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Abstract

We present Barrier Certificate-based Simplex (BC-Simplex ), a new, provably cor-
rect design for runtime assurance of continuous dynamical systems. BC-Simplex is cen-
tered around the Simplex Control Architecture, which consists of a high-performance
advanced controller which is not guaranteed to maintain safety of the plant, a verified-
safe baseline controller, and a decision module that switches control of the plant be-
tween the two controllers to ensure safety without sacrificing performance. In BC-
Simplex , Barrier certificates are used to prove that the baseline controller ensures
safety. Furthermore, BC-Simplex features a new automated method for deriving, from
the barrier certificate, the conditions for switching between the controllers. Our method
is based on the Taylor expansion of the barrier certificate and yields computationally
inexpensive switching conditions.

We consider a significant application of BC-Simplex to a microgrid featuring an ad-
vanced controller in the form of a neural network trained using reinforcement learning.
The microgrid is modeled in RTDS, an industry-standard high-fidelity, real-time power
systems simulator. Our results demonstrate that BC-Simplex can automatically derive
switching conditions for complex systems, the switching conditions are not overly con-
servative, and BC-Simplex ensures safety even in the presence of adversarial attacks
on the neural controller.

1 Introduction

Barrier certificates (BaCs) [28, 27] are a powerful method for verifying the safety of continu-
ous dynamical systems without explicitly computing the set of reachable states. A BaC is a
function of the state satisfying a set of inequalities on the value of the function and value of its
time derivative along the dynamic flows of the system. Intuitively, the zero-level-set of BaC
forms a “barrier” between the reachable states and unsafe states. Existence of BaC assures
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1918225, and CPS-1446832.
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that starting from a state where the BaC is positive, safety is forever maintained [7, 27, 28].
Moreover, there are automated methods to synthesize BaCs, e.g., [14, 35, 39, 32].

Proving safety of plants with complex controllers is difficult with any formal verification
technique, including barrier certificates. However, as we now show, BaCs can play a cru-
cial role in applying the well-established Simplex Control Architecture [30, 31] to provide
provably correct runtime safety assurance for systems with complex controllers.

We present Barrier Certificate-based Simplex (BC-Simplex ), a new, provably correct de-
sign for runtime assurance of continuous dynamical systems. BC-Simplex is centered around
the Simplex Control Architecture, which consists of a high-performance advanced controller
(AC) that is not guaranteed to maintain safety of the plant, a verified-safe baseline controller
(BC), and a decision module that switches control of the plant between the two controllers
to ensure safety without sacrificing performance. In BC-Simplex , Barrier certificates are
used to prove that the baseline controller ensures safety. Furthermore, BC-Simplex fea-
tures a new scalable (relative to existing methods that require reachability analysis, e.g.,
[4, 6, 5, 11]) and automated method for deriving, from the BaC, the conditions for switching
between the controllers. Our method is based on the Taylor expansion of the BaC and yields
computationally inexpensive switching conditions.

We consider a significant application of BC-Simplex , namely microgrid control. A mi-
crogrid is an integrated energy system comprising distributed energy resources and multiple
energy loads operating as a single controllable entity in parallel to, or islanded from, the ex-
isting power grid [34]. The microgrid we consider features an advanced controller (for voltage
control) in the form of a neural network trained using reinforcement learning. For this pur-
pose, we use BC-Simplex in conjunction with the Neural Simplex Architecture (NSA) [25],
where the AC is an AI-based neural controller (NC). NSA also includes an adaptation module
(AM) for online retraining of the NC while the BC is in control.

The microgrid we consider is modeled in RTDS, an industry-standard high-fidelity, real-
time power systems simulator. Our results demonstrate that BC-Simplex can automatically
derive switching conditions for complex systems, the switching conditions are not overly
conservative, and BC-Simplex ensures safety even in the presence of adversarial attacks on
the neural controller.

Architectural overview of BC-Simplex . Figure 1 shows the overall architecture of
the combined Barrier Certificate-based Neural Simplex Architecture. The green part of the
figure depicts our design methodology; the blue part illustrates NSA. Given the BC, the
required safety properties, and a dynamic model of the plant, our methodology generates a
BaC and then derives the switching condition from it. The reinforcement learning module
learns a high-performance NC, based on the performance objectives encoded in the reward
function.

The structure of the rest of the paper is the following. Section 2 provides background
material on barrier certificates. Section 3 features our new approach for deriving switching
conditions from barrier certificates. Section 4 introduces our Microgrid case study and
the associated controllers used for microgrid control. Section 5 presents the results of our
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Figure 1: Overview of the Barrier Certificate-based Neural Simplex Architecture

microgrid case study. Section 6 discusses the related work. Section 7 offers our concluding
remarks.

2 Preliminaries

We use Barrier Certificates (BaCs) to prove that the BC ensures safety. We implemented
two automated methods for BaC synthesis from the literature. As discussed next, one of the
methods is based on sum-of-squares optimization (SOS) and the other uses deep learning.
Our design methodology for computing switching conditions (see Section 3) requires a BaC,
but is independent of how the BaC is obtained.

BaC Synthesis using SOS Optimization. This method first derives a Lyapunov func-
tion V for the system using the expanding interior-point algorithm in [3]. It then uses the
SOS-based algorithm in [35] to obtain a BaC from V . Note that the largest super-level set
of a Lyapunov function within a safety region is a BaC. The algorithm in [14, 35] computes
a larger BaC by starting with that sub-level set and then expanding it, by allowing it to take
shapes other than that of a sub-level set of the Lyapunov function. This method involves a
search of Lyapunov functions and BaCs of various degrees by choosing different candidate
polynomials and parameters of the SOS problem. It is limited to systems with polynomial
dynamics. In some cases, non-polynomial dynamics can be recast as polynomial using, e.g.,
the techniques in [3].
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BaC Synthesis using Deep Learning. We also implemented SyntheBC [40], which uses
deep learning to synthesize a BaC. First, training samples obtained by sampling different
areas of the state space are used to train a feedforward ReLU neural network with 2 hidden
layers as a candidate BaC. Second, the validity of this candidate BaC must be verified.
The NN’s structure allows the problem of checking whether the NN satisfies the defining
conditions of a BaC to be transformed into mixed-integer linear programming (MILP) and
mixed-integer quadratically-constrained programming (MIQCP) problems, which we solve
using the Gurobi optimizer. If the verification fails, the Gurobi optimizer provides evidence
that can be used to focus continued training of the NN. In this way, the training and
verification steps can be iterated as needed.

3 Deriving the Switching Condition

We employ our novel methodology to derive the switching logic from the BaC. The Decision
Module (DM) implements this switching logic for both forward and reverse switching. When
the forward-switching condition (FSC) is true, control is switched from the NC to the BC;
likewise, when the reverse-switching condition (RSC) is true, control is switched from the
BC to the NC. The success of our approach rests on solving the complex problems discussed
in this section to derive an FSC. Consider a continuous dynamical system of the form:

ẋ = f(x, u) (1)

where x ∈ Rk is the state of the plant at time t and u ∈ Ω is the control input provided to the
plant at time t. The set of all valid control actions is denoted by Ω. The set of unsafe states
is denoted by U . Let xlb, xub ∈ Rk be operational bounds on the ranges of state variables,
reflecting physical limits and simple safety requirements.

The set A of admissible states is given by: A = {x : xlb ≤ x ≤ xub}. A state of the
plant is recoverable if the BC can take over in that state and keep the plant invariably safe.
For a given BC, we denote the recoverable region by R. Note that U and R are disjoint.
The safety of such a system can be verified using a BaC h(x) : Rk → R of the following
form [28, 27, 35, 14]:

h(x) ≥ 0, ∀x ∈ Rk \ U
h(x) < 0, ∀x ∈ U

(∇xh)Tf(x, u) + σ(h(x)) ≥ 0, ∀x ∈ Rk

(2)

where σ(.) is an extended class-K function. The BaC is negative over the unsafe region and
non-negative otherwise. ∇xh is the gradient of h w.r.t x and the expression (∇xh)Tf(x, u)
is the time derivative of h. The zero-super-level set of a BaC h is Z(h) = {x : h(x) > 0}.
In [35], the invariance of this set is used to show Z(h) ⊆ R.

Let η denote the control period a.k.a. time step. Let ĥ(x, u, δ) denote the nth-degree
Taylor approximation of BaC h’s value after time δ, if control action u is taken in state x.
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The approximation is computed at the current time to predict h’s value δ time units later
and is given by:

ĥ(x, u, δ) = h(x) +
n∑
i=1

hi(x, u)

i!
δi (3)

where hi(x, u) denotes the ith time derivative of h evaluated in state x if control action u is
taken. The control action is needed to calculate the time derivatives of h from the definition
of h and Eq. 1 by applying the chain rule. Since we are usually interested in predicting the
value one time step in the future, we use ĥ(x, u) as shorthand for ĥ(x, u, η). By Taylor’s
theorem with the Lagrange form of the remainder, the remainder error of the approximation
ĥ(x, u) is:

hn+1(x, u, δ)

(n+ 1)!
ηn+1 for some δ ∈ (0, η) (4)

An upper bound on the remainder error, if the state remains in the admissible region during
the time interval, is:

λ(u) = sup

{
|hn+1(x, u)|

(n+ 1)!
ηn+1 : x ∈ A

}
(5)

The FSC is based on checking recoverability during the next time step. For this purpose,
the set A of admissible states is shrunk by margins of µdec and µinc, a vector of upper bounds
on the amount by which each state variable can decrease and increase, respectively, in one
time step, maximized over all admissible states. Formally,

µdec(u) = |min(0, ηẋmin(u))|
µinc(u) = |max(0, ηẋmax(u))|

(6)

where ẋmin and ẋmax are vectors of solutions to the optimization problems:

ẋmini (u) = inf{ẋi(x, u) : x ∈ A}
ẋmaxi (u) = sup{ẋi(x, u) : x ∈ A}

(7)

The difficulty of finding these extremal values depends on the complexity of the functions
ẋi(x, u). For example, it is relatively easy if they are convex. In our case study of a realistic
microgrid model, they are multivariate polynomials with degree 1, and hence convex. The
set Ar of restricted admissible states is given by:

Ar(u) = {x : xlb + µdec(u) < x < xub − µinc(u)} (8)

Let Reach=η(x, u) denote the set of states reachable from state x after exactly time η
if control action u is taken in state x. Let Reach≤η(x, u) denote the set of states reachable
from x within time η if control action u is taken in state x.

Lemma 1. For all x ∈ Ar(u) and all control actions u, Reach≤η(x, u) ⊆ A.
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Proof. The derivative of x is bounded by ẋmin(u) and ẋmax(u) for all states in A. This
implies that µdec and µinc are the largest amounts by which the state x can decrease and
increase, respectively, during time η, as long as x remains within A during the time step.
Since Ar(u) is obtained by shrinking A by µdec and µinc (i.e., by moving the lower and upper
bounds, respectively, of each variable inwards by those amounts), the state cannot move
outside of A during time η.

3.1 Forward Switching Condition

To ensure safety, a forward-switching condition (FSC) should switch control from the NC to
the BC if using the control action u proposed by NC causes any unsafe states to be reachable
from the current state x during the next control period, or causes any unrecoverable states
to be reachable at the end of the next control period. These two conditions are captured in
the following definition:

Definition 1 (Forward Switching Condition). A condition FSC(x, u) is a forward switch-
ing condition if for every recoverable state x, every control action u, and control period η,
Reach≤η(x, u) ∩ U 6= ∅ ∨ Reach=η(x, u) 6⊂ R implies FSC(x, u) is true.

Theorem 1. A Simplex architecture whose forward switching condition satisfies Definition 1
keeps the system invariably safe provided the system starts in a recoverable state.

Proof. Our definition of an FSC is based directly on the switching logic in Algorithm 1 of
[37]. The proof of Theorem 1 in [37] shows that an FSC that is exactly the disjunction of
the two conditions in our definition invariantly ensures system safety. It is easy to see that
any weaker FSC also ensures safety.

We now propose a new and general procedure for constructing a switching condition from
a BaC and prove its correctness.

Theorem 2. Given a barrier certificate h, the following condition is a forward switching
condition: FSC(x, u) = α ∨ β where α ≡ ĥ(x, u)− λ(u) ≤ 0 and β ≡ x /∈ Ar(u)

Proof. Intuitively, α ∨ β is an FSC because (1) if condition α is false, then control action u
does not lead to an unsafe or unrecoverable state during the next control period, provided
the state remains admissible during that period; and (2) if condition β is false, then the state
will remain admissible during that period. Thus, if α and β are both false, then nothing bad
can happen during the control period, and there is no need to switch to the BC.

Formally, suppose x is a recoverable state, u is a control action, and
Reach≤η(x, u) ∩ U 6= ∅ ∨ Reach=η(x, u) 6⊂ R, i.e., there is an unsafe state in Reach≤η(x, u)
or an unrecoverable state in Reach=η(x, u). Let x′ denote that unsafe or unrecoverable state.
Recall that Z(h) ⊆ R, and R∩U = ∅. Therefore, h(x′, u) ≤ 0. We need to show that α∨ β
holds. We do a case analysis based on whether x is in Ar(u).

Case 1: x ∈ Ar(u). In this case, we use a lower bound on the value of the BaC h to show
that states reachable in the next control period are safe and recoverable. Using Lemma 1,
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we have Reach≤η(x, u) ⊆ A. This implies that λ(u), whose definition maximizes over x ∈ A,

is an upper bound on the error in the Taylor approximation ĥ(x, u, δ) for δ ≤ η. This implies
that ĥ(x, u) − λ(u) is a lower bound on value of BaC for all states in Reach≤η(x, u). As

shown above, there is a state x′ in Reach≤η(x, u) with h(x′, u) ≤ 0. ĥ(x, u) − λ(u) is lower
bound on h(x′, u) and hence must also be less than or equal to 0. Thus, α holds.

Case 2: x /∈ Ar(u). In this case, β holds. Note that in this case, the truth value of α is
not significant (and not relevant, since FSC(x, u) holds regardless), because the state might
not remain admissible during the next control period. Hence, the error bound obtained using
Eq. 5 is not applicable.

3.2 Reverse Switching Condition

The RSC is designed with a heuristic approach, since it does not affect safety of the system.
To prevent frequent switching between the NC and BC, we design the RSC to hold if the
FSC is likely to remain false for at least m time steps, with m > 1. The RSC, like the FSC,
is the disjunction of two conditions. The first condition is h(x) ≥ mη|ḣ(x)|, since h is likely
to remain non-negative for at least m time steps if its current value is at least that duration
times its rate of change. The second condition ensures that the state will remain admissible
for m time steps. In particular, we take:

RSC(x) = h(x) ≥ mη|ḣ(x)| ∧ x ∈ Ar,m, (9)

where the m-times-restricted admissible region is:

Ar,m = {x : xlb +mµdec < x < xub −mµinc}, (10)

where vectors µdec and µinc are defined in the same way as µdec(u) and µinc(u) in Eqs. 6
and 7 except with optimization over all control actions u. An RSC that guarantees absence
of forward switches for at least m time steps can be designed by using the maximum of
ḣ(x) over the admissible region; however, this conservative approach might leave the BC in
control longer than desired.

3.3 Decision Logic

The DM’s switching logic has three inputs: the current state x, the control action u currently
proposed by the NC, and the name c of the controller currently in control (as a special case,
we take c = NC in the first time step). The switching logic is defined by cases as follows:
DM(x, u, c) returns BC if c = NC ∧ FSC(x, u), returns NC if c = BC ∧ RSC(x), and
returns c otherwise.

4 Application to Microgrids

A microgrid (MG) is an integrated energy system comprising distributed energy resources
(DERs) and multiple energy loads. DERs tend to be renewable energy resources and include
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Figure 2: Lyapunov-function level sets (black-dotted ellipses). Innermost ellipse also indi-
cates initial BaC, which is optimized iteratively (green ellipses). Red lines are voltage safety
limits.

solar panels, wind turbines, batteries, and emergency diesel generators. By satisfying energy
needs from local renewable energy resources, MGs can reduce energy costs and improve
energy supply reliability for energy consumers. Some of the major control requirements for
an MG are power control, load sharing, and frequency and voltage regulation.

An MG can operate in two modes: grid-connected and islanded. When operated in
grid-connected mode, DERs act as constant source of power which can be injected into the
network on demand. In contrast, in islanded or autonomous mode, the DERs form a grid of
their own, meaning not only do they supply power to the local loads, but they also maintain
the MG’s voltage and frequency within the specified limits [26]. For our case study, we focus
on voltage regulation in both grid-connected and islanded modes. Specifically, we apply
BC-Simplex to the controller for the inverter for a Photovoltaic (PV) DER.

Applying BC-Simplex to other DERs which have inverter interfaces such as battery is
straightforward. Of the three controllers necessary for diesel generator DER, our method-
ology can be applied to voltage and frequency controllers straightforwardly. The exciter
system controls the magnetic flux flowing through the rotor generator, and its dynamics are
coupled with that of the diesel engine. We plan to explore using the approach presented in
[13] to handle these coupled dynamics and apply BC-Simplex to the exciter system.

4.1 Baseline Controller

For our experiments, we used the SOS-based methodology described in Section 2 to derive
a Barrier Certificate (as a proof of safety) for the baseline controller. We use a droop
controller as the BC. A droop controller is a type of proportional controller, traditionally
used in power systems for control objectives such as voltage regulation, power regulation,
and current sharing [10, 15, 41]. The droop controller tries to balance the electrical power
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with voltage and frequency. Variations in the active and reactive powers result in frequency
and voltage magnitude deviations, respectively [21].

Consider the following model of an MG’s droop-controlled inverters:

θ̇i = ωi (11a)

ω̇i = ω0
i − ωi + λpi (Pi − Pi) (11b)

v̇i = v0i − vi + λqi (Qi −Qi) (11c)

where θi, ωi, and vi are the phase angle, frequency, and voltage of the ith inverter, respectively.
Pi and Qi are the inverter’s active and reactive power set-points, and λp and λq are the droop
controller’s coefficients. The values of set-points Pi and Qi of an inverter depend upon local
loads and power needed by the rest of the MG. The loads are not explicitly modeled here.
In our case studies, we vary these power set-points to simulate changing loads. Let M be
the set of all inverter indices. The active power Pi and reactive power Qi are given by:

Pi = vi
∑
j∈Ni

vk(Gi,j cos θi,j +Bi,j sin θi,j)

Qi = vi
∑
j∈Ni

vk(Gi,j sin θi,j −Bi,j cos θi,j)
(12)

where θi,j = θi − θj, and Ni ⊆ M is the set of neighbors of inverter i. Gi,j and Bi,j are
respectively the conductance and susceptance values of the transmission line connecting
inverters i and j. As shown in [3], the stability of such a system can be verified using
Lyapunov theory. Detailed dynamic models for an MG with multiple inverters connected by
transmission lines and with droop controllers for frequency and voltage are given in [3, 14].

Fig. 2 shows this process of incrementally expanding the Lyapunov function to obtain
the BaC. SOS-based algorithms apply only to polynomial dynamics so we first recast our
droop controller dynamics to be polynomial using a DQ0 transformation [23] to AC wave-
forms. This transformation is exact; i.e., it does not introduce any approximation error. In
our experimental evaluation (Section 5), we obtain the BaCs for BCs in the form of droop
controllers for voltage regulation, in the context of MGs containing up to three DERs of
different types. Note that battery DERs operate in two distinct modes, charging and dis-
charging, resulting in a hybrid system model with different dynamics in different modes. For
now, we consider only runs in which the battery remains in the same mode for the duration
of the run. Extending our framework to hybrid systems is future work.

4.2 Neural Controller

To help address the control challenges related to microgrids, the application of neural net-
works for microgrid control is on the rise [17]. Increasingly, Reinforcement learning (RL) is
being used to train powerful Deep Neural Networks (DNNs) to produce high-performance
MG controllers.
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We present our approach for learning neural controllers (NCs) in the form of DNNs
representing deterministic control policies. Such a DNN maps system states (or raw sen-
sor readings) to control inputs. We use RL in form of Deep Deterministic Policy Gradient
(DDPG) algorithm, with the safe learning strategy of penalizing unrecoverable actions [25].
DDPG was chosen because it works with deterministic policies and is compatible with con-
tinuous action spaces.

Deep Deterministic Policy Gradient Algorithm. The DDPG algorithm is a model-
free, off-policy Reinforcement Learning method. Model-free means that the algorithm does
not have access to a model of the environment (in our case, the microgrid dynamics). While
model-free methods forego the potential gains in sample efficiency from using a model, they
tend to be easier to implement and tune. An off-policy learner learns the value of the
optimal policy independently of the current learned policy. A major challenge of learning
in continuous action spaces is exploration. An advantage of off-policy algorithms such as
DDPG is that the problem of exploration can be treated independently from the learning
algorithm [16]. Off-policy learning is advantageous in our setting because it enables the
NC to be (re-)trained using actions taken by the BC rather than the NC or the learning
algorithm. The benefits of off-policy retraining are further considered in Section 4.3.

We consider a standard Reinforcement Learning setup consisting of an agent interacting
with an environment in discrete time. At each time step t, the agent receives a (microgrid)
state xt as input, takes an action at, and receives a scalar reward rt. An agent’s behavior is
defined by a policy that maps states to a probability distribution over the actions. The goal
of Reinforcement Learning is to learn a policy that maximizes the reward function r from
the starting state distribution J . Reward function r is an incentive mechanism that tells
the agent what actions it should take (in terms of performance and safety) and, conversely,
which ones it should avoid, using rewards and penalties.

The DDPG algorithm employs an actor-critic framework. The actor generates a control
action and the critic evaluates its quality. The Actor network representing the actor is a
DNN which in our case takes the vector state of the DER voltages and currents as its input,
and outputs a continuous action at = µ(xt|θµ), where θµ is the weight of the actor network.
The Critic network representing the critic is a DNN that receives a state xt and an action
µ(xt|θµ) as input, and produces a scalar Q-value. In order to learn from prior knowledge,
DDPG uses a replay buffer R to store training samples of the form (xt, at, rt, xt+1), where xt
is the state at time t, at is the action taken at time t, rt is the reward associated with the
current state and action, and xt+1 is the next state.

At every training iteration, a set S of samples is randomly chosen from the replay buffer.
As such, S is not necessarily generated using the current policy, but rather by the policies
the DNN learned at different stages of training. Hence, DDPG is an off-policy algorithm.
The critic agent Q(x, a|θQ) for each state x, where θQ is the weight of the critic agent, is
updated using the Bellman equation. The actor policy is updated iteratively by the following
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policy gradient:

∇θµJ ≈
1

S
∑
t

∇aQ(x, a|θQ)|x=xt,a=µ(xt)∇θµµ(x|θµ)|xt (13)

The critic network evaluates the action of the actor network based on its current reward.
For further details regarding the implementation of the DDPG algorithm, please refer to
Algorithm 1 [16].

To learn an NC for DER voltage control, we designed the following reward function,
which guides the actor network to learn the desired control objective.

r(xt, at) =


−1000 if FSC(xt, at)

100 if vod ∈ [vref − ε, vref + ε]

−w · (vod − vref )2 otherwise

(14)

where w is a weight (w = 100 in our experiments), vod is the d-component of the output
voltage of the DER whose controller is being learned, vref is the reference or nominal voltage,
and ε is the tolerance threshold. We assign a high negative reward for triggering the FSC,
and a high positive reward for reaching the tolerance region, i.e., vref ± ε. The third clause
rewards actions that lead to a state in which the DER voltage is close to its reference value.

Adversarial Inputs. Controllers obtained via deep RL algorithms are vulnerable to ad-
versarial inputs (AIs): those that lead to a state in which the NC produces an unrecoverable
action, even though the NC behaves safely on very similar inputs. NSA provides a defense
against these kinds of attacks. If the NC proposes a potentially unsafe action, the BC takes
over in a timely manner, thereby guaranteeing the safety of the system. To demonstrate
NSA’s resilience to AIs, we use a gradient-based attack algorithm [24] to construct such
inputs, and show that the DM switches control to the BC in time to ensure safety.

The gradient-based algorithm takes as input the critic network, actor network, adversarial
attack constant c, parameters a,b of beta distribution β(a, b), and the number of times n noise
is sampled. For a given (microgrid) state x, the critic network is used to ascertain its Q-value
and the actor network determines its optimal action. Once the gradient of the critic network’s
loss function is computed using the Q-value and the action, the l2-constrained norm of the
gradient (grad dir) is obtained. An initial (microgrid) state x0, to be provided as input to
the actor network, is then perturbed to obtain a potential adversarial state xadv, determined
by the sampled noise in the direction of the gradient: xadv = x0 − c · β(a, b) · grad dir.

We can now compute the Q-value of xadv and its (potentially adversarial) action aadv.
If this value is less tha Q(x0, a0), then xadv leads to a sub-optimal action. A sub-optimal
action, however, does not necessarily guarantee that the FSC will be triggered. Thus, we
iterate the procedure n times in an attempt to find an adversarial state that produces an
action that triggers the FSC.

Note that the gradient-based attack algorithm does not guarantee the successful gener-
ation of AIs every time it is executed, as this largely depends on the quality of the training
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(e.g., the training error) of the NC: the higher the quality of training, the lower the success
rate of generating AIs. In our experiments (see Section 5.4), the highest rate of AI generation
we observed is 0.008%.

4.3 Adaptation Module

The Adaptation Module (AM) retrains the NC in an online manner when the NC produces
an unrecoverable action that causes the DM to failover to the BC. With retraining, the NC
is less likely to repeat the same or similar mistakes in the future, allowing it to remain in
control of the system more often, thereby improving performance. We use Reinforcement
Learning with the reward function defined in Eq. 14 for online retraining.

As in initial training, we use the DDPG algorithm (with the same settings) for online
retraining. When the NC outputs an unrecoverable action, the DM switches control to the
BC, and the AM computes the (negative) reward for this action and adds it to a pool of
training samples. As in [25], we found that reusing the pool of training samples (DDPG’s
experience replay buffer) from initial training of the NC evolves the policy in a more stable
fashion, as retraining samples gradually replace initial training samples in the pool. Another
benefit of reusing the initial training pool is that retraining of the NC can start almost
immediately, without having to wait for enough samples to be collected online.

There are two methods to retrain the NC:

1. Off-policy retraining: At every time step while the BC is active, the BC’s action is
used in the training sample. The reward for the BC’s action is based on the observed
next state of the system.

2. Shadow-mode retraining: At every time step while the BC is active, the AM takes a
sample by running the NC in shadow mode to compute its proposed action, and then
simulates the behavior of the system for one time step to compute a reward for it.

In our experiments, both methods produce comparable benefits. Off-policy retraining
is therefore preferable because it does not require simulation (or a dynamic model of the
system) and hence is less costly.

5 Experimental Evaluation

We apply our BC-Simplex methodology to a model of a microgrid [22] with three DERs:
a battery, photovoltaic (PV, a.k.a. solar panels), and diesel generator. The three DERs
are connected to the main grid via bus lines. As depicted in Fig. 3, the three DERs are
connected to the main grid via bus lines.We are primarily interested in the PV control,
since we apply BC-Simplex to PV voltage regulation. The PV control includes multiple
components, such as “three-phase to DQ0 voltage and current” transformer, average voltage
and current control, power and voltage measurements, inner-loop dq current control, and
outer-loop Maximum Power Point Tracking (MPPT) control. Our experimental evaluation
of BC-Simplex was carried out on RTDS, a high-fidelity power systems simulator.
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Figure 3: RTDS Microgrid Model [22]

Figure 4: Integration of External NC with RTDS

We ran experiments for three configurations of the microgrid: Configuration 1: grid-
connected mode with only the PV DER connected within the MG; Configuration 2: islanded
mode with PV and diesel generator DERs connected within the MG; Configuration 3: is-
landed mode with PV, diesel generator, and battery (in discharging mode) DERs connected
within the MG. All configurations also include a load. These configurations demonstrate
BC-Simplex ’s ability to handle a wide variety of MG configurations involving various types
of DERs. We did not perform experiments with the battery in charging mode, because
in this mode, the battery is simply another load, and the configuration is equivalent to
Configuration 1 or Configuration 2 with a larger load.

We use BC-Simplex to ensure the safety property that the d-component of the output
voltage of the inverter for the PV DER is within ±3% of the reference voltage vref = 0.48 kV.
We adopted a 3% tolerance based on the discussion in [22]. BC-Simplex could similarly be
used to ensure additional desired safety properties. All experiments use runs of length 10
seconds, with the control period, RTDS time step, and simulation time step in MATLAB all
equal to 3.2 milliseconds (msec), the largest time step allowed by RTDS.
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5.1 Integration of BC-Simplex in RTDS

The BC is the original droop controller described in [22], implemented in RTDS using com-
ponents in the RTDS standard libraries. The DM is implemented as an RTDS custom
component written in C. For an MG configuration, expressions for the BaC, λ and µ (see
Section 3) are derived in MATLAB, converted to C data structures, and then included in a
header file of the custom component. The BaCs are polynomials comprising 41, 67, and 92
monomials, respectively, for configurations 1, 2, and 3.

The NC is trained and implemented using Keras [9], a high-level neural network API
written in Python, running on top of TensorFlow [1]. For training, we customized an ex-
isting skeleton implementation of DDPG in Keras, which we then used with the Adam
optimizer [12]. Hyperparameters used during training involved a learning rate lr = 0.0001,
discounting factor γ = 0.99, and target network update weight τ = 0.001.

RTDS imposes limitations on custom components that make it difficult to implement
complex NNs within RTDS. Existing NN libraries for RTDS, such as [18, 19], severely limit
the NN’s size and the types of activation functions. Therefore, we implemented the NC
external to RTDS, following the software-defined microgrid control approach in [36]. Fig. 4
shows our setup. We used RTDS’s GTNET-SKT communication protocol to establish a
TCP connection between the NC running on a PC and an “NC-to-DM” relay component in
the RTDS MG model. This relay component repeatedly sends the plant state to the NC,
which computes its control action and sends it to the relay component, which in turn sends
it to the DM.

Running the NC outside RTDS introduces control latency. We measured the round-trip
time between RTDS and NC (including the running time of NC on the given state) to be
4.34 msec. Since the control period is 3.2 msec, each control action is delayed by one control
period. The latency is mostly from network communication, since the PC running the NC
was off-campus. We plan to reduce the latency by moving the NC to a PC connected to the
same LAN as RTDS.

5.2 Consistency of RTDS and MATLAB Models

Our methodology requires an analytical model of the microgrid dynamics to derive a BaC
for the BC and a switching condition for the DM. We therefore developed an analytical
model in MATLAB based on the RTDS model and the description given in [22]. To verify
consistency of MATLAB and RTDS models, we compared trajectories obtained from them
under various operating conditions.

Table 1 reports deviations in output voltage and current trajectories of the PV DER
between the two models under the control of the BC. The results are based on 100 trajectories
starting from random initial states.

As expected, the two models are in close agreement. The small deviations are due to a few
factors: (1) the RTDS model uses realistic dynamic models of transmission lines including
their noise, whereas the MATLAB model ignores transmission line dynamics; and (2) the
RTDS model uses average-value modeling to more efficiently simulate the dynamics in real-
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Table 1: Voltage deviation (VD) and current deviation (CD) between output of PV DER in
RTDS and MATLAB models

(a) Configuration 1

VD (kV) VD (%) CD (Amp) CD (%)

Avg 0.000214 0.04 0.000129 0.028
Min 0.000187 0.03 0.000124 0.015
Max 0.000378 0.08 0.000181 0.036

(b) Configuration 2

VD (kV) VD (%) CD (Amp) CD (%)

Avg 0.000348 0.07 0.000126 0.032
Min 0.000103 0.02 0.000104 0.019
Max 0.000493 0.10 0.000187 0.052

(c) Configuration 3

VD (kV) VD (%) CD (Amp) CD (%)

Avg 0.001041 0.12 0.000238 0.047
Min 0.000119 0.02 0.000133 0.019
Max 0.001403 0.21 0.000187 0.102

time [22], whereas in MATLAB, trajectories are calculated by solving ordinary differential
equations of the dynamics at each simulation time-step.

5.3 Evaluation of Forward Switching Condition

We derive a BaC using the SOS-based methodology presented in Section 2, and then derive
a switching condition from the BaC, as described in Section 3.1. To find values of λ and µ,
we use MATLAB’s fmincon function to solve the constrained optimization problems given
in Eqs. 6 and 7.

An ideal FSC triggers a switch to BC only if an unrecoverable state is reachable in one
time step. For systems with complex dynamics, switching conditions derived in practice are
conservative, i.e., may switch sooner. To show that our FSC is not overly conservative, we
performed experiments using an AC that continuously increases the voltage and hence soon
violates safety. The PV voltage controller has two outputs, md and mq, for the d and q
components of the voltage, respectively. The dummy AC simply uses constant values for its
outputs, with md = 0.5 and mq = 1e− 6.

These experiments were performed with PV DER in grid connected mode, with reference
voltage and voltage safety threshold of 0.48 kV and 0.4944 kV, respectively, and a FSC

15



derived using a 4th-order Taylor approximation of the BaC. We averaged over 100 runs from
initial states with initial voltage selected uniformly at random from the range 0.48 kV ± 1%.
The mean voltage at switching is 0.4921 kV (with standard deviation 0.0002314 kV), which
is only 0.46% below the safety threshold. The mean numbers of time steps before switching,
and before a safety violation if BC-Simplex is not used, are 127.4 and 130.2, respectively.
Thus, our FSC triggered a switch about three time steps, on average, before a safety violation
would have occurred.

5.4 Evaluation of Neural Controller

The NC for a microgrid configuration is a DNN with four fully-connected hidden layers of
128 neurons each and one output layer. The hidden layers and output layer use the ReLU
and tanh activation function, respectively. The input state to the NC (DNN) is the same
as the inputs to the BC (droop controller) i.e., [ild ilq], where ild and ilq are the d- and
q-components of the input current to the droop controller. Thus the NC has same inputs
and outputs as the BC. The NC is trained on 1 million samples (one-step transitions) from
MATLAB simulations, processed in batches of 200. Transitions start from random states,
with initial values uniformly sampled from [0.646, 0.714] for ild and [−0.001, 0.001] for ilq [22].
Training takes approximately 2 hours. The number of trainable parameters in the actor and
critic networks are 198,672 and 149,111, respectively.

We created an infrastructure for training the NC using samples from RTDS. The main
challenge is setting the RTDS state to a starting state selected by the training algorithm.
RTDS does not provide a native facility for this, and we needed to use different techniques
and some custom components to set the states of different types of microgrid components.
Training with samples from RTDS would yield a slightly higher-performing controller but
would be significantly slower, due to the overhead of sending states back and forth between
RTDS and the training algorithm running on a PC.

Performance We evaluate a controller’s performance based on three metrics: convergence
rate (CR), the percentage of trajectories in which the DER voltage converges to the tolerance
region vref ± ε; average convergence time (CT ), the average time required for convergence of
the DER voltage to the tolerance region; and mean deviation (δ), the average deviation of
the DER voltage from vref after the voltage enters the tolerance region. We always report
CR as a percentage, CT in milliseconds, and δ in kV.

We show that the NC outperforms the BC. For this experiment, we used RTDS to run the
BC and NC starting from the same 100 initial states. Table 2 compares their performance,
averaged over 100 runs, with ε = 0.001. We observe that for all three configurations, the NC
outperforms the BC both in terms of average convergence time and mean deviation.We also
report the standard deviations (σ) for these metrics and note that they are small compared
to the average values. The FSC was not triggered even once during these runs, showing that
the NC is well-trained.
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Table 2: Performance comparison of NC and BC

(a) Experimental Results for Configuration 1

Controller CR CT σ(CT ) δ σ(δ)

NC 100 67.5 5.8 1.1e−4 1.0e−5
BC 100 102.3 8.2 4.2e−4 3.7e−5

(b) Experimental Results for Configuration 2

Controller CR CT σ(CT ) δ σ(δ)

NC 100 76.8 6.1 1.3e−4 1.2e−5
BC 100 108.8 8.3 5.1e−4 3.8e−5

(c) Experimental Results for Configuration 3

Controller CR CT σ(CT ) δ σ(δ)

NC 100 81.1 7.7 1.5e−4 1.3e−5
BC 100 115.7 9.8 5.8e−4 3.8e−5

Generalization Generalization refers to the NC’s ability to perform well in contexts be-
yond the ones in which it was trained. First, we consider two kinds of generalization with
respect to the microgrid state:

• Gen 1: the initial states of the DERs are randomly chosen from a range outside of the
range used during training.

• Gen 2: the power set-point P ? is randomly chosen from the range [0.2, 1], whereas all
training was done with P ? = 1.

Table 3 presents the NC’s performance in these two cases, based on 100 runs for each case.
We see that the NC performs well in both cases.

Second, we consider generalization with respect to the microgrid configuration. Here
we evaluate how the NC handles dynamic changes to the microgrid configuration during
runtime. For the first experiment, we start with all the 3 DERs connected, but the diesel
generator DER is disconnected after the voltage has converged. For the second experiment,
we again start with all the 3 DERs connected, but both the diesel generator and battery
DER are disconnected after the voltage has converged. For both instances, the NC succeeded
in continuously keeping the voltage in the tolerance region (vref ± ε) after the disconnection.
The disconnection caused a slight drop in the subsequent steady-state voltage, a drop of
0.114% and 0.132%, averaged over 100 runs for each case.

Finally, we consider generalization with respect to the microgrid configuration. We per-
form two sets of experiment for this. Let NC-i denote the NC trained for Configuration i.
In the first set of experiments, we test the performance of NC-1 for Configuration 2 and
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Table 3: Generalization performance of NC

(a) Experimental Results for Configuration 1

CR CT σ(CT ) δ σ(δ)

Gen 1 100 108.7 9.8 1.7e−4 1.5e−5
Gen 2 100 77.1 6.9 1.3e−4 1.1e−5

(b) Experimental Results for Configuration 2

CR CT σ(CT ) δ σ(δ)

Gen 1 100 118.2 10.1 2.1e−4 1.9e−5
Gen 2 100 81.2 6.2 1.5e−4 1.4e−5

(c) Experimental Results for Configuration 3

CR CT σ(CT ) δ σ(δ)

Gen 1 100 120.4 10.8 2.2e−4 1.9e−5
Gen 2 100 88.5 7.3 1.6e−4 1.4e−5

NC-2 for Configuration 1 on 100 runs from random initial states. In both cases, the CR was
100%. However, the mean deviation for NC-1 was 4.7 times larger than when it was used
with Configuration 1. The mean deviation for NC-2 was 2.4 times larger than when it was
used with Configuration 2. We conclude that an NC trained on a more complex microgrid
generalizes better than one trained on a simpler microgrid.

In the second set of experiments, we evaluate how NC-1 and NC-2 handle dynamic
changes to the microgrid configuration, even though no changes occurred during training.
Each run starts with the PV and diesel generator DERs both connected, and the diesel
generator DER disconnected after the voltage has converged. Both NCs succeed in contin-
uously keeping the voltage in the tolerance region (vref ± ε) after the disconnection. The
disconnection causes a slight drop in the subsequent steady-state voltage, a drop of 0.195%
for NC-1 and 0.182% for NC-2.

Adversarial input attacks We demonstrate that RL-based neural controllers are vul-
nerable to adversarial input attacks. We use the gradient-based attack algorithm described
in Section 4.2 to generate adversarial inputs for our NCs. We use an adversarial attack
constant c = 0.05 and the parameters for the beta distributions are α = 2 and β = 4. From
100, 000 unique initial states, we obtain 8, 6, and 5 adversarial states for Configurations 1,
2, and 3, respectively. In these experiments, we perturb all state variables simultaneously.
In a real-life attack scenario, an attacker might have the capability to modify only a subset
of them. Nevertheless, our experiments illustrate the fragility of RL-based neural controllers
and the benefits of protecting them with NSA.
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Figure 5: NC with adversarial inputs (left: without NSA, right: with NSA)

We confirmed with simulations that all generated adversarial states lead to safety viola-
tions when the NC alone is used, and that safety is maintained when BC-Simplex is used.
Fig. 5 (left) shows one such case, where the NC commits a voltage safety violation. The
red horizontal line shows the reference voltage vref = 0.48 kV. The black dashed horizontal
line shows the lower boundary of the safety region, 3% below vref . Fig. 5 (right) shows how
BC-Simplex prevents the safety violation. The pink dotted vertical line marks the switch
from NC to BC.

We also confirmed that for all generated adversarial states, the forward switch is followed
by a reverse switch. The time between forward switch and reverse switch depends on the
choice of m (see Section 3.2). In the run shown in Fig. 5 (right), they are 5 time steps
(0.016 sec) apart; the time of the reverse switch is not depicted explicitly, because the line
for it would mostly overlap the line marking the forward switch. For m = 2, 3, 4 with
Configuration 1, the average number of time steps between them are 7 (0.0244 sec), 11
(0.0352 sec), and 16 (0.0512 sec), respectively. For m = 2, 3, 4 with Configuration 2, the
average time steps between them are 7 (0.0244 sec), 13 (0.0416 sec), and 17 (0.0544 sec),
respectively. For m = 2, 3, 4 with Configuration 3, the average time steps between them are
8 (0.0256 sec), 14 (0.0448 sec), and 19 (0.0608 sec), respectively.

5.5 Evaluation of Adaptation Module

To measure the benefits of online retraining, we used the adversarial inputs described above
to trigger switches to BC. For each microgrid configurations, we ran the original NC from
the first adversarial state for that configuration, performed online retraining while the BC is
in control, and repeated this procedure for the remaining adversarial states for that configu-
ration except starting with the updated NC from the previous step. As such, the retraining
is cumulative for each configuration. We performed this entire procedure separately for dif-
ferent RSCs corresponding to different values of m. After the cumulative retraining, we ran
the retrained controller from all of the adversarial states, to check whether the retrained NC
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Table 4: Performance comparison of original NC and NC retrained by AM

(a) Experimental Results for Configuration 1

NC CR CT σ(CT ) δ σ(δ)

retrained 100 60.4 5.6 1.0e−4 1.0e−5
original 100 67.5 5.8 1.1e−4 1.0e−5

(b) Experimental Results for Configuration 2

NC CR CT σ(CT ) δ σ(δ)

retrained 100 69.4 5.3 1.1e−4 1.0e−5
original 100 76.8 6.1 1.3e−4 1.2e−5

(c) Experimental Results for Configuration 3

NC CR CT σ(CT ) δ σ(δ)

retrained 100 70.2 5.7 1.4e−4 1.3e−5
original 100 81.1 7.7 1.5e−4 1.3e−5

was still vulnerable (i.e., whether those states caused violations).
For Configuration 1, the BC was in control for a total of 56, 88, and 128 time steps

for m = 2, 3, 4, respectively. For Configuration 2, the BC was in control for a total of 42,
78, and 102 time steps for m = 2, 3, 4, respectively. For Configuration 3, the BC was in
control for a total of 40, 70, and 95 time steps for m = 2, 3, 4, respectively. For m = 2, the
retrained controllers were still vulnerable to some adversarial statesfor each configuration.
For m = 3, 4, the retrained controllers were not vulnerable to any of the adversarial states,
and voltage always converged to the tolerance region.

Table 4 compares the performance of the original and retrained NCs for each configura-
tion, averaged over 100 runs starting from random (non-adversarial) states. The retraining
shows a slight improvement in the performance of the NC; thus, retraining improves both
safety and performance.

A potential concern is whether with online retraining can be done in real-time; i.e.,
whether a new retraining sample can be processed within one control period, so the retrained
NC is available as soon as the RSC holds. In the above experiments, run on a laptop with
an Intel i5-6287U CPU, retraining is done nearly in real-time: on average, the retraining
finishes 0.285 milliseconds (less than one-tenth of a control period) after the RSC holds.

6 Related Work

The use of BaCs in the Simplex architecture originated in [37]. There are, however, signifi-
cant differences between their method for obtaining the switching condition and ours. Their
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switching logic involves computing, at each decision period, the set of states reachable from
the current state within one control period, and then checking whether that set of states
is a subset of the zero-level set of the BaC. Our approach avoids the need for reachability
calculations by using a Taylor approximation of the BaC, and bounds on the BaC’s deriva-
tives, to bound the possible values of the BaC during the next control period and thereby
determine recoverability of states reachable during that time. Our approach is computa-
tionally much cheaper: a reachability computation is expensive compared to evaluating a
polynomial. Their framework can handle hybrid systems. Extending our method to hybrid
systems is a direction for future work.

Mehmood et al. [20] propose a distributed Simplex architecture with BCs synthesized
using control barrier functions (CBFs) and with switching conditions derived from the CBFs,
which are BaCs satisfying additional constraints. A derivation of switching conditions based
on Taylor approximation of CBFs is briefly described but does not consider the remainder
error, admissible states, or restricted admissible states, and does not include a proof of
correctness (which requires an analysis of the remainder error).

Kundu et al. [14] and Wang et al. [35] use BaCs for safety of microgrids, and Prajna
et al. [29] propose an approach for stochastic safety verification of continuous and hybrid
systems using BaCs. These approaches are based on the use of verified-safe controllers; they
do not allow the use of unverified high-performance controllers, do not consider switching
conditions, etc.

The application of neural networks for microgrid control is gaining in popularity [17].
Amoateng et al. [2] use adaptive neural networks and cooperative control theory to develop
microgrid controllers for inverter-based DERs. Using Lyapunov analysis, they prove that
their error-function values and weight-estimation errors are uniformly ultimately bounded.
Tan et al. [33] use Recurrent Probabilistic Wavelet Fuzzy Neural Networks (RPWFNNs)
for microgrid control, since they work well under uncertainty and generalize well. We used
more traditional DNNs, since they are already high performing, and our focus is on safety
assurance. Our BC-Simplex framework, however, allows any kind of neural network to be
used as the AC and can provide the safety guarantees lacking in their work. Unlike our
approach, none of these works provide safety guarantees.

7 Conclusion

We have presented BC-Simplex , a new, provably correct design for runtime assurance of
continuous dynamical systems. BC-Simplex features a new scalable automated method for
deriving, from the barrier certificate, computationally inexpensive conditions for switching
between advanced and baseline controllers.

We combined BC-Simplex with the Neural Simplex Architecture and applied the com-
bined framework to micgrogrid control. We conducted an extensive experimental evaluation
of the framework on a realistic model of a microgrid with multiple types of energy sources.
The experiments demonstrate that the framework can be used to develop high-performance,
generalizable neural controllers (NCs) while assuring specified safety properties, even in the
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presence of adversarial input attacks on the NC. Our experiments also demonstrate that the
derived forward switching conditions are not too conservative, i.e., that they switch control
from the NC to the BC only a short time before a safety violation becomes unavoidable, and
that online retraining of the NC is effective in preventing subsequent safety violations by the
NC.

In future work, we plan to extend our framework to systems with noise or other sources of
uncertainty in the dynamics. We plan to eliminate the need for complete manually developed
analytical dynamic models by learning neural ODEs [8, 42] that capture unknown parts of
the dynamics, and deriving BaCs and switching conditions from the resulting dynamics. We
also plan to apply our approach to networked microgrids [38].
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