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Abstract. When analysing cyber-physical systems for runtime verifi-
cation purposes, reachability analysis can be used to identify whether
the set of reached points stays within given safe bounds. If the system
dynamics exhibits nonlinearity, approximate numerical techniques (with
rigorous numerics) are often necessary when dealing with system evo-
lution. Since the error involved in numerical approximation should be
kept low to perform verification successfully, the associated processing
and memory costs become relevant especially when runtime verification
is considered. Given a reachability analysis tool, the issue of control-
ling its numerical accuracy is not trivial from the user’s perspective, due
to the complex interaction between the configuration parameters of the
tool. As a result, user intervention in the tuning of a specific problem
is always required. This paper explores the problem of automatically
choosing numerical parameters that drive the computation of the finite-
time reachable set, when the configuration parameters of the tool are
specified within bounds or lists of values. In particular, it is designed
to be performed along evolution, in order to adapt to local properties
of the dynamics and to reduce the setup overhead, essential for runtime
verification.

1 Introduction

In the verification of a generic cyber-physical system, modeling nonlinearity is
important in order to accurately capture the interaction of the digital control
with the continuous environment. In fact, studying the full interaction between
controller and environment, where continuous variables evolve in a possibly non-
linear way, represents a significantly harder problem compared to the analysis of
a digital controller in partial isolation. However, the formal methods community
in recent years has shown that the approach is feasible and applied it to different
systems especially in the field of robotics (such as [2,7,13]).
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The formalism of hybrid automata is commonly used to define the composi-
tion of controller and environment along with the semantics for its behavior (see
[3,6]). Reachability analysis in particular is concerned with the computation of
the reachable set, i.e., the set of points reached from an initial set that evolves
under the system’s dynamics. Given a dynamical system, obtaining its reachable
set allows to reason about its behavior, where a safety specification is represented
as geometric constraints on the reached points.

For linear hybrid systems, tools like HyPro [17] and SpaceEx [11] allow an
efficient representation of the evolution of the system. For nonlinear systems,
computing the reachable set is more problematic. To solve this issue, different
solutions are proposed in the literature, using either a numerical or symbolic app-
roach: see the tools Ariadne [4], CORA [1], Flow* [8], HSolver [15], JuliaReach [5]
and KeYmaera X [12] for some examples. In this paper we focus on a numerical
approach based on computing over-approximations of the reachable set.

Regardless of the preferred tool, it is apparent that automation plays a
very important role when approximate representations of the reachable set are
involved. Typically, the user needs to provide sensible values for configuration
parameters such as the integration step size or the polynomial order of a set
representation. These parameters usually affect the quality of numerical approx-
imation or enable/disable specific features, but in general they control the over-
approximation error. The problem is that the optimal values of the parame-
ters are difficult to know before the system under analysis is properly under-
stood. As a result, the user ends up refining configuration parameter values
iteratively until an acceptable result is obtained. This operation, usually done
manually with a trial-and-error approach, can become very time-consuming.
This is especially important for systems exhibiting nonlinear dynamics, where
symbolic approaches are more difficult to pursue and where evaluating the reach-
able set can be computationally intensive. In any case, the overhead due to user
interaction with the tool is non-negligible, in the worst case requiring to spend
hours observing the behavior of the system and repeatedly trying with differ-
ent configurations, for lack of an intuition on the complex interaction among all
configuration parameters. It is apparent that such approach does not work very
well for runtime verification, where real time constraints are incompatible with
manual tuning.

Hence, in this paper we propose a methodology for automated choice of the
values of configuration parameters. Differently from approaches that compute
a sequence of converging approximations to the exact result, the methodology
aims to solve the problem within a single run of execution in order to be com-
patible with runtime verification. The approach exploits concurrency by execut-
ing a single step of evolution on multiple configurations. The user is required
to supply only a reasonable range of values for each configuration parameter of
interest, hence its active role in optimising the reachable set calculation is greatly
reduced. In particular, safety specifications drive optimisation by generating geo-
metric constraints to hold along evolution. The distance to the specification is
the metric that allows to rank the various configurations and consequently use
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the most effective parameter values required. This approach has the advantage
that the chosen parameter values have local validity, i.e., they are selected at
each integration step, and thus they adapt across reachability problems and also
across different integration steps of the same problem, since different subspaces
usually have different dynamical responses.

This approach should be considered a heuristic compared to, say, the gen-
eration of invariants from a formal analysis of the dynamics [16]. In fact, rig-
orously guaranteeing bounds on the numerical over-approximation error would
mean to rely on worst-case formulae for error. Those in turn would yield overly-
conservative values for numerical configuration parameters, resulting in excessive
accuracy (e.g., a smaller integration step size than what is actually necessary).
By pursuing a heuristic approach instead we privilege performance.

The methodology proposed is generic enough to be adopted by any tool
that performs approximate reachability by integration of nonlinear vector field
dynamics from an initial set. The actual implementation and the correspond-
ing experimental evaluation comes from a general framework for configuration
tuning available in the Ariadnelibrary. Ariadnediffers from existing packages
since it is based on the theory of computable analysis and on a rigorous function
calculus to achieve provable approximation bounds on the computations [9,10].

In this work we describe the methodology for the continuous behavior, while
the extension to hybrid systems will be the subject of a future publication. We
remark that the actual challenge lies in the continuous aspects of evolution, so
we deem the continuous benchmark in the reported experiments sufficient to
confirm the validity of the approach.

To the best of our knowledge, this is the first work that addresses automa-
tion in such a general way, in particular for nonlinear dynamics where numerical
approaches are preferred. Current tools seem to focus specifically on automated
refinement of the integration step size or possibly the polynomial order (which
were already accounted for in our tool before). A recent work [19] proposed a
solution for nonlinear systems, which tunes values of parameters introduced in
their reachability algorithm performing linearization. In this solution however
parameters are hard-coded, being related to the specific algorithm. On the con-
trary, our approach is generic in two aspects: 1) the parameters are not defined
a priori, meaning that any subset of parameters involved in any reachability
algorithm can be chosen for tuning, and 2) no assumptions on the impact of a
given parameter are made.

In the following, in Sect. 2 we explain the general methodology involved, also
describing the details of dealing with a set of configuration values and ranking
the results obtained from them. Section 3 briefly comments on some preliminary
results obtained by using the methodology in our tool. Finally, Sect. 4 draws the
conclusions of the paper.
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2 Methodology

The proposed methodology is based on the following assumption:

Error Control Assumption. Given a system whose finite-time reachable set
is within a safe set, it is possible to obtain an over-approximation of the reachable
set within the same safe set by controlling the growth of the approximation error.

In practice this is the assumption on which Computable Analysis [18] relies,
stating that the over-approximated output converges to the exact output when
the approximated input converges to the exact input, where the initial set and
configuration parameter values are the input, and the reachable set R is the
output. The objective is not to repeat evolution of the system with progressively
finer configuration parameter values, until the over-approximation of the reach-
able set lies within the safe set. Such approach would be easy from the point of
view of tuning configuration parameters: once a reasonable initial configuration
is chosen, safety would be ultimately verified by progressively changing configu-
ration parameters to increase the accuracy of computation. Instead, in this paper
we aim to identify a strategy that achieves the desired result in a single run of
evolution by adjusting configuration parameter values along evolution steps.

In order to achieve this result while being as general as possible with respect
to the system dynamics, we need to control at each time step k the growth of
the corresponding evolve set Ek, i.e., the section of the flow tube of evolution. If
we control the evolve set, then the reach set Rk, i.e., the flow tube between steps
k − 1 and k, is controlled as well according to the integration scheme described
later in the paper. In fact, if we focus on rigorous numerical integration, the value
of the over-approximation error is bounded by a remainder term whose addition
to an under-approximation of the flow tube guarantees the enclosure of the exact
flow tube. Additionally, the so-called reconditioning operations on an evolve set
Ek transform the error into additional parameters in the set representation: this
causes a loss of information on the error component of the set along evolution.
Finally, based on the local contractive or expansive character of the dynamics,
the evolve set may even be reduced for a given evolution step (and the error
with it, if reconditioning is used).

2.1 General Approach

Due to the previous considerations, a global strategy for control of the growth
of the evolve set is difficult to devise. Conversely, an adaptive control relying
on the growth of the evolve set within a single integration step is more feasible.
Nevertheless, in order to drive configuration tuning based on safety objectives it
is necessary to set some global targets in terms of the growth of the evolve set. To
identify these targets we rely on fixed-step simulation of the system, as opposed
to rigorous evolution. Simulation returns a sequence of approximate points, but
its computation cost is mostly negligible with respect to rigorous evolution and
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consequently can be performed as a pre-analysis phase that gathers valuable
information on the expected reachable set.

Once pre-analysis has identified the constraints for error control, rigorous
evolution can be performed while tuning configuration parameter values accord-
ing to their ability to satisfy the constraints. Due to the complex interaction of
these numerical parameters with the actual value of the error, we don’t pursue
an analytical approach based on, e.g., a gradient descent algorithm optimising
a cost function. Instead, we rather rank the results obtained from running each
integration step concurrently on a multitude of configuration values. In order
to explore a finite amount of configuration values, we rely on an automated
discretisation of the configuration parameters.

Summarising, the approach proposed is divided into the following main
phases:

1. Simulate the system in a non-rigorous way, returning a set of timed approxi-
mate points

2. Identify the points whose distance from the unsafe set has a (local) minimum
and construct a list of timed distances called targets {τi}

3. From each τi construct a ranking parameter related to the rate of growth of
the evolve set Ek, which will drive the optimisation for rigorous evolution

4. From the safety specification construct additional ranking parameters, which
will check if a given reachable subset Rk is possibly unsafe

5. Evolve the system rigorously, where for each evolution step k:
(a) Select a set of points in the configuration search space
(b) For each point, concurrently, compute Ek and Rk

(c) Rank the results using the ranking parameters
(d) Take the best result as the actual Ek and Rk and generate the next set

of search points

Termination happens as soon as the evolution time is hit, or if any safety objec-
tive is missed for all points. In the following two Subsections, we provide the
necessary details related to the search space and ranking respectively.

2.2 Constructing and Exploring the Search Space

The search space for configuration parameter values is defined as a space over
the integers. For parameters defined in the boolean domain or as an enumer-
ation, the conversion onto integer values is trivial by using the index in the
enumeration (i.e., between 0 and n − 1 for an enumeration of size n). For values
defined in an interval we need to define a conversion policy. Most commonly, val-
ues for continuous parameters are discretised in their use: e.g., if a value ranges
between 10−2 to 10−8 typically, we are driven to change the value by multiplica-
tion/division by ten. Given this consideration, we shall define parameters along
with the conversion rule they are expected to adopt, for example:

– linear: rounds to the nearest integer;
– log2, log10: takes the logarithm and rounds to the nearest integer.
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By supplying the rule and a conversion back and forth, we can map values
for continuous (or relatively dense) parameters into a bounded integer space.

Finally, we must decide how to explore such space. For that purpose, we
assume that the search space is also bounded. The space is necessarily bounded
for enumeration parameters, like e.g. the choice between different integration
schemes. For parameters defined within intervals, such as the integration step
size, an unbounded approach is feasible and offers more freedom to the user but
it has some drawbacks. First, it does not allow to assess the size of the search
space, which would be useful to drive the exploration. Second, it does not allow
to choose a random initial point in the search space at the beginning of evolution.

For parameters defined as enumerations, any value is acceptable and we shall
try all values with equal probability. For parameters defined in intervals instead,
it is reasonable to assume that adjacent values return similar results, or equiv-
alently that results obtained by varying the value of the parameter have some
regular behavior such as monotonicity or concavity.

The distance between values of an enumeration parameter is taken as 1, i.e.,
all values are adjacent. In summary, exploration of the search space is made by
adjacency, in the case of interval parameters meaning that we either choose one
of the two adjacent values randomly, or we choose the only adjacent value of the
upper/lower bound of the interval. Given a concurrency level γ, the procedure
to evolve a set of γ points in the search space is the following:

1. At the beginning of evolution, construct a random initial point P̂0 in the
space of integer representations of parameters, and add it to the set of initial
points Π;

2. Choose a random point p from Π and construct a random adjacent point p̂;
add p̂ to Π; repeat 2. until ‖Π‖ = γ;

3. For each point in Π, convert it into the space of the parameters values and
execute the integration step;

4. Outputs from all points are ranked, yielding an ordering of the points in Π;
5. Choose the output from the highest ranked point of Π as the effective output

for the step;
6. Exit if the evolution time is hit;
7. Otherwise discard the lowest ranked half of the points and return to 2.

Here the update strategy for Π is very simple but it can be improved upon in
any way, for example to discourage the addition of points that have been ranked
particularly low in the past.

Note that the concurrent approach also introduces failure tolerance as a
byproduct: if one or more integration steps are not successful (e.g., by failing
to construct the flow function, a likely occurrence when an evolve set becomes
particularly large), we can simply discard the failing configuration points and
regenerate Π up to γ using the remaining points.

2.3 Ranking the Search Points

In order to select the best configuration point, it is first necessary to identify
ranking parameters (where we use the term parameter again, not to be confused
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with a configuration parameter, for lack of a better term) dependent on the
safety specification. We distinguish between safety ranking parameters and opti-
misation ranking parameters: the former come directly from the constraints that
define the safe set, while the latter are associated to some error growth rate tar-
gets (which again depend on the constraints). Both kinds of ranking parameters
identify a score when applied to one evolution step.

Safety parameters are the simplest, each associated to a safety constraint
function c(S), where if c(Rk) > 0 then the reach subset Rk is safe. The score for
the ranking parameter is represented by c(Rk) and the threshold for the score is
zero. If the threshold is crossed, we say that there is a hard failure with respect
to the specific ranking parameter.

An optimisation ranking parameter is more complicated, since it uses a target
to compare set growth rates. The growth rate ρk for an integration step k, with
starting evolve set Ek−1 and finishing evolve set Ek, is defined as

ρk =
|Ek| − |Ek−1|

Tk − Tk−1
(1)

where |Ek| is a measure of the radius of the set, i.e., ρk is the increase of radius
in units of evolution time and Tk is the initial time at step k.

In particular, from a constraint we can construct a target τ = (W τ , T τ ),
made of a radius W τ at a time T τ , which represents (an approximation of) the
maximum flow tube radius that does not intersect the boundary of the safe set.
This identifies a target growth rate ρτ

k:

ρτ
k =

W τ − |Ek−1|
T τ − Tk−1

(2)

Here we notice that ρτ
k is a value projected from the current step and conse-

quently it adapts to variations of |Ek| along evolution. In particular, it allows to
compensate for any positive or negative ρ−ρτ deviation on the successive steps.

The score is given by ρk, where ρτ
k represents the threshold; when ρk > ρτ

k

we say that there is a soft failure with respect to the ranking parameter. When
Tk−1 > T τ instead we say that the target expired and the corresponding ranking
parameter correspondingly expires, i.e., it is not used for ranking.

Summarising, the i-th ranking parameter yields an individual score σi and
possibly a soft or hard failure. In order to compare the scores on an equal basis,
each score must be normalised based on the best and worst values across all
search points. Consequently, the normalised score σ̂i becomes

σ̂i =
σi − σm

i

σM
i − σm

i

(3)

with m and M the minimum and maximum values respectively, where clearly
0 ≤ σ̂i ≤ 1 holds. The score function for a search point P then becomes

σ(P ) =
∑

i

σ̂i(P ) (4)
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To each score σ we also associate the number of soft failures ns and hard
failures nh.

In order to establish which of two search points P1 and P2 rank higher, we
compare score, soft failures and hard failures:

– nh(P1) > nh(P2) =⇒ P1 < P2

– nh(P1) = nh(P2) ∧ ns(P1) > ns(P2) =⇒ P1 < P2

– nh(P1) = nh(P2) ∧ ns(P1) = ns(P2) ∧ σ(P1) < σ(P2) =⇒ P1 < P2

where P1 < P2 means that P2 is ranked higher, i.e., it is more likely to be chosen
as the winning point for the evolution step, as well as being kept as a point for
the next step.

In particular, if all the points used for computing the k-th step have at least
1 hard failure, then safety verification necessarily fails and evolution is stopped.
Conversely, progress is not prevented by all the points having soft failures: it
simply means that it was not possible to satisfy one or more of the target growth
rates on the k-th step, but that could be amended in the following steps with
the updated target growth rates.

3 Preliminary Experimental Results

In this Section we briefly provide some preliminary results applied to the well-
known van der Pol oscillator, often used in the verification community as a
benchmark for nonlinear dynamics [14]. Due to space reasons, we only provide
summary information on the setup. The number of evolution parameters chosen
was 4, with 4–4–4–3 possible discretised values each, yielding 192 points in the
search space. We performed evolution with increasing concurrency γ = {1, ..., 5},
where γ = 1 means that no search is performed and γ = 5 means that 5 threads
are used to evaluate 5 different points. Results were averaged over 1000 tries for
each value of γ. For γ = 1, failure in completing evolution was %f = 62.9, with
an average execution time tx = 5.2 seconds. With γ = 2, we got %f = 0.7 and
tx = 7.6, up to γ = 5 yielding %f = 0.0 and tx = 10.8. Summarising, searching
using our approach gave a dramatic decrease in average failures even for minimal
concurrency, with a contained increase in execution time, and showed practically
no failures with only 5 threads used.

4 Conclusions

In this paper we described a methodology to perform safety verification of a
nonlinear system with a significant reduction in the time spent by the user on
tuning the tool configuration. The approach leverages concurrent execution of
the integration step, where configuration values are explored to optimise their
choice. Our preliminary results on a benchmark system show that it is possible
to succeed at the task practically 100% of the times within a single run with
minimum concurrency used. Conversely, manual tuning using the same config-
uration space would yield below 40% success. While the framework has been
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validated in the continuous case, a future publication will cover the extension to
the hybrid case in detail. Additionally, different search strategies can be envi-
sioned and implemented. The research activity on tuning is still in its infancy,
with no comparable papers at this level of generality in the literature as far as we
are aware. From our preliminary hands-on experience using Ariadne, we can
already state that the leap in tool usability introduced by this approach is very
significant. In particular, by leveraging the corresponding improvement in the
ratio between evolution time and processing time, more sophisticated runtime
verification routines can be envisioned.
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