Lecture Notes in Computer Science

13498

Founding Editors

Gerhard Goos, Germany Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA Wen Gao, China Bernhard Steffen D, Germany Moti Yung D, USA

Formal Methods

Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, *TU Munich, Germany* Annabelle McIver, *Macquarie University, Sydney, NSW, Australia* Peter Müller, *ETH Zurich, Switzerland* Erik de Vink, *Eindhoven University of Technology, The Netherlands* Pamela Zave, *AT&T Laboratories Research, Bedminster, NJ, USA* More information about this series at https://link.springer.com/bookseries/558

Thao Dang · Volker Stolz (Eds.)

Runtime Verification

22nd International Conference, RV 2022 Tbilisi, Georgia, September 28–30, 2022 Proceedings

Editors Thao Dang CNRS/Verimag Saint Martin d'Hères, France

Volker Stolz Høgskulen på Vestlandet Bergen, Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-031-17195-6 ISBN 978-3-031-17196-3 (eBook) https://doi.org/10.1007/978-3-031-17196-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2022, corrected publication 2022

Chapters 10, 11, 20 and 21 are licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapters.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the peer-reviewed proceedings of the 22nd International Conference on Runtime Verification (RV 2022), a hybrid event held during September 28– 30, 2022. The conference was part of the Computational Logic Autumn Summit (CLAS 2022), running during September 19–30, 2022, on the campus of the Ivane Javakhishvili Tbilisi State University in Tbilisi, Georgia.

The RV series is a sequence of annual meetings that brings together scientists from both academia and industry interested in investigating novel lightweight formal methods to monitor, analyze, and guide the runtime behavior of software and hardware systems. Runtime verification techniques are crucial for system correctness, reliability, and robustness; they provide an additional level of rigor and effectiveness compared to conventional testing, and are generally more practical than exhaustive formal verification. Runtime verification can be used prior to deployment, for testing, verification, and debugging purposes, and after deployment for ensuring reliability, safety, and security, for providing fault containment and recovery, and for online system repair.

RV started in 2001 as an annual workshop and turned into a conference in 2010. The workshops were organized as satellite events of established forums, including the Conference on Computer-Aided Verification and ETAPS. The proceedings of RV from 2001 to 2005 were published in Electronic Notes in Theoretical Computer Science. The RV proceedings have been published in Springer's Lecture Notes in Computer Science since 2006. Previous RV conferences took place in Istanbul, Turkey (2012); Rennes, France (2013); Toronto, Canada (2014); Vienna, Austria (2015); Madrid, Spain (2016); Seattle, USA (2017); Limassol, Cyprus (2018); and Porto, Portugal (2019). The conferences in 2020 and 2021 were held virtually due to the ongoing COVID-19 pandemic.

This year we received 40 submissions, 33 as regular contributions and seven as short or tool papers. Each of these submissions went through a rigorous single-blind review process as a result of which all papers except for a desk-reject received at least three review reports. The Program Committee selected 12 regular and five short/tool papers for presentation during the conference and inclusion in these proceedings. At the suggestion of the reviewers, the authors of five regular contributions that were not initially selected for publication were invited to provide short papers summarizing their ideas and providing pointers to their tools, and these have been included in the proceedings after a final short review. The evaluation and selection process involved thorough discussions among the members of the Program Committee and external reviewers through the EasyChair conference manager, before reaching a consensus on the final decisions.

The conference featured two keynote speakers:

- Serdar Tasiran, Amazon Web Services, USA
- Michal Valko, DeepMind and Inria, France

We are grateful for the support provided by the many people who contributed to RV 2022, including the Steering Committee members. We also thank the members of the Program Committee and their sub-reviewers for their timely and high-quality reviews as well as their contributions to the discussions. The conference organization was partially supported through sponsorship from Runtime Verification Inc., Amazon Web Services, and Springer.

Besik Dundua as local organizing chair assured the smooth organization and running of RV and the other affiliated events at CLAS. Finally, we appreciate the support and assistance provided by the team at Springer, as well as Ana Cavalcanti's and Marie-Claude Gaudel's confidence for including these proceedings into the Formal Methods subline. Volker Stolz is supported by the Norwegian Research Council through grant 309527 – COEMS Training Network.

Thao Dang is supported by the French-Japanese ANR-JST CyphAI project and the UGA DAMon project.

August 2022

Thao Dang Volker Stolz

Organization

Program Committee Chairs

Thao Dang	CNRS/Verimag and Université Grenoble Alpes, France
Volker Stolz	Western Norway University of Applied Sciences,
	Norway

Steering Committee

Howard Barringer	University of Manchester, UK
Ezio Bartocci	Technical University of Vienna, Austria
Saddek Bensalem	Verimag and Université Grenoble Alpes, France
(Co-chair)	
Yliès Falcone	Université Grenoble Alpes and Inria Grenoble, France
Klaus Havelund	NASA's Jet Propulsion Laboratory, USA
Insup Lee	University of Pennsylvania, USA
Martin Leucker	University of Lübeck, Germany
Giles Reger	University of Manchester, UK
Grigore Rosu	University of Illinois Urbana-Champaign, USA
Oleg Sokolsky (Co-chair)	University of Pennsylvania, USA

Program Committee

Benoît Barbot Domenico Bianculli Borzoo Bonakdarpour Chih-Hong Cheng Jyotirmoy Deshmukh Alexandre Donzé Yliès Falcone Chuchu Fan Lu Feng Dana Fisman Bernd Finkbeiner Adrian Francalanza Sylvain Hallé Klaus Havelund Bettina Könighofer Insup Lee Martin Leucker Anna Lukina	LACL, Université Paris-Est Créteil, France University of Luxembourg, Luxembourg Michigan State University, USA Fraunhofer IKS, Germany University of Southern California, USA Decyphir SAS, France Université Grenoble Alpes and Inria Grenoble, France MIT, USA University of Virginia, USA Ben-Gurion University of the Negev, Israel CISPA, Germany University of Malta, Malta Université du Québec à Chicoutimi, Canada NASA's Jet Propulsion Laboratory, USA TU Graz, Austria University of Pennsylvania, USA University of Lübeck, Germany
Anna Lukina	TU Delft, The Netherlands
Laura Nenzi	University of Trieste, Italy

Dejan Ničković	AIT, Austria
Gordon Pace	University of Malta, Malta
Nicola Paoletti	Royal Holloway, University of London, UK
Doron Peled	Bar-Ilan University, Israel
Giles Reger	University of Manchester, UK
José I. R. Jarabo	Universidad Complutense de Madrid, Spain
Indranil Saha	IIT Kanpur, India
César Sánchez	IMDEA, Spain
Gerardo Schneider	Chalmers University of Technology, Sweden
Julien Signoles	CEA, France
Oleg Sokolsky	University of Pennsylvania, USA
Hazem Torfah	University of California, Berkeley, USA
Dmitriy Traytel	University of Copenhagen, Denmark
Stavros Tripakis	Northeastern University, USA
Masaki Waga	Kyoto University, Japan
Wenhua Yang	Nanjing University of Aeronautics and Astronautics,
	China

Additional Reviewers

Shaun Azzopardi Maryam Bagheri Jan Baumeister Allan Blanchard Martin Ceresa Filip Cano Córdoba Hongkai Chen Luis Miguel Danielsson Souradeep Dutta Kunal Garg Jonathan Huerta Y. Munive Hannes Kallwies Karam Kharraz Tom Kuipers Josephine Lamp Adrien Le Coent Yannan Li Vivian Lin Yue Meng Anik Momtaz Victor Roussanaly Joshua Schneider Julian Siber Chukri Soueidi Daniele Varacca Songyuan Zhang

Learning by Bootstrapping of Latents (Abstract)

Michal Valko^{1,2}

¹ DeepMind, Paris, France ² Inria, Lille, France

Abstract. We will discuss self-supervised representation learning and a new paradigm for it based on bootstrapping of latents. We first present BYOL ("Bootstrap Your Own Latent") for images, which relies on two neural networks, referred to as *online* and *target*, that interact and learn from each other: From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While prior methods had intrinsically relied on negative pairs, BYOL achieved a new state of the art without them. We will also describe follow-ups of BYOL that we have explored within DeepMind, BGRL for graphs, MYOW for new uncharted domains such as neural readings, and BraVe for videos. We finally apply the paradigm to reinforcement learning and discuss curiosity-driven exploration when the rewards are sparse or absent. For this setting, we give a brand new algorithm BYOL-Explore that jointly learns a world representation, the world dynamics, and an exploration policy.

Contents

Full Papers	
Randomized First-Order Monitoring with Hashing Joshua Schneider	3
Automated Surgical Procedure Assistance Framework Using Deep Learning and Formal Runtime Monitoring <i>Gaurav Gupta, Saumya Shankar, and Srinivas Pinisetty</i>	25
Relaxing Safety for Metric First-Order Temporal Logic via Dynamic Free Variables Jonathan Julián Huerta y Munive	45
Rule-Based Runtime Mitigation Against Poison Attacks on Neural Networks	67
Optimizing Prestate Copies in Runtime Verification of Function Postconditions	85
A Barrier Certificate-Based Simplex Architecture with Application to Microgrids	105
Optimal Finite-State Monitoring of Partial Traces Peeyush Kushwaha, Rahul Purandare, and Matthew B. Dwyer	124
Tainting in Smart Contracts: Combining Static and Runtime Verification Shaun Azzopardi, Joshua Ellul, Ryan Falzon, and Gordon J. Pace	143
Transaction Monitoring of Smart Contracts	162
Anticipatory Recurrent Monitoring with Uncertainty and Assumptions Hannes Kallwies, Martin Leucker, César Sánchez, and Torben Scheffel	181
Abstract Monitors for Quantitative Specifications Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç	200
Runtime Verification of Kotlin Coroutines Denis Furian, Shaun Azzopardi, Yliès Falcone, and Gerardo Schneider	221

Short and Tool Papers

AspectSoL: A Solidity Aspect-Oriented Programming Tool with Applications in Runtime Verification	243
Towards Specificationless Monitoring of Provenance-Emitting Systems Martin Stoffers and Alexander Weinert	253
A Python Library for Trace Analysis Dennis Dams, Klaus Havelund, and Sean Kauffman	264
Lock Contention Performance Classification for Java Intrinsic Locks Nahid Hasan Khan, Joseph Robertson, Ramiro Liscano, Akramul Azim, Vijay Sundaresan, and Yee-Kang Chang	274
TestSelector: Automatic Test Suite Selection for Student Projects Filipe Marques, António Morgado, José Fragoso Santos, and Mikoláš Janota	283
DECENT: A Benchmark for Decentralized Enforcement Florian Gallay and Yliès Falcone	293
Runtime Verification for FMI-Based Co-simulation Anastasios Temperekidis, Nikolaos Kekatos, and Panagiotis Katsaros	304
TeSSLa – An Ecosystem for Runtime Verification Hannes Kallwies, Martin Leucker, Malte Schmitz, Albert Schulz, Daniel Thoma, and Alexander Weiss	314
Real-Time Visualization of Stream-Based Monitoring Data Jan Baumeister, Bernd Finkbeiner, Stefan Gumhold, and Malte Schledjewski	325
Automating Numerical Parameters Along the Evolution of a Nonlinear System	336
Correction to: Rule-Based Runtime Mitigation Against Poison Attacks on Neural Networks	C1
Author Index	347