochs, a property the Authentication Steps protocol provides.

Continuous Authentication in Secure Messaging 375

A Security of the Authentication Steps Protocol

This section proves Theorem 1, which states that the Authentication Steps pro-
tocol is secure given the assumption that the underlying cryptographic primi-
tives are secure, namely the hash function and the signature scheme. We denote
AdvcollA (H) the advantage of an adversary trying to find a collision for a hash
functionH and AdvEUF-CMA

A (S) the advantage of an adversary in the EUF-CMA
(Existential UnForgeability in the Chosen Message Attack setting) game against
a signature scheme S.

False Positives and False Negatives. Before proving security of the Authen-
tication Steps protocol from Sect. 3, we introduce several useful definitions.

Recall that from the specification, no authentication steps can overlap. There-
fore, users will reject messages that start a new authentication step if they are
currently performing one. We can thus number authentication steps from a user
U ’s point of view from 1 to nU .

For the actual theorem proof, we split the winning condition into two events,
which we denote the false positive case and the false negative case, and use
results from Propositions 1 and 2 to give an upper bound on their probability.

Definition 2. Given an adversary A playing the security game of Definition 1,
we define the following events:

– W is the event that the A wins the game,
– FP is the event that at the end of the game, ¬closed ∧ ¬compromise ∧ d is

true,
– FN is the event that at the end of the game, ¬closed ∧ passinj �= ∅ ∧ ¬d is

true.

FP and FN respectively stand for false positive and false negative.

Proof (Proof of Theorem 1). Let A be an adversary in the game of Definition
1. Because of the implementation of the detectTrial function and because the
win flag is only set in this function, it is immediate that W = FP � FN which
are the events defined in Definition 2.

Therefore:
Adv(A) = Pr [W] = Pr [FP] + Pr [FN] .

Moreover, Proposition 2 states that Pr [FP] ≤ 2 ·AdvEUF-CMA
B2 (S) and Propo-

sition 1 states that Pr [FN] ≤ AdvcollB1 (H), which proves the inequality.

A.1 Upper Bound for False Negatives

This section gives an upper bound on the probability Pr [FN] that an adversary
produces a false negative in the game. We first introduce Lemma 1 which is used
to prove Proposition 2.

376 B. Dowling et al.

Lemma 1. Let A be an adversary playing the security game of Definition 1
against the Authentication Steps protocol from Sect. 3.

If passinj �= ∅ at the end of the game, it means that there exists some user
U ∈ {A,B}, an authentication step j for U and a message index i ∈ I (j)U such
that cAi �= cBi (where one of the ciphertext could be ⊥ if the corresponding user
has sent no ciphertext for index i).

Proof. In the following we consider an execution of the game which leads to
passinj �= ∅ at the end of the game.

Let i be the index of a ciphertext in passinj . passinj is filled only in the
CheckAuthStepPassed function (see Fig. 2) if authinj is not empty.
authinj is filled only at two places: at Line 4 of the auth-A/B oracle, or at

Line 8 of deliver-A/B (see Fig. 2). For both cases, this happens when a user
U enters an authentication step (wlog. we choose authentication step j), and
message i comes from injU .

Message i has already been received because it is in injU when added to
authinj , i.e., when the authentication step begins, so it is not a skipped message.
Moreover, i ≤ auth.authidx given the implementation of StartAuth.
πU .lastauth contains the index of the last message authenticated. As authinj

is cleared at the end of every authentication step, having the ciphertext cor-
responding to index i in authinj means that it has not been authenticated
in a previous authentication step. Moreover, messages coming before the pre-
vious authentication step are not decrypted, which means that necessarily
i > πU .lastauth.

This proves that for this authentication
step j, i ∈ [πU .lastauth, authinfo.authidx] and not in U ’s skipped dictionary,
which means i ∈ I (j)U .

Because i ∈ injU , it means U received and accepted ciphertext cUi (when
it was added to injU). If V is the peer of U , then cVi (if it exists) cannot be
equal to cUi because otherwise it would have been generated honestly by V and
therefore removed from injected sets in lines 5 to 7 of transmit-A/B in Fig. 2,
or never added to injU because in transU (see Line 8 of transmit-A and Line
11 of deliver-B in Fig. 2). Therefore, cAi �= cBi .

The following proposition gives an upper bound on the probability that the
adversary produces a false negative.

Note that in the construction given in Sect. 3, hashes are used to save space
for ciphertexts. However, if no hashes were used and transcripts of actual cipher-
texts were stored instead, false negatives could never happen.

Proposition 1 (False Negatives). Let A be an adversary in the detection
game of Definition 1 playing against the Authentication Steps protocol presented
in Section 3.

Then Pr [FN] ≤ AdvcollB1 (H), for a reduction adversary B1 constructed in the
proof.

Continuous Authentication in Secure Messaging 377

Proof. Let A be an adversary producing event FN. Recall from Definition 2 that
FN = ¬closed ∧ passinj �= ∅ ∧ ¬d .

In particular, passinj is not empty at the end of the game. According to
Lemma 1, this implies the existence of an authentication step j0 for user V ∈
{A,B} and some index i such that i ∈ I (j0)V and cAi �= cBi .

However, d is False. Given the computation of d in the DetectOOB pro-
cedure this means that πA.H

(nA)
A = πB .H

(nB)
B .

Recall that for any user U , H (nU)
U = nU ||H

(nU−1)
U . In particular nA = nB

and Alice and Bob have seen the same number of authentication steps.
Hashes H (j)U are computed

as follows: H (j)U ← H
�
H (j−1)
U || ||k∈sorted(I (j)U)
πU .H
U
k

�
for any j ≥ 0 and with

H (−1)
U = ε.
For any j ≥ 0, if H (j)A = H

(j)
B , then there are only two possibilities:

1. either H (j−1)
A || ||k∈sorted(I (j)A)
πA.H
A
k �= H

(j−1)
B || ||k∈sorted(I (j)B)
πB.H
B
k ;

2. either they are equal.

For the first case, becauseH (j)A = H
(j)
B but the two inputs to the hash function

are different, we have a hash collision.
The second case would induce a propagation property and yield H (j−1)
A =
H (j−1)
B .
As the equality H (j)A = H

(j)
B is true for the last authentication step, by induc-

tion we can deduce that either there is a hash collision or for all authentication
step j:
||
k∈sorted(I (j)A)
πA.H
A
k = ||k∈sorted(I (j)B)
πB .H
B
k .

This is true in particular for j = j0. Recall that elements of πU .HU are hashes
of ciphertexts computed on sending and receiving.

As the hash function produces outputs of the same length, it means that
there are exactly the same number of hashes in each concatenation. Moreover,
i ∈ I(j0)V so one hash corresponds to the ciphertext with index i. Let’s denote
HV = H(cVi) and HW = H(cW) the corresponding hashes (where HW is at the
same position in the concatenation that HV but for the other user).

Because the concatenations are equal,HV = HW . However, cW �= cVi . Indeed,
if we had cW = cVi , then both would correspond to the same index i, but cW
is the version of ciphertext i sent by W and cVi is the version received by V .
However, by definition of i, we necessarily have cAi �= cBi and therefore the
equality is impossible. As HV = HW but cW �= cVi , we have a hash collision.

Therefore, any case leading the adversary to a false negative shows that the
adversary could produce an explicit hash collision, and therefore the reduction B1
from the detection game to the hash collision game is immediate.

This shows that Pr [FN] ≤ AdvcollB1 (H).

378 B. Dowling et al.

A.2 Upper Bound for False Positives

This section gives an upper bound on the probability Pr [FP] that the adversary
produces a false positive in the game.

Proposition 2 (False Positives). Let A be an adversary in the detection
game of Definition 1 playing against the Authentication Steps protocol of Sect. 3.

Then Pr [FP] ≤ 2·AdvEUF−CMA
B2 (S), for a reduction adversary B2 constructed

in the proof.

Proof. Let A be an adversary producing event FP. Having ¬compromise means
that A never calls the corruptLTS-A/B oracles. Moreover, ¬closed means the
communication never closes, which means that signature verifications always
succeed. We will build an adversary B2 for the EUF-CMA game against signature
scheme S as a wrapper around A, which acts as a challenger in the detection
game for A.
B2 creates two users Alice and Bob, but will embed a public key provided by

the EUF-CMA challenger into one party’s signing key-pair and use the signing
oracle to generate signatures.

As user U1 is entirely generated by B2, the adversary can simulate the oracles
concerning U1, and therefore they are similar to the oracles defined in Fig. 2.
B2 keeps track of signature forgeries. Every time B2 signs a message using the

oracle provided by his challenger, B2 stores it. Moreover, every time a signature
on the signing public key pk given by the EUF-CMA game is verified, B2 checks
if the signature was produced by the signing oracle. If that is not the case, but
the verification is successful, B2 stops and outputs the corresponding pairm∗, σ∗.

To simulate user U0 whose private key is unknown, B2 can also use the original
oracles, except for transmit−U0 which is the only oracle using U0’s private signing
key in the Send procedure. Recall that the corruptLTS-A/B oracles are not
called by adversary A and therefore B2 does not need to simulate those oracles
when the event FP happens. In order to create the signature, B2 can query their
own challenger with message πU0 .auth to get the signature using U0’s private
key. Therefore, B2 is correctly defined and can act as a challenger for A.

Let’s now prove that if A triggers the event FP, then B2 wins the EUF-CMA
game with probability at least 1

2 .
During his last authentication step n, U1 verified successfully a signature σ on
πU1 .auth by using U0’s public signing key sigpk
U0 . πU1 .auth contains in particular
nU = n and H = H1 computed by U1. Because U0 and U1 can number their
authentication steps, they will produce at most one signature on an auth set
having nU = n. At the end of the game, parties output d = True. From the
implementation of DetectOOB, this means that πA.H

(nA)
A �= πB .H

(nB)
B . Given

the definition of πU .H
(nU)
U this means that during the last authentication step

of each party:
πA.nA||πA.auth.H �= πB .nB ||πB .auth.H .

Continuous Authentication in Secure Messaging 379

There are two disjoint possibilities:

1. either πA.nA = πB .nB but πA.auth.H �= πB .auth .H ;
2. either πA.nA �= πB .nB ;

In Case 1, πA.nA = πB .nB = n and πA.auth.H �= πB .auth.H . Yet U1’s
verification of σ succeeded on the data πU1 .auth which contains nU = n and
H = H1. However, as stated above U0 can produce and sign at most one set
auth with nU = n, and this set has H = πU0 .auth .H �= πU1 .auth.H = H1.
Therefore, πU1 .auth was not submitted to the signing oracle, and yet σ verifies
over πU1 .auth, so B2 can output this forgery.

In Case 2, πA.nA �= πB .nB . Recall that U0 and U1 are chosen uniformly at
random at the beginning of the game. Because the signing key-pair and signa-
tures are sampled and created in the same way in the detection game and in the
reduction when using the signing oracle, A cannot distinguish which key-pair is
used in the signing game. Therefore, with probability 1

2 , πU0 .nU0 < πU1 .nU1 .
In that case, U0 cannot have signed a set πU0 .auth with nU0 = πU1 .nU1 as it

has not yet reached the correct number of authentication steps. This once again
yields a valid signature forgery.

Therefore, with probability at least 1
2 , if A triggers FP then B2 wins the

EUF-CMA game. This leads to the upper bound Pr [FP] ≤ 2 · AdvEUF -CMA
B2 (S).

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2_5

2. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9_21

3. Brendel, J., Fiedler, R., Günther, F., Janson, C., Stebila, D.: Post-quantum asyn-
chronous deniable key exchange and the Signal handshake. In: Hanaoka, G.,
Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 3–
34. Springer (2022). https://doi.org/10.1007/978-3-030-97131-1_1

4. Chen, T., Kan, M.Y.: Creating a live, public short message service corpus: the
NUS SMS corpus. Lang. Resour. Eval. 47(2), 299–335 (2013). https://doi.org/10.
1007/s10579-012-9197-9

5. Chen, T., Kan, M.Y.: The National University of Singapore SMS Corpus [Dataset]
(2015). https://doi.org/10.25540/WVM0-4RNX

6. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A Formal
Security Analysis of the Signal Messaging Protocol. J. Cryptol. 33(4), 1914–1983
(2020). https://doi.org/10.1007/s00145-020-09360-1

7. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
Hicks, M., Köpf, B. (eds.) CSF 2016 Computer Security Foundations Symposium,
pp. 164–178. IEEE Computer Society Press (2016). https://doi.org/10.1109/CSF.
2016.19

380 B. Dowling et al.

8. Cremers, C., Fairoze, J., Kiesl, B., Naska, A.: Clone detection in secure messaging:
improving post-compromise security in practice. In: Ligatti, J., Ou, X., Katz, J.,
Vigna, G. (eds.) ACM CCS 2020, pp. 1481–1495. ACM Press, Nov 2020. https://
doi.org/10.1145/3372297.3423354

9. Dowling, B., Hale, B.: Secure messaging authentication against active man-in-
the-middle attacks. In: 2021 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 54–70 (2021). https://doi.org/10.1109/EuroSP51992.2021.00015

10. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS,
vol. 11689, pp. 343–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26834-3_20

11. Facebook: Messenger Secret Conversation, Technical Whitepaper (2016). https://
about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-
technical-whitepaper.pdf

12. Hashimoto, K., Katsumata, S., Kwiatkowski, K., Prest, T.: An efficient and generic
construction for signal’s handshake (X3DH): post-quantum, state leakage secure,
and deniable. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 410–440.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_15

13. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: The safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1_2

14. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_13

15. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2_6

16. Perrin, T.: The XEdDSA and VXEdDSA signature schemes. Tech. rep., Signal
(2016). https://whispersystems.org/docs/specifications/xeddsa/

17. Perrin, T., Marlinspike, M.: The Double Ratchet algorithm (2016). https://
whispersystems.org/docs/specifications/doubleratchet/

18. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_1

19. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1_32

20. Signal: Technical information. https://signal.org/docs/
21. Systems, O.W.: libsignal-protocol-java (2021). https://github.com/signalapp/

libsignal-protocol-java
22. Unger, N., et al.: SoK: Secure messaging. In: 2015 IEEE Symposium on Security

and Privacy, pp. 232–249 (2015). https://doi.org/10.1109/SP.2015.22
23. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: Ray, I.,

Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1211–1223. ACM Press, Oct 2015.
https://doi.org/10.1145/2810103.2813616

24. Unger, N., Goldberg, I.: Improved strongly deniable authenticated key exchanges
for secure messaging. PoPETs 2018(1), 21–66 (2018). https://doi.org/10.1515/
popets-2018-0003

Continuous Authentication in Secure Messaging 381

25. Vatandas, N., Gennaro, R., Ithurburn, B., Krawczyk, H.: On the cryptographic
deniability of the signal protocol. In: Conti, M., Zhou, J., Casalicchio, E., Spog-
nardi, A. (eds.) ACNS 2020. LNCS, vol. 12147, pp. 188–209. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-57878-7_10

26. WhatsApp Security. https://www.whatsapp.com/security/
27. How WhatsApp enables multi-device capability (2021). https://engineering.fb.

com/2021/07/14/security/whatsapp-multi-device/
28. WhatsApp Security Advisories (2021). https://www.whatsapp.com/security/

advisories

