
PFMC: A Parallel Symbolic Model Checker for
Security Protocol Verification

Alex James, Alwen Tiu, and Nisansala Yatapanage

School of Computing, The Australian National University

Abstract. We present an investigation into the design and implemen-
tation of a parallel model checker for security protocol verification that
is based on a symbolic model of the adversary, where instantiations of
concrete terms and messages are avoided until needed to resolve a par-
ticular assertion. We propose to build on this naturally lazy approach to
parallelise this symbolic state exploration and evaluation. We utilise the
concept of strategies in Haskell, which abstracts away from the low-level
details of thread management and modularly adds parallel evaluation
strategies (encapsulated as a monad in Haskell). We build on an exist-
ing symbolic model checker, OFMC, which is already implemented in
Haskell. We show that there is a very significant speed up of around
3-5 times improvement when moving from the original single-threaded
implementation of OFMC to our multi-threaded version, for both the
Dolev-Yao attacker model and more general algebraic attacker models.
We identify several issues in parallelising the model checker: among oth-
ers, controlling growth of memory consumption, balancing lazy vs strict
evaluation, and achieving an optimal granularity of parallelism.

1 Introduction

A security protocol describes a sequence of actions and message exchanges be-
tween communicating partners in a networked system, in order to achieve certain
security goals, such as authentication and secrecy. The analysis of security pro-
tocols against a stated security property is a challenging problem, not just from
a computational complexity perspective (e.g., the problem of establishing the
secrecy property of a protocol is undecidable in general [16]), but also from a
protocol designer perspective, since proofs of security properties are dependent
on the adversary model, which can be challenging to precisely formalise.

A commonly used adversary model is the Dolev-Yao model [15]. The Dolev-
Yao model assumes that the attacker controls the network, and hence will be able
to intercept, modify and remove messages. However, the attacker is also assumed
to be unable to break the basic cryptographic primitives used in the protocol.
For example, an encrypted message can only be decrypted by the attacker if
and only if the attacker possesses the decryption key. The Dolev-Yao model
may be further extended by adding various abstract algebraic properties (e.g.,
theories for modelling exclusive-or, or Abelian groups in general). In the context

ar
X

iv
:2

20
7.

09
89

5v
1

 [
cs

.L
O

]
 2

0
Ju

l 2
02

2

of protocol analysis, the Dolev-Yao model and/or its algebraic extensions are
sometimes referred to as the symbolic model.

In this paper, we are concerned with verifying protocols with a bounded num-
ber of sessions in the symbolic model, and we restrict to only proving reachability
properties, i.e., those properties that can be expressed as a predicate on a single
trace of a protocol run, such as secrecy and authentication. Bounded verification
aims primarily at finding attacks, but even for a small number of sessions, the
complexity of finding attacks is still very high, e.g., NP-complete for the stan-
dard Dolev-Yao model [22]. Another interesting use of bounded verification is
to lift the result of such verification to the unbounded case, for a certain class
of protocols [3]. A related work by Kanovich et al. [17] on a bounded-memory
adversary (which implies bounded number of sessions) also points to the fact
that many attacks on existing protocols can be explained under a bounded-
memory adversary. These suggest that improving the performance of bounded
protocol verifiers may be a worthwhile research direction despite the prevalence
of protocol verifiers for unbounded sessions such as Proverif [9] and Tamarin [20].

A bounded-session protocol verifier works by state exploration (search), so
naturally we would seek to improve its performance by parallelising the search.
Given the ubiquity of multicore architecture in modern computing, it is quite
surprising that very few protocol verifiers have attempted to benefit from the
increase in computing cores to speed up their verification efforts. An important
consideration in our attempt is avoiding excessive modification of the (imple-
mentation of) decision procedures underlying these verifiers, as they are typically
complex and have been carefully designed and optimised. This motivates us to
consider a language where parallelisation (of a deterministic algorithm) can be
added as an effect – Haskell parallelisation monads (e.g., [19]) fit this require-
ment very well. In this work, we use OFMC, which is implemented in Haskell,
as the basis of our study, looking at ways to introduce parallelisation without
changing the underlying implementation of its decision procedures. This will
hopefully provide us with a recipe for applying similar parallelisation techniques
to other protocol verifiers written in Haskell, notably Tamarin.

We have implemented a parallel version of OFMC [21], which we call PFMC,
in Haskell. We show that PFMC significantly improves the performance of
OFMC, with a speed-up of around 3-5 times faster than OFMC, when run on 4-
16 cores. This promising result allows us to push the boundary of bounded proto-
col verification. As part of the implementation of PFMC, we have designed what
we believe are several novel parallel evaluation strategies for buffered (search)
trees in the context of symbolic model checking for protocol verification, which
allows us to achieve parallelism with a generally constant memory residency.

Related work. Currently, there are not many major protocol verifiers that
explicitly support parallelisation. The only ones that we are aware of are the
DEEPSEC prover [12] and the Tamarin prover [20]. DEEPSEC uses a process-
level parallelisation, i.e., each subtask in the search procedure is delegated to a
child process and there is no support for a more fine-grained thread-level par-
allelisation. Tamarin is implemented in Haskell, which has a high-level modular

2

way of turning a deterministic program into one which can be run in parallel,
sometimes called semi-explicit parallelisation. This is the method that we will
adopt, as it seems like the most straightforward way to gain peformance with
minimal effort. As far as we know, there has been no published work on system-
atically evaluating the performance of Tamarin parallelisation; some preliminary
investigations into its parallelisation performance is given in Appendix C. Some
of the established protocol verifiers such as Proverif [9], DEEPSEC [12], SATE-
QUIV [13], SPEC [24] or APTE [11] are implemented in OCaml, and the support
for multicore is not as mature as other languages. For an overview of protocol
verification tools, see a recent survey article by Barbosa et. al. [6].

Outline. The rest of the paper is organised as follows. Section 2 provides an
overview of the state transition system arising from symbolic protocol analy-
sis. Section 3 gives a brief overview of Haskell parallelisation features. Section 4
presents the parallelisation strategies implemented in PFMC and the evaluation
of their performance on selected protocol verification problems. Section 5 con-
cludes and discusses future directions. The full source code of PFMC is online.1

2 Protocol specifications and transition systems

There are a variety of approaches for modelling protocols and their transition sys-
tems, such as using multiset rewriting [10], process calculus [1], strand spaces [23]
or first-order Horn clauses [8]. OFMC supports the modelling language IF (In-
termediate Format), but it also supports a more user-friendly format known as
AnB (for Alice and Bob). The AnB syntax can be translated to the IF format,
for which a formal semantics is given in [2]; we refer the reader to that paper.

The operational semantics of OFMC is defined in terms of strand spaces. One
can think of a strand as a sequence of steps that an agent takes. The steps could
be a sending action, a receiving action, checking for equality between messages
and special events (that may be used to prove certain attack predicates). We use
the notation A1‖ . . . ‖An to denote n parallel strands, A1, . . . , An, that may be
associated with some agents. A state is a triple consisting of a set of strands of
honest agents, a strand for the attacker, and a set of events which have occurred.
The attacker strand consists of the messages the attacker receives by intercepting
communication between honest agents, and the messages the attacker synthe-
sises and sends to honest agents. OFMC represents these strands symbolically.
For example, the messages the attacker synthesises are initially represented as
variables and concretised as needed when agents check for equality between mes-
sages. The attacker strand is represented as a set of deducibility contraints, and
the transition relation must preserve satisfiability of these contraints.

In OFMC, the state transition relation is defined from an adversary-centric
view. This means in particular that what matters in the transition is the update
to the attacker’s knowledge, and the only way to update the attacker’s knowledge
is through the output actions of the honest agents. Therefore, it makes sense to

1 https://gitlab.anu.edu.au/U4301469/pfmc-prover

3

https://gitlab.anu.edu.au/U4301469/pfmc-prover

define a state transition as a combination of input action(s) that trigger an
output action from an honest agent, rather than using each individual action to
drive the state transition. Due to the presence of parallel composition protocol
specifications, the (symbolic) state transitions can generate a large number of
possible traces, due to the interleaving of parallel strands. The search procedure
for OFMC is essentially an exploration of the search tree induced by this symbolic
transition system.

3 Haskell parallelisation strategies

This section provides a very brief overview of Haskell parallelisation features
and discusses some initial unsuccessful attempts (in the sense that we did not
achieve meaningful improvements) to parallelise OFMC, to motivate our designs
in Section 4. We use the semi-explicit parallelisation supported by Haskell. We
assume the reader is familiar with the basics of Haskell programming, and will
only briefly explain the parallelisation approach we use here.

In the semi-explicit parallelism approach in Haskell, the programmer specifies
which parts of the code should be paralellised, using primitives such as par. The
statement x par y is semantically identically to y. However, the former tells the
Haskell runtime system (RTS) to create a worker to evaluate x and assigns it
to an available thread to execute. In Haskell terminology, such a unit of work is
called a spark. The programmer does not need to explicitly create and destroy
threads, or schedule the sparks for execution. The RTS uses a work-stealing
scheduling to execute sparks opportunistically. That is, each available core keeps
a queue of sparks to execute and if its queue is empty, it looks for sparks in other
cores’ queues and ‘steals’ their sparks to execute. This should ensure all available
cores are used during runtime. An appealing feature of this approach is that one
does not need to be concerned with low-level details of thread management and
scheduling, as they are all handled automatically by the Haskell runtime system.

Determining the granularity of parallelisation. There are three main subprob-
lems in the search for attacks that we examined for potential parallelisation:

– checking the solvability of a constraint system,
– enumerating all possible next states from the current state and
– the overall construction of the search tree itself.

The search for the solutions for a constraint problem can itself be a complex
problem, depending on the assumed attacker model. Thus it may seem like a
good candidate to evaluate in parallel. However, it turns out that when verifying
real-world protocols, most of the constraints generated are simple, and easily
solvable sequentially. Attempting to parallelise this leads to worse performance
than executing them sequentially, as it ends up creating too many lightweight
sparks. It may be the case that as the number of sessions grows, the constraints
generated become larger the deeper down the search tree, so at a deeper node in
the search tree, such a parallelisation might be helpful. However, to reach that

4

stage, there would likely be a lot of simple constraints that need to be solved for
which the overhead of paralellisation outweighs its benefit.

Our next attempt was to parallelise the process for enumerating successor
states, which involves solving the intruder constraint problem. This led to some
improved performance, but was harder to scale up, as it still created too many
sparks, many of which ended up being garbage collected, a sign that there were
too many useless sparks. The final conclusion seems to be that focussing on
parallelising the construction of the search tree, executing the constraint solving
and the successor state enumeration sequentially, produces the most speed up.

Lazy evaluation and parallelism. Haskell by default uses a lazy evaluation
strategy in evaluating program expressions. By default, functions in Haskell are
evaluated to weak head normal form (WHNF). Haskell provides libraries to force
a complete evaluation of a program expression, e.g. via the force function. This,
however, needs to be used with extreme care as it can create unnecessary com-
putation and a potential termination issue.

One advantage of lazy evaluation, when parallelising a search algorithm, is
that it allows one to decouple the search algorithm and the parallelisation strat-
egy. In our case, we can implement the search algorithm as if it is proceeding
sequentially, constructing a potentially infinite tree of states, without considering
termination, as each node will be evaluated lazily only when needed, i.e. when
the attack predicate is evaluated against the states in the search tree. Thus, at
a very high level, given a function f that constructs a search tree sequentially,
and a strategy s for parallelisation, the sequential execution of f can be turned
into a parallel execution using the composition:

1 (withStrategy s) ◦ f

Applying this strategy to OFMC, we applied a custom parallelisation strategy
(see Section 4.1) to the construction of the search tree. The search algorithm
itself does not make any assumption about termination of the search. It does,
however, allow the user to specify the depth of search, so any nodes beyond a
given depth will not be explored further.

Profiling the runtime behaviour of the parallelisation strategy revealed that
a significant amount of time is spent on garbage collection. When searching at
a depth d, OFMC keeps the subtrees at depth > d, which end up being garbage
collected, as they are not needed in the final evaluation of the attack predicate.
A solution is to prune the search tree prior to evaluating the predicate on the
nodes. This seems to significantly reduce the memory footprint of the program.

4 Parallel Strategies for Search Trees

We now present a number of parallelisation strategies implemented in PFMC.
The actual implementation contains more experimental parallelisation strategies
not covered here, as they did not seem to offer much improvements over the
main strategies presented here. We note that it is possible to directly benefit
from multicore support for the Haskell runtime by compiling the program with

5

the -threaded option. However, doing so results in worse performance compared
to the single-threaded version, at least in the case for OFMC.

A main difficulty in designing an efficient parallelisation strategy in the case
of OFMC is that the branching factor of a given node in the search tree is
generally unbounded. Based on our profiling of the search trees of some sample
protocols, the branching factor is highly dependent on the number of sessions
of the protocol, the assumed intruder model (e.g., constraint solving for some
algebraic theories can yield a variable number of solutions), and the depth of
the search tree. This makes it difficult to adapt general parallel strategies for
bounded trees such as the ones discussed in [25].

The source code for each strategy discussed here can be found in the file
src/TreeStrategies.hs in the PFMC distribution.

4.1 parTreeBuffer: a buffered parallel strategy for search trees

A naive parallelisation strategy for OFMC is to simply spark the entire search
tree, i.e., for each node in the search tree, we create a spark and evalute it eagerly
in parallel. In our tests, it quickly exhausted the available memory in our test
server for large benchmark problems, so it does not scale well. Haskell (through
the Control.Parallel.Strategies library) provides two ways to avoid creating
a large number of sparks simultaneously, via a chunking strategy (parChunk),
and a buffered strategy (parBuffer). They are however restricted to lists. The
chunking strategy, as the name suggests, attempts to partition the input list
into chunks of a fixed size, and executes all chunks in parallel, but keeping the
sequential execution within each chunk. The buffered strategy attempts to stall
the creation of sparks, by first creating n sparks (for a given value n), and then
streaming the sparks one at a time as needed.

It was not clear what would be an equivalent of parChunk applied to poten-
tially unbounded search trees. In an initial attempt, we tried to flatten the search
tree to a list, use the chunking strategy for lists, and ‘parse’ the list back to a tree.
This did not produce the desired effect. We instead designed an approximation
of a buffered strategy, but applied to search trees, by controlling the depth of
sparking, which we call par-depth. For example, for a par-depth of 2, all nodes at
depth less than or equal to 2 will be sparked, and anything beyond depth 2 will
be suspended – by returning their WHNF immediately. The sparks created for
nodes that have only been evaluated to WHNF will not attempt to create more
sparks for the subtrees. When a suspended node is required by the main thread
(e.g., when it needs to be evaluated against a security property), it will trigger
another round of sparking (up to par-depth)). Figure 1 shows a situation where
some of the left-most nodes (marked with the green color) have completed their
tasks, and the main thread is starting to query the next suspended node (grey
node). This triggers sparking of a subtree of depth 2. As can be seen, the strat-
egy essentially sparks a chunk of seven nodes at a time, in a depth-first manner.
The grey nodes represent those that have been only evaluated to WHNF. The
yellow nodes represent nodes that may be either finished performing their task,
or waiting for results from their child nodes.

6

Fig. 1. A buffered search tree.

1 data Tree a = Node a [Tree a]

2 parTreeBuffer :: Int → Int → Strategy a → Strategy (Tree a)

3 parTreeBuffer _ _ strat (Node x []) = do

4 y ← strat x

5 return (Node y [])

6 parTreeBuffer 0 n strat (Node x l) = do

7 y ← strat x

8 l’ ← parBuffer 50 (parTreeBuffer n n strat) l

9 return (Node y l’)

10 parTreeBuffer !m n strat (Node x l) = do

11 y ← strat x

12 l’ ← parList (parTreeBuffer (m-1) n strat) l

13 return (Node y l’)

Fig. 2. A buffered parallel strategy for search trees

This example shows a balanced binary tree. In reality, the search tree may
not be balanced, and the branching factor can vary from one node to another. It
may be theoretically possible to create a search tree that is infinitely branching,
so our strategy cannot completely guarantee that the number of sparks at any
given time would be bounded. Indeed, based on our profiling of search trees for
a number of benchmarks in OFMC, the search trees can be quite unbalanced,
and the branching factors vary greatly between different depths of the search
tree. For three sessions of the Kerberos protocol, for example, the branching fac-
tors seem to congregate at two extremes: between 1-3 branches at the lower-end
versus 40-50 branches at the higher end. In our experiments, we witnessed a rela-
tively constant memory consumption throughout the execution of the benchmark
problems up to three sessions. Going beyond four sessions, for large protocols
such as Kerberos, the longer the benchmark is executed, the memory consump-
tion may grow substantially, to the point that the entire system memory can be
exhausted. Nevertheless, this buffered strategy is simple enough and serves as
a good starting point in investigating various trade-offs between the number of
cores, the degree of parallelisation and the memory consumption.

Our buffered strategy is implemented as shown in Figure 2. The difference
between sparking new nodes and stalling the sparking lies in the use of parBuffer
vs. parList: the former evaluates a node into WHNF and returns without creating
a new spark, whereas the latter would spark the entire list.

7

Fig. 3. Profiling workload distributions: (a) overall and (b) an individual activity.

To evaluate the performance of the parBufferTree strategy, we selected three
benchmark problems: a flawed version of Google Single Sign-On (SSO) pro-
tocol [5], the TLS protocol and a basic version of the Kerberos protocol. All
experiments were performed on a server with 96 Intel(R) Xeon(R) Gold 6252
physical cores at 2.10GHz (192 logical cores), and 196GB of RAM. We show some
details here for the simplified versions of Google SSO and Kerberos protocols;
further details are available in the appendix. For each experiment, we specified
the number of sessions and the depth of the search, and the par-depth for the
clustering of parallel search. The protocols used for these experiments were all
specified in the AnB format. These experiments were restricted to a par-depth of
3, which seems to strike a reasonable balance between performance and memory
consumption. For a protocol with n steps per session, the length of the run of
k concurrent sessions of the protocol is bounded by n ∗ k, which corresponds to
the depth of search. Therefore, to prove the security of a protocol with k steps
for n sessions, the depth of the search must be at least n ∗ k.

To check whether our parallelisation strategy did indeed distribute the work
to multiple cores, we perform a profiling of runtime workload distributions among
different cores. For this test, we used the Google Single Sign-On (SSO) protocol
formalisation which comes with the OFMC distribution. The runtime profiles
(Figure 3) were generated using the threadscope software [18]. Figure 3a shows
the overall profile. The green ‘bar’ on the top is the overall workload of all
cores combined, and the bars below (labelled HEC 0 - HEC 3) correspond to
the activities for each core. The green bars represent the actual workload of the
program being run. The orange bars denote time spent on garbage collection
and the light orange bars represent idle time. As we can see in the figure, the
work is distributed evenly across all cores, but there are gaps between activities.
Figure 3b shows an individual activity in more detail. The workload component
is only slightly longer than the combined GC and idle time. As we will see later,
this ratio of workload vs overhead (GC + idle time) is consistently observed
throughout our benchmarks.

For the Kerberos protocol, we witnessed a huge increase in the number of
states to verify. For 3 sessions and a search depth of 10, using a naive (unbuf-
ferred) strategy (e.g. parTree), the verifier occasionally entered a state where it
consumed a huge amount of memory (close to 190GB) and the program was ter-
minated by the operating system. The problem became worse when moving to
4 sessions (with a search depth of 12); the memory consumption rose to around

8

Core# Total (elapsed) (s) Total (CPU) (s) GC (s) MUT (s) Mem. res. (MB)

1 7990.432 7989.687 4539.233 3451.164 255.4
2 4992.650 9967.061 3324.002 1668.644 3609.8
4 2891.620 11422.235 1989.502 902.115 3954.3
6 2123.020 12443.051 1483.549 639.460 4122.6
8 1753.690 13493.416 1232.658 521.021 3930.3

10 1627.630 15456.142 1162.774 464.846 3861.1
12 1679.090 18870.687 1219.576 459.509 3829.5
14 1634.090 21193.560 1197.041 437.042 4120.1
16 1563.200 22944.665 1147.829 415.366 4204.5

Table 1. Kerberos protocol verification for 3 sessions and search depth 10.

Fig. 4. Execution time for the Kerberos protocol for 3 sessions with (a) a search depth
of 10 and (b) a search depth of 18.

130GB within 3 minutes of runtime. This is thus an example that shows the
advantage of the buffered search tree strategy in PFMC.

For this case study, we performed two sets of experiments. The first experi-
ment used 3 sessions of the protocol, with a search depth of 10, while the second
one increased the search depth to 18 (hence it covered all possible interleavings
of actions from the 3 sessions). The purpose of this was primarily to see how the
verification effort scales up with the increase of search depth.

The results of the experiments are summarised in Tables 1 and 2 and Figure 4.
The Total (elapsed) column shows the total elapsed time (wall time). The Total
(CPU) column shows the total CPU time spent by all cores. The GC column
shows the (elapsed) time spent on garbage collection, and MUT shows the actual
productive time spent on the workload. The last column shows the maximum
memory residency, i.e., the largest amount of memory used at any time. The two
experiments look remarkably similar. We see a steep improvement in elapsed time
up to 10-12 cores, before the curves flatten out. The performance speed-ups in
the best cases were 5.1 (for the first experiment, with 16 cores) and 3.8 (for
the second experiment, with 14 cores). In the second experiment, the single-
threaded OFMC took slightly over 24 hours, but the parallel version, in the best
case, terminated after 6 hours or so.

The long tails of distributions of performance gain in the previous experi-
ments do not necessarily mean that we have reached the limit of parallelisation.
Rather, it seems to be an effect on the limit of the par-depth (and hence also the

9

Core# Elapse time (s) CPU time (s) GC time (s) MUT (s) Mem. res. (MB)

1 88804.862 88796.110 46791.364 42013.268 2195.3
2 56400.770 111668.513 34207.638 22193.131 6589.9
4 35479.590 133237.707 22194.304 13285.284 6766.1
6 29285.870 157276.399 18348.008 10937.858 6689.4
8 25753.490 177285.007 16184.376 9569.108 6742.4

10 24328.190 201795.566 15171.428 9156.752 6795.9
12 22916.410 221311.255 14186.897 8729.507 6823.9
14 23114.540 254643.338 14284.919 8829.614 6864.3
16 24443.140 304698.207 15330.385 9112.746 6868.6

Table 2. Kerberos protocol verification for 3 sessions and search depth 18.

memory ceiling). Tweaking the par-depth parameter slightly may result in better
or worse performance. For the Kerberos verification, for 3 sessions and a search
depth of 18, increasing the par-depth to 4 from 3 gained us some improvement:
the elapsed time was 21765.3 seconds (so about 1.12 speed up over the execution
time using a par-depth of 3), GC time 14271.5 seconds and MUT time 7494.8
seconds. However, the resident memory rose to 20GB (from 6.8GB). Raising the
memory ceiling also allows more cores to be used to gain further performance
improvement. For example, for the same Kerberos benchmark, with a par-depth
of 4, raising the number of cores to 20 resulted in a total elapsed time of 20789.7
seconds, with resident memory of 20.8GB. Generally, increasing the par-depth
results in higher memory consumption, but may allow all cores to be maximally
used at all times. When tested with a par-depth of 6, the verification of Ker-
beros (3 sessions, search depth 18) exhausted the server’s memory (196 GB)
and was terminated by the operating system. These suggest that there are still
performance improvements to be gained from parTreeBuffer if we can reduce
the overall memory footprint of PFMC, allowing us to use a greater par-depth.
However, generally, parTreeBuffer is rather unsatisfactory as the memory con-
sumption can grow unpredictably and crash the verifier. In our next strategies,
we attempt to address this issue.

Garbage collection currently seems to be the largest source of inefficiency in
our experiments, taking up almost half of the execution time per core. This is,
however, not due to the parallelisation, as it is also observed in the runtime for
the single-core cases. Our conjecture is that this is an inherent issue with the
search procedures underlying OFMC, which may involve creation of search nodes
that end up not being evaluated and later discarded by the garbage collector.

4.2 Enhanced parTreeBuffer

This strategy was a modification to the original parTreeBuffer strategy which
led to a dramatic improvement in both speed and memory consumption. The
modification consists of two parts. First, the par-depth limitation is removed, and
parBuffer is called at each node’s children. This increases speed-up at the cost
of memory overhead. However, this memory cost increase is offset by the second
modification. The second change, which is the key modification, involves eagerly

10

1 parTreeBuffer :: Int → Strategy a → Strategy (Tree a)

2 parTreeBuffer _ strat (Node x []) = do

3 y ← strat x

4 return (Node y [])

5 parTreeBuffer c strat (Node x l) = do

6 y ← strat x

7 n ← rseq (length l)

8 l’ ← parBuffer c (parTreeBuffer c strat) l

9 return (Node y l’)

Fig. 5. parBuffer at each level, with eager evaluation of subchildren length.

Fig. 6. The effect of the depth and number of cores of the Kerberos protocol on (a)
execution time and (b) memory residency, using the enhanced parTreeBuffer strategy.

evaluating the spine of the list of children at each node, without evaluating each
individual node in the list, prior to calling parBuffer, as shown in Fig. 5.

To understand why the second modification is significant, recall that due
to the lazy evaluation of Haskell, when a function that returns a list is called,
Haskell will stop evaluating the function as soon as the topmost constructor is
evaluated, i.e., when the result is of the form (x:l), where the head x and the
tail l of the list are unevaluated expressions. In the case of PFMC, this list con-
tains the successors of the underlying transition system encoding the protocol
and the attacker moves. Deducing possible transitions may involve solving de-
ducibility constraints, and as the number of sessions and the depth search grow,
the accumulated constraints can be significant; we conjecture that evaluating
this eagerly allows some of the large lazy terms to be simplified in advance, at
little computation cost, which reduces the memory footprint significantly. This
small change decreases the memory consumption of the strategy tenfold in many
cases. Figure 6 shows the effect of the depth and number of cores on execution
time and memory residency, using the basic Kerberos protocol.

11

Fig. 7. Conversion Ratio using the hybridSubtrees strategy for the Kerberos protocol.

4.3 parTreeChunkSubtrees

This strategy aims at controlling exactly the overall number of sparks created. It
uses a concept of fuel and fuel splitting, motivated by [25]. It starts at the root
node of the search tree with a given number of sparks (i.e., the fuel) to be created.
It then divides this number between each subtree, evaluating nodes sequentially.
When the number of sparks reaches one, a spark is created to evaluate the
remaining subtrees in parallel. This method is extremely memory efficient and
performs well on smaller trees. However, as the number of sparks requested
increases, the sequential portion towards the root of the tree becomes larger.
Therefore, this method is not suitable for large problem sizes. Nevertheless, the
overall memory consumption of this strategy is extremely low, so it has potential
applications where memory use is a priority, as well as for smaller problem sizes.
An extension to this strategy which resolves this issue is hybridSubtrees.

4.4 hybridSubtrees

The hybridSubtrees strategy divides a certain number of sparks over the tree.
However, instead of evaluating sequentially until it runs out of fuel, it recur-
sively calls parBuffer at each level, and divides the remaining sparks between its
children. When the strategy can no longer create a full buffer, it creates a spark
for the remaining subtree. This strategy therefore has a strict upper bound on
the degree of parallelism. It also affords better control over the trade-off between
memory and performance in general. When given enough sparks, it behaves simi-
larly to parTreeBuffer. Given fewer sparks, the average granularity increases, the
performance slows, and the memory consumption decreases. A benefit of spark-
ing subtrees may also be that nodes deeper in the tree are less likely to require
evaluation, meaning less work for the relatively overloaded subtree sparks. This
is evidenced by its conversion rate when compared to other strategies, which
indicates fewer fizzled and garbage collected sparks, as shown in Fig. 7.

A limitation of this strategy is that the sparks are not evenly divided be-
tween subtrees, and the number of sparks created is usually significantly lower
than the number requested. Overall, the strategy performed slightly better than
parTreeBuffer at certain problem sizes. However when testing very large problem
sizes (4 sessions or depths greater than 10), spark creation as a proportion of the

12

Fig. 8. The effect of the depth and number of cores of the Kerberos protocol on (a)
execution time and (b) memory residency, using the hybridSubtrees strategy.

spark cap provided decreased, and it became difficult to assign adequate sparks
to offer comparable speeds to parTreeBuffer without thoroughly testing for a
given depth to explore its sparking characteristics. Fig. 8 shows the execution
time and memory residency using this strategy on the Kerberos protocol.

4.5 Strategies with Annotation

The above strategies make assumptions about the shape of the tree which could
impact performance for particular problems. For example, sparks could be left
unused by hybridSubTrees due to the unbalanced nature of the tree. Learning
more about the search tree before applying a strategy could help to offset this. We
experimented with several strategies using annotation methods inspired by [25],
by annotating each node in the search tree with information about the number of
subnodes, in order to achieve better sparking and load balancing characteristics.
The core of these strategies was at each node developing a list of slightly different
strategies to apply to each subtree, based on the annotation information. For
example, in the case of fuel-splitting strategies such as parTreeChunkSubtrees or
hybridSubtrees, annotation was used to ensure excess fuel was not passed to
subtrees without sufficient nodes to make use of it.

However, in all cases these strategies did not justify their additional cost in
performance and memory. This may be due to the fact that many nodes in the
tree are not evaluated under normal conditions, but the annotation runs force a
degree of evaluation in order to count nodes, and this overhead is not offset by
any performance gains. It is also possible that the chosen method of annotation
is inefficient, and better methods using, for example, a heuristic technique may
perform better.

4.6 Comparison

The enhanced parTreeBuffer strategy offers reliably good results for most prob-
lem sizes, with improved speed-up and memory consumption in all cases over

13

Fig. 9. (a) Best execution time vs depth and (b) average execution time for varying
numbers of cores for each of the strategies.

Fig. 10. Maximum memory residency vs depth for some of the strategies.

the parTreeBuffer strategy. For small trees, the simpler parTreeChunkSubtrees

performs better in both measures than any alternatives, but at these problem
sizes the difference is not significant. The hybridSubTrees strategy performs well
if assigned adequate fuel, but this can become difficult for greater depths.

For very large problems, where parTreeBuffer may overflow memory due to
excessive spark creation, hybridSubtrees can also be used to limit parallelism
while still benefiting from parallel speed-up. It performed consistently better in
terms of memory consumption compared to parTreeBuffer and offers more ex-
plicit control over the degree of parallelism. Figs. 9 and 10 show the comparisons
of execution time and memory for the different strategies.

These observations apply only to PFMC, and testing on a variety of other
problems would be required for commenting on the more general performance
characteristics of the strategies. Finer granularity of problem size at each node
would make chunking strategies more applicable, whereas problems which require
the evaluation of the entire tree at each execution would not benefit as much
from the buffering approach and may be better served by fuel-splitting or some
other strategy.

4.7 Enabling the verification of protocols with algebraic operators

OFMC also supports extensions of Dolev-Yao attacker models with algebraic
operators. Some of these operators, such as XOR, are supported by default, but
the user has the ability to add their own equational theory for custom operators.

14

The custom theories, however, are supported only when the input is specified
in the AVISPA Intermediate Format (IF) format [21], which is not very user-
friendly. OFMC does provide a translator from AnB format to IF format, but
currently there are some issues in recognising the custom theories. We have made
some modifications to the translator to allow us to experiment with verification
of protocols with algebraic properties. In terms of performance speed-up, the
results are in line with what we have seen in the case of Dolev-Yao attackers.
Further details of these experiments are available in Appendix B.

5 Conclusion and Future Work

Our preliminary results show that there is a significant improvement in moving
towards moderate parallelisation of security protocol verification based on sym-
bolic constraint solving. We managed to achieve 3-5 times speed up compared
to the sequential verifier, utilising between 4-16 cores, on benchmarks with 3
sessions. Beyond 16 cores the performance improvement does not seem substan-
tial. This is partly due to our algorithm limiting the memory usage, preventing
more tasks to be executed in parallel, but in some cases it could also be that the
problem has hit a limit of parallelisation, e.g., some parts of the search could
not be parallelised due to inherence dependencies.

One major issue in scaling up the protocol verification is controlling the
memory consumption, while attaining a good degree of parallelisation. To this
end we have been experimenting with various buffering and chunking strategies.
The extended parTreeBuffer and the hybridSubTree strategies (Section 4) seem
to so far provide a good balance of memory consumption and performance, with
parTreeBuffer generally performing better, but with a worse memory footprint.

For future work, we plan to explore annotation methods to achieve better load
balancing in sparking the search trees, perhaps by moving to a limited shared-
memory concurrent setting. We also plan to apply our light-weight parallelisation
approach to improve the performance of other protocol verifiers, e.g., Tamarin.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Inf. Comput., 148(1):1–70, 1999.

2. O. Almousa, S. Mödersheim, and L. Viganò. Alice and bob: Reconciling formal
models and implementation. In Programming Languages with Applications to Bi-
ology and Security - Essays Dedicated to Pierpaolo Degano on the Occasion of His
65th Birthday, volume 9465 of LNCS, pages 66–85. Springer, 2015.

3. M. Arapinis, S. Delaune, and S. Kremer. From one session to many: Dynamic
tags for security protocols. In Logic for Programming, Artificial Intelligence, and
Reasoning, 15th International Conference, LPAR 2008. Proceedings, volume 5330
of LNCS, pages 128–142. Springer, 2008.

4. A. Armando, R. Carbone, and L. Compagna. SATMC: a sat-based model checker
for security protocols, business processes, and security apis. Int. J. Softw. Tools
Technol. Transf., 18(2):187–204, 2016.

15

5. A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and L. Tobarra. Formal
analysis of SAML 2.0 web browser single sign-on: breaking the saml-based single
sign-on for google apps. In Proceedings of the 6th ACM Workshop on Formal
Methods in Security Engineering, FMSE 2008., pages 1–10. ACM, 2008.

6. M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao, and
B. Parno. Sok: Computer-aided cryptography. IACR Cryptol. ePrint Arch.,
2019:1393, 2019.

7. D. A. Basin, S. Mödersheim, and L. Viganò. Algebraic intruder deductions. In Logic
for Programming, Artificial Intelligence, and Reasoning, 12th International Con-
ference, LPAR 2005, Proceedings, volume 3835 of LNCS, pages 549–564. Springer,
2005.

8. B. Blanchet. Using horn clauses for analyzing security protocols. In Formal Mod-
els and Techniques for Analyzing Security Protocols, volume 5 of Cryptology and
Information Security Series, pages 86–111. IOS Press, 2011.

9. B. Blanchet. Modeling and verifying security protocols with the applied pi calculus
and proverif. Found. Trends Priv. Secur., 1(1-2):1–135, 2016.

10. I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In Proceedings of the 12th IEEE Computer Security
Foundations Workshop, CSFW 1999, pages 55–69. IEEE Computer Society, 1999.

11. V. Cheval. APTE: an algorithm for proving trace equivalence. In Tools and Algo-
rithms for the Construction and Analysis of Systems - 20th International Confer-
ence, TACAS 2014. Proceedings, volume 8413 of LNCS, pages 587–592. Springer,
2014.

12. V. Cheval, S. Kremer, and I. Rakotonirina. DEEPSEC: deciding equivalence prop-
erties in security protocols theory and practice. In 2018 IEEE Symposium on
Security and Privacy, SP 2018, Proceedings, pages 529–546. IEEE Computer So-
ciety, 2018.

13. V. Cortier, A. Dallon, and S. Delaune. Efficiently deciding equivalence for stan-
dard primitives and phases. In Computer Security - 23rd European Symposium
on Research in Computer Security, ESORICS 2018, Proceedings, Part I, volume
11098 of LNCS, pages 491–511. Springer, 2018.

14. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used
in cryptographic protocols. J. Comput. Secur., 14(1):1–43, 2006.

15. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Trans.
Information Theory, 29(2):198–207, 1983.

16. N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In Workshop on Formal Methods and Security Protocols, 1999.

17. M. I. Kanovich, T. B. Kirigin, V. Nigam, and A. Scedrov. Bounded memory dolev-
yao adversaries in collaborative systems. Inf. Comput., 238:233–261, 2014.

18. S. Marlow, D. Jones, and S. Singh. threadscope (software package). https://

wiki.haskell.org/ThreadScope.
19. S. Marlow, R. Newton, and S. L. P. Jones. A monad for deterministic parallelism.

In Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, Haskell 2011,
Tokyo, Japan, 22 September 2011, pages 71–82. ACM, 2011.

20. S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN prover for
the symbolic analysis of security protocols. In Computer Aided Verification - 25th
International Conference, CAV 2013. Proceedings, volume 8044 of LNCS, pages
696–701. Springer, 2013.

21. S. Mödersheim and L. Viganò. The open-source fixed-point model checker for
symbolic analysis of security protocols. In Foundations of Security Analysis and

16

https://wiki.haskell.org/ThreadScope
https://wiki.haskell.org/ThreadScope

Design V, FOSAD 2007/2008/2009 Tutorial Lectures, volume 5705 of LNCS, pages
166–194. Springer, 2009.

22. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
is np-complete. In 14th IEEE Computer Security Foundations Workshop (CSFW-
14 2001), pages 174–187. IEEE Computer Society, 2001.

23. F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. J. Comput. Secur., 7(1):191–230, 1999.

24. A. Tiu, N. Nguyen, and R. Horne. SPEC: an equivalence checker for security pro-
tocols. In Programming Languages and Systems - 14th Asian Symposium, APLAS
2016, Proceedings, volume 10017 of LNCS, pages 87–95, 2016.

25. P. Totoo. Parallel evaluation strategies for lazy data structures in Haskell. PhD
thesis, Heriot-Watt University, 2016.

26. T. van Deursen and S. Radomirovic. Attacks on RFID protocols. IACR Cryptol.
ePrint Arch., page 310, 2008.

A Case studies

We show here more details of the tests we performed on some example protocols.
These example protocols are from the original distribution of OFMC (and also
included in the distribution of PFMC).

A.1 A simplified Kerberos protocol

Figure 11 shows the formalisation of a simplified version of the Kerberos
protocol in the “Alice and Bob” (AnB) notation of OFMC. It abstracts away
some aspects of the actual protocol, such as the authentication tags. The goal
states that the protocol establishes a confidential and authentic channel between
s and C. We have provided details of the performance evaluation of Kerberos in
Section 4 so we will not repeat it here.

A.2 Google Single Sign-On protocol

The attack can be found within 2 sessions. The (simplified) protocol is given
in Figure 12. The constructor pk denotes the public key constructor; idp is the
identity provider, C is the client, S is the service provider and the private key that
corresponds to a public key pk(X) is denoted by inv(pk(X)). The flaw in Google’s
implementation of the protocol (which was based on SAML 2.0) is in step 4
(line 20 in Figure 12): Google’s implementation omitted certain information,
such as the unique identifier of the authentication request (the ID variable in
the protocol) and the identity of the service provider SP. We will not go into
the details of the attack; the interested reader can consult [5]. This example
shows a flawed Google Single Sign-On protocol (SSO); the flaw was discovered
by Armando et. al. [5] using the SATMC model checker [4]. There is an attack
when two sessions of the protocol are running concurrently. Thus, to prove or
disprove the security goals, we set the search depth to 12 (since each session

17

1 Protocol: Basic_Kerberos # Bounded-verified

2

3 Types: Agent C,a,g,s;

4 Number N1,N2,T1,T2,T3,Payload,tag;

5 Function hash,sk;

6 Symmetric_key KCG,KCS

7

8 Knowledge: C: C,a,g,s,sk(C,a),hash,tag;

9 a: a,g,hash,C,sk(C,a),sk(a,g),tag;

10 g: a,g,sk(a,g),sk(g,s),hash,tag;

11 s: g,s,sk(g,s),hash,tag

12

13 Actions:

14

15 C → a: C,g,N1

16 a → C: { | KCG, C, T1 |}sk(a,g),
17 { | KCG, N1, T1, G |}sk(C,a)
18 C → g: { | KCG, C, T1 |}sk(a,g), { |C,T1 |}KCG, s,N2

19 g → C: { | KCS, C, T2 |}sk(g,s), { | KCS, N2, T2, s |}KCG
20 C → s: { | KCS, C, T2 |}sk(g,s), { | C, T3 |}KCS
21 s → C: { |T3 |}KCS, { |tag,Payload |}KCS
22

23 Goals:

24 s ∗→∗ C: Payload

Fig. 11. A simplified version of the Kerberos protocol

18

1 Protocol: SingleSignOn

2 # the flawed version of Google’s SSO from before 2008 [Armando et al.]

3 # in comments the standard specification (which is safe)

4

5 Types: Agent C,idp,SP;

6 Number URI,ID,Data;

7 Function h,sk

8

9 Knowledge: C: C,idp,SP,pk(idp);

10 idp: C,idp,pk(idp),inv(pk(idp));

11 SP: idp,SP,pk(idp)

12 where SP!=C, SP!=idp, C!=idp
13 Actions:

14

15 [C] ∗→∗ SP : C,SP,URI

16 SP ∗→∗ [C] : C,idp,SP,ID,URI

17

18 C ∗→∗ idp : C,idp,SP,ID,URI

19 # google:

20 idp ∗→∗ C : {C,idp}inv(pk(idp)),URI

21 # standard:

22 #idp ∗→∗ C : ID,SP,idp,{ID,C,idp,SP}inv(pk(idp)),URI

23

24 # google:

25 [C] ∗→∗ SP : {C,idp}inv(pk(idp)),URI

26 # standard:

27 #[C] ∗→∗ SP : ID,SP,idp,{ID,C,idp,SP}inv(pk(idp)),URI

28 SP ∗→∗ [C] : Data,ID

29

30 Goals:

31

32 SP authenticates C on URI

33 C authenticates SP on Data

34 Data secret between SP,C

Fig. 12. A flawed version of Google Single Sign-On protocol. Source: OFMC distribu-
tion.

19

can have at most 6 steps). For this and the next two case studies, we set the
par-depth to 3.

We repeated the experiment 8 times, increasing the number of cores by 2
with every iteration. The result is given in Table 3. The experiment results are
given in Table 3. Figure 13a shows the trend in a chart.

We note that there is a significant improvement from a single core to four
cores. This trend continues to 12 cores, after which point the GC overhead seems
to outweigh the performance gain. Interestingly, the GC overhead does not seem
to become worse with the addition of cores; in fact, it seems to improve. However,
GC accounts for almost half of the execution time. This may indicate that the
sequential algorithm itself is quite inefficient. The performance gain through
parallelism is offset by the significant increase of memory residency, so it would
seem that availability of memory is a limiting factor in scaling up the verification.
The fast growth in memory consumption is what originally motivated us to
develop a buffered search strategy. As the table shows, the memory residency in
this case stays relatively constant, despite the increase of the number of cores
used.

Core# Elapsed time (s) CPU time (s) GC time (s) MUT (s) Mem. res. (MB)

1 85.909 85.902 41.283 44.625 4.3
2 90.450 180.114 47.981 42.462 108.2
4 66.530 254.309 37.285 29.239 122.8
6 56.280 304.819 31.705 24.568 146.3
8 48.040 328.983 26.460 21.573 131.8

10 45.480 374.103 25.568 19.907 138.0
12 38.840 364.404 20.804 18.027 143.0
14 39.930 425.004 21.485 18.439 142.6
16 43.440 524.929 24.537 18.854 147.4

Table 3. Results for the Google SSO verification for 2 sessions and search depth of 12.

Fig. 13. Execution time for (a) the SSO protocol verification and (b) the TLS protocol.

20

A.3 TLS protocol

1 Protocol: TLS # Bounded-verified

2

3 Types: Agent A,B,s;

4 Number NA,NB,Sid,PA,PB,PMS;

5 Function pk,hash,clientK,serverK,prf

6

7 Knowledge: A: A,pk(A),pk(s),inv(pk(A)),{A,pk(A)}inv(pk(s)),B,hash,clientK

,serverK,prf;

8 B: B,pk(B),pk(s),inv(pk(B)),{B,pk(B)}inv(pk(s)),hash,clientK,

serverK,prf

9

10 Actions:

11

12 A→B: A,NA,Sid,PA

13 B→A: NB,Sid,PB,

14 {B,pk(B)}inv(pk(s))

15 A→B: {A,pk(A)}inv(pk(s)),

16 {PMS}pk(B),

17 {hash(NB,B,PMS)}inv(pk(A)),

18 { |hash(prf(PMS,NA,NB),A,B,NA,NB,Sid,PA,PB,PMS) |}
19 clientK(NA,NB,prf(PMS,NA,NB))

20 B→A: { |hash(prf(PMS,NA,NB),A,B,NA,NB,Sid,PA,PB,PMS) |}
21 serverK(NA,NB,prf(PMS,NA,NB))

22

23 Goals:

24

25 B authenticates A on prf(PMS,NA,NB)

26 A authenticates B on prf(PMS,NA,NB)

27 prf(PMS,NA,NB) secret between A,B

Fig. 14. TLS handshake protocol. Source: OFMC distribution.

For this case study, we verify the TLS handshake protocol, for 3 concurrent
sessions. Figure 14 shows the formalisation of a simplified version of TLS in
OFMC. Here we omit an explicit formalisation of certificates and certificate au-
thorities. Digital signatures are also modelled using public key encryption, i.e., a
digital signature is just an encryption using the private key. The various param-
eters in the TLS handshake protocol are also abstracted away as the (random)
number PMS. The function symbol hash denotes a secure cryptographic hash func-
tion, the symbol clientK denotes the function for constructing the (symmetric)
encryption key for the client, and serverK denotes the function for constructing
the encryption key for the server. We do not explicitly model the MAC keys.

21

The TLS handshake protocol has six steps, so to verify three sessions of the
protocol, we need to consider a search depth of at least 18. As in the case with
SSO, we tested PFMC on this protocol with increasing numbers of cores. The
results are summarised in Table 4 and Figure 15. Again we observe a similar
pattern of a significant reduction in elapsed time up to around 10-12 cores,
before the curve flattens. In this case however, we observe a steeper decline in
total elapsed time, with around 4.4 times speed up when run on 14 cores. The
GC and the MUT time are roughly the same throughout.

Core# Elapse time (s) CPU time (s) GC time (s) MUT (s) Mem. res. (MB)

1 1318.527 1318.397 603.617 714.908 19.8
2 786.020 1555.283 393.825 392.192 1203.3
4 512.580 1894.152 269.609 242.965 1412.7
6 412.580 2153.811 218.471 194.106 1429.8
8 389.970 2555.735 206.417 183.541 1537.3

10 344.250 2692.709 180.713 163.527 1617.4
12 325.430 2925.672 168.043 157.379 1564.3
14 301.230 3085.562 155.248 145.974 1535.4
16 326.050 3722.634 168.967 157.044 1531.1

Table 4. Results for the TLS verification for 3 sessions and search depth of 12.

Fig. 15. Execution time TLS verification

22

B Enabling the Verification of Protocols with Algebraic
Operators

Most approaches for protocol verification usually assume the existence of a free
algebra. Free algebras do not include destructors. The deduction capabilities of
the intruder are handled by a set of deduction rules. However, certain algebraic
operators used in cryptography cannot be modelled using only deduction rules.
These operators require an equational theory, which specifies a set of equations
that describe the behaviour of the operator. An example of such an algebraic
operator is the XOR (exclusive-Or) operator. The equational theory of XOR
does not result in a convergent rewriting system, due to the associativity and
commutativity equations.

OFMC has some limited support for handling algebraic operators. It allows
users to specify a custom theory file which describes equational theories. The
drawback is that support for the theory files is not complete. The theories for
some standard algebraic operators are built into the code, such as XOR and
encryption operators. However, using theory files to specify custom algebraic
operators currently only works with models specified in the Intermediate Format
(IF). There is an option for translating an AnB model into an IF model, but
this still has some difficulties.

We extended PFMC to provide support for users to use custom theory files
using the existing OFMC translation to IF files. Using the existing translation
from AnB to IF models is not straight-forward; there are several problems to
overcome in order to use the translation for checking models with custom alge-
braic operators.

In the new version of PFMC, users can specify the properties of several cus-
tom operators in a separate theory file and then use the translate option origi-
nally provided in OFMC to create an IF model where the custom operators are
recognised. Due to the current incomplete state of OFMC’s custom theory op-
tion, several manual modifications are required in order to bypass errors thrown
by OFMC when performing standard checks on the model which appear to fail
when the custom theory files are not considered. For example, a common error
thrown is that a secret X is never known by an agent A, although A may be able
to deduce the secret using the equational theory properties. After translation,
the resulting IF model must then be manually edited to remove the extra modi-
fications. In most cases, this is far less tedious and error-prone than creating an
entire IF model by hand, since IF models are significantly more complex than
AnB models.

The translation produced has a default number of sessions of two. Unlike
AnB models, the number of sessions is fixed in IF models. In order to increase
the number of sessions, separate IF files must be created for different numbers of
sessions, by specifying the number required at the translation stage. The manual
modifications are identical for all the files, so can simply be specified once and
copied to the other files.

For several examples, the manual modifications are simple to perform, such as
for the CH07 protocol from [26] and the Salary Sum and Shamir-Rivest-Adleman

23

Three Pass protocols from [14]. Some models do not require any modifications,
such as the LAK protocol described in [26]. The issue is usually in cases where
the protocol contains information contained within custom operator functions, or
inside nested operators, for which OFMC assumes the inner information cannot
be extracted.

There are, however, certain models for which it is not straight-forward to
translate them into IF models even with manual modifications. One such example
is Bull’s authentication protocol (described in [14]), for which it is not trivial to
avoid the OFMC error checks. While in general it would be possible to prevent all
the initial checks from being performed, a more robust solution for future work
would be to modify the tool to use the custom theory files when translating.

B.1 Experiments

We ran several protocols which require custom algebraic theories. The execution
times vs. the number of cores for the IKA, SRA Three Pass and Salary Sum
protocols from [14] and the LAK and CH07 protocols from [26] are shown in
Figures 16 to 19. For all of the protocols, we attempted to run them with 2, 3
and 4 sessions. However, for some cases, the verification did not terminate for
over 24 hrs with higher numbers of sessions, so only lower numbers are shown
here, e.g. the Salary Sum protocol could not be verified with more than 2 sessions.
All of the protocols have known attacks, but for the SRA and LAK protocols,
OFMC does not find any attacks (see Section B.2).

For all the models, using multiple cores produced an improvement in execu-
tion time compared to a single core. Similar to what we observed in the case
of Dolev-Yao intruder models, as the number of cores increased, the execution
times generally decreased. However, after around 16 cores, the execution times
started to increase again, as the garbage collection overheads increased, although
the overall execution time still remained below the original time for a single core.

Another interesting point to observe is that for each particular protocol, e.g.
the LAK protocol in Fig. 19, the shape of the graphs are identical for different
numbers of sessions, although with significantly different execution times.

Fig. 16. Execution time for the IKA protocol verification a search depth of 10 with
(a) 3 sessions and (b) 4 sessions.

24

Fig. 17. Execution time for the SRA Three Pass protocol verification a search depth
of 10 with (a) 3 sessions and (b) 4 sessions.

Fig. 18. Execution time for the CH07 protocol verification a search depth of 10 with
(a) 3 sessions and (b) 4 sessions.

B.2 Attacks Not Found by OFMC

Extending OFMC to improve support for custom theories has revealed some
limitations of OFMC. There are some attacks related to algebraic operators
that OFMC does not find.

The LAK protocol is an example where OFMC does not find an attack which
requires the properties of the algebraic operators. There is an attack on the LAK
protocol where the attacker utilises the properties of XOR to obtain some secret
information [26]. However, OFMC reports no attacks for this protocol. This
may be due to the fact that OFMC uses a bound on the message term depth to
enable the verification of algebraic operators to be decidable [7]. Unfortunately,
this means that for several of the protocols we tested, OFMC could not find the
known attacks.

25

Fig. 19. Execution time for the LAK protocol verification for a search depth of 10 with
(a) 2 sessions and (b) 3 sessions

C Profiling Tamarin’s parallelisation

In this section, we show our preliminary tests on Tamarin parallelisation, us-
ing selected example specifications included in the Tamarin distribution. The
following experiments were performed on an Ubuntu 18.04 server, running on
a machine with 192 cores Intel(R) Xeon(R) Gold 6252 and 187GB RAM. The
Tamarin version we were using was version 1.7.1, from the ”develop” branch of
the git repository (git version: 98058d7d6282edfd087aefa97c3a3baa6a34ac63).

Table 5 shows the elapsed time for the following benchmark problems from
Tamarin distribution:

Chen Kudla: examples/ake/bilinear/Chen_Kudla.spthy
UM three pass: examples/ake/dh/UM_three_pass.spthy

commitment-protocol: examples/csf17/commitment-protocol.spthy
gcm: examples/csf19-wrapping/gcm.spthy

arpki-NoThreeUntrusted: examples/ccs14/arpki-NoThreeUntrusted.spthy

It seems that generally, there is little improvement in the elapsed time beyond
2 cores. Figure 20 shows some fragments of the thread profiling for the Chen_Kudla

benchmark, running on 4 cores. Figure 20(a) shows an example situation where
the workload was distributed evenly among the four cores. This occurred for a
very short duration (less than a second). The rest of the runtime profile resembles
more the situation shown in Figure 20(b) where only two cores were actively used
for the actual computation (the rest was either spent on garbage collection or
idle). This same pattern was observed across the benchmarks we tested (except
for the arpki-NoThereUntrusted, for which we did not generate a runtime profile
due to the size of the log that it generates).

For the last benchmark, we did observe a relatively more significant im-
provement in the elapsed time; however the gain does not seem to scale with
the number of cores used. It is unclear at the moment where the bottleneck for
parallelisation lies; this is left for future work.

26

Benchmark 1 core 2 cores 4 cores 8 cores 16 cores

Chen_Kudla 39.270s 31.380s 32.080s 32.040s 35.060s
UM_three_pass 95.310s 82.720s 84.520s 83.800s 83.260s

commitment-protocol 100.750s 73.700s 64.820s 62.080s 62.750s
gcm 89.270s 81.620s 59.280s 66.940s 78.890s

arpki-NoThreeUntrusted 6293.050s 4669.480s 3758.720s 3413.110s 3686.980s

Table 5. Total elapsed time

(a) (b)

Fig. 20. Runtime profiling of Chen Kudla benchmark

27

	PFMC: A Parallel Symbolic Model Checker for Security Protocol Verification

