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Abstract. Cyber-physical systems are often safety-critical and their correctness

is crucial, as in the case of automated driving. Using formal mathematical meth-

ods is one way to guarantee correctness. Though these methods have shown their

usefulness, care must be taken as modeling errors might result in proving a faulty

controller safe, which is potentially catastrophic in practice. This paper deals

with two such modeling errors in differential dynamic logic. Differential dynamic

logic is a formal specification and verification language for hybrid systems, which

are mathematical models of cyber-physical systems. The main contribution is to

prove conditions that when fulfilled, these two modeling errors cannot cause a

faulty controller to be proven safe. The problems are illustrated with a real world

example of a safety controller for automated driving, and it is shown that the

formulated conditions have the intended effect both for a faulty and a correct

controller. It is also shown how the formulated conditions aid in finding a loop

invariant candidate to prove properties of hybrid systems with feedback loops.

The results are proven using the interactive theorem prover KeYmaera X.

Keywords: Hybrid Systems · Automated Driving · Formal Verification · Loop

Invariant · Theorem Proving

1 Introduction

Cyber-physical systems (CPS) typically consist of a digital controller that interacts with

a physical dynamic system and are often employed to solve safety-critical tasks. For

example, an automated driving system (ADS) has to control an autonomous vehicle

(AV) to safely stop for stop signs, avoid collisions, etc. It is thus paramount that CPS

work correctly with respect to their requirements. One way to ensure correctness of CPS

⋆ This work was supported by FFI, VINNOVA under grant number 2017-05519, Automatically

Assessing Correctness of Autonomous Vehicles – Auto-CAV, and by the Wallenberg AI, Au-

tonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg

Foundation.

http://arxiv.org/abs/2207.05854v1


2 Y. Selvaraj et al.

is to use formal verification, which requires a formal model of the CPS. An increasingly

popular family of models of CPS are hybrid systems, which are mathematical models

that combine discrete and continuous dynamics.

To reason about the correctness of a CPS, hybrid systems can model different com-

ponents of the CPS and their interactions, thus capturing the overall closed-loop be-

havior. In general, hybrid systems that model real world CPS may involve three main

components: a plant model that describes the physical characteristics of the system, a

controller model that describes the control software, and an environment model that cap-

tures the behaviors of the surrounding world in which the controller operates, thereby

defining the operational domain. The goal for the controller is to choose control actions

such that the requirements are fulfilled for all possible behaviors of the hybrid system.

Typically, the environment is modeled using nondeterminism to capture all possible

behaviors. However, assumptions on the environment behavior are necessary to limit

the operational domain and remove behaviors that are too hostile for any controller to

act in a safe manner. For example, if obstacles are assumed to appear directly in front of

an AV when driving, no controller can guarantee safety. While the assumptions in the

formal models are necessary to make the verification tractable, there are subtle ways in

which formal verification can provide less assurance than what is assumed [4]. In other

words, as a result of the verification, the designer may conclude the controller to be safe

in the entire assumed operational domain, whereas in reality some critical behaviors

where the controller is actually at fault might be excluded from the verification. One

possible cause for such a disparity between what is verified and what is assumed to be

verified is the presence of modeling errors. In such cases, if a controller is verified to be

safe, it leads to unsafe conclusions which might be catastrophic in practice. This paper

deals with two such modeling errors by making them subject to interactive verifica-

tion. In the first erroneous case, the environment assumptions and the controller actions

interact in such a way that the environment behaves in a friendly way to adapt to the

actions of a controller that exploits its friendliness. Then, it is possible that a faulty con-

troller can be proven safe since the environment reacts to accommodate the bad control

actions. An example of this is a faulty ADS controller that never brakes, together with

an environment that reacts by always moving obstacles to allow the controller not to

brake.

In the second erroneous case, the assumptions about the environment and/or other

CPS components remove all behaviors in which any action by the controller is needed.

In this case, the assumptions over-constrain the allowed behaviors. For example, if the

assumptions restrict the behavior of the AV to an extent that only braking is possible,

then a faulty ADS controller can be proven safe because nothing is proven about the

properties of the controller. In the worst-case, the assumptions remove all possible be-

haviors, thereby making the requirement vacuously true.

In both cases, a faulty controller can be proven safe with respect to the requirements

for the wrong reasons, i.e., unintended modeling errors, thus resulting in potentially

catastrophic operation of the CPS in practice. Modeling errors are in general hard to

address because every model is an abstraction and there exists no ubiquitous notion of

what a correct model means. Therefore, a systematic way to identify and avoid mod-

eling errors is highly desirable as it reduces the risk of unsound conclusions when a
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model is formally proven safe with respect to the requirements. Typically, the require-

ments specify (un)desired behavior of the closed-loop system within the operational

domain and are expressed in some logical formalism to apply formal verification. Dif-

ferential dynamic logic (dL) [8, 9] is a specification and verification language that can

be used to formally describe and verify hybrid systems. The interactive theorem prover

KeYmaera X [2] implements a sound proof calculus [8, 9] for dL and can thus mathe-

matically prove that the models fulfill their specified requirements.

The main contributions of this paper, Theorem 1 and Theorem 2, formulate and

prove conditions that when fulfilled, ensure the model cannot be proven safe if it is

susceptible to the above modeling errors. Essentially, a loop invariant is used not only

to reason about the model inductively but also to ensure that the interaction between

the controller and the other components in the model is as intended; the two theorems

provide conditions on the relation between the assumptions and the loop invariant. Fur-

thermore, these conditions give hints as to when a suggested loop invariant for the

model is sufficiently strong to avoid modeling errors. The problems are illustrated with

a running example of an automated driving controller that shows that they can appear

in real models. It is then proven that the formulated conditions have the intended effect.

Finally, it is shown by example that the method captures the problematic cases and also

increases confidence in a correct model free from the considered modeling errors.

2 Preliminaries

The logic dL uses hybrid programs (HP) to model hybrid systems. An HP α is defined

by the following grammar, where α, β are HPs, x is a variable, e is a term4, and P and

Q are formulas of first-order logic of real arithmetic (FOL)5:

α F x ≔ e | x ≔ ∗ | ?P | x′ = f (x) & Q | α ∪ β | α; β | α∗

Each HP α is semantically interpreted as a reachability relation JαK ⊆ S × S, where

S is the set of all states. If V is the set of all variables, a state ω ∈ S is defined as a

mapping from V to R, i.e., ω : V → R. The notation (ω,ν) ∈ JαK denotes that final

state ν is reachable from initial state ω by executing the HP α.ωJeK denotes the value

of term e in state ω, and for x ∈ V, ω(x) ∈ R denotes the real value that variable x

holds in state ω. Given a state ω1, a state ω2 can be obtained by assigning the terms

{e1, . . . , en} to the variables y = {y1, . . . , yn} ⊆ V and letting the remaining variables in V

be as in ω1, that is, ω2(yi) = ω1JeiK for 1 ≤ n and ω2(v) = ω1(v) for all v ∈ V \ y.

Let ω2 = ω1(y1 ≔ e1, . . . , yn ≔ en) be a shorthand for this assignment. For a FOL

formula P, let LPM ⊆ S be the set of all states where P is true, thus ω ∈ LPM denotes

that P is true in state ω. If P is parameterized by y1, . . . , yn, then ω ∈ LPM means that

ω ∈ LP(ω(y1), . . . ,ω(yn))M. A summary of the program statements in HP and their

transition semantics [9] is given in Table 1.

4 Terms are polynomials with rational coefficients defined by e, ẽ F x | c ∈ Q | e + ẽ | e · ẽ.
5 First-order logic formulas of real arithmetic are defined by P, Q F e ≥ ẽ | e = ẽ | ¬P | P ∧

Q | P ∨ Q | P→ Q | P↔ Q | ∀xP | ∃xP
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Table 1: Semantics of HPs [9]. P,Q are first-order formulas, α,β are HPs.

Statement Semantics

Jx ≔ eK =
{

(ω,ν) : ν = ω(x ≔ e)
}

Jx ≔ ∗K =
{

(ω,ν) : c ∈ R and ν = ω(x ≔ c)
}

J?PK =
{

(ω,ω) : ω ∈ LPM
}

Jx′ = f (x) & QK =
{

(ω,ν) : φ(0) = ω(x′ ≔ f (x)) and φ(r) = ν for a solution φ : [0, r] →

S of any duration r satisfying φ |= x′ = f (x) ∧ Q
}

Jα ∪ βK = JαK ∪ JβK

Jα; βK = JαK ◦ JβK =
{

(ω,ν) : (ω,µ) ∈ JαK, (µ,ν) ∈ JβK
}

Jα∗K = JαK∗ =
⋃

n∈N0

JαnK with α0 ≡ ?true and αn+1 ≡ αn;α.

The sequential composition α; β expresses that β starts executing after α has fin-

ished. The nondeterministic choice operation expresses that the HP α ∪ β can nonde-

terministically choose to follow either α or β. The test action ?P has no effect in a state

where P is true, i.e., the final state ω is same as initial state ω. If however P is false

when ?P is executed, then the current execution of the HP aborts, meaning that no tran-

sition is possible and the entire current execution is removed from the set of possible

behaviors of the HP. The nondeterministic repetition α∗ expresses that α repeats n times

for any n ∈ N0. Furthermore, test actions can be combined with sequential composition

and the choice operation to define if-statements as:

if (P) then α fi ≡ (?P; α) ∪ (?¬P) (1)

HPs model continuous dynamics as x′ = f (x) & Q, which describes the continuous

evolution of x along the differential equation system x′ = f (x) for an arbitrary dura-

tion (including zero) within the evolution domain constraint Q. The evolution domain

constraint applies bounds on the continuous dynamics and are first-order formulas that

restrict the continuous evolution within that bound. x′ denotes the time derivative of x,

where x is a vector of variables and f (x) is a vector of terms of the same dimension.

The formulas of dL include formulas of first-order logic of real arithmetic and the

modal operators [α] and 〈α〉 for any HP α [8, 9]. A formula θ of dL is defined by the

following grammar (φ, ψ are dL formulas, e, ẽ are terms, x is a variable, α is an HP):

θF e = ẽ | e ≥ ẽ | ¬φ | φ ∧ψ | ∀xφ | [α]φ (2)

The dL formula [α]φ expresses that all non-aborting executions of HP α (i.e., the

executions where all test actions are successful) end in a state in which the dL formula

φ is true. The formal semantics are defined by L[α]φM = {ω ∈ S : ∀ν ∈ S. (ω,ν) ∈

JαK → ν ∈ LφM}. The dL formula 〈α〉φ means that there exists some non-aborting

execution leading to a state where φ is true. 〈α〉φ is the dual to [α]φ, defined as

〈α〉φ ≡ ¬[α]¬φ. Similarly, >,≤, <,∨,→,↔,∃x are defined using combinations of the

operators in (2). A dL formula θ is valid, denoted |= θ if LθM = S.

The logic dL and the interactive theorem prover KeYmaera X support the specifica-

tion and verification of hybrid systems. The dL formula (init) → [α ] (guarantee) can
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Model 1: The general model considered

(init)→ [(env; aux; ctrl; plant)∗] (guarantee) (3)

env , e ≔ ∗; ? P(s, e, a) (4)

aux , a ≔ ∗; ? Q(s, e, a) (5)

ctrl , if ¬ok(s, e, a) then a ≔ ∗; ? C(s, e, a) fi (6)

plant , τ ≔ 0; s′ = f (s), τ′ = 1 & F(s, e, a, τ) ∧ τ ≤ T (7)

be used to specify the correctness of an HP αwith respect to the requirement guarantee.

It expresses that, if the initial conditions described by the formula init are true, then all

(non-aborting) executions ofα only lead to states where formula guarantee is true. KeY-

maera X takes such a dL formula as input and successively decomposes it into several

sub-goals according to the sound proof rules of dL to prove the formula [8, 9].

Often, modeling CPS as HPs involves execution of a controller together with a

plant in a loop described by the nondeterministic repetition α∗. To prove properties of

loops, like the property (init) → [α∗ ] (guarantee), KeYmaera X uses loop invariants,

provided by the user, to inductively reason about all (non-aborting) executions. Given

a loop invariant (candidate) ζ, applying the loop invariant rule to the above formula

would make the proof branch into the following three cases:

loop (i) : (init)→ ζ, i.e., the initial state satisfies the invariant,

loop (ii) : ζ→ [α ] ζ, i.e., invariant remains true after one iteration ofα from any state

where the invariant was true,

loop (iii) : ζ→ (guarantee), i.e., the invariant implies the requirement.

3 Problem Scope

The scope of CPS considered in this paper are hybrid systems with closed-loop feed-

back control as described by Model 1. The dL formula (3) models the CPS as a HP that

repeatedly executes in a loop and expresses the requirement on the CPS by the formula

guarantee. The HP in (3) is composed of four different components, each of which is an

HP and assigns four variables: the dynamic state s which evolves continuously, the con-

trol actions a, the environment actions e, and the time progress τ. Though the variables

in Model 1 are scalars, they can in general be vectors of any dimension.

The environment (env) in (4) describes the environment behavior using a nondeter-

ministic assignment followed by a test. The environment action e is nondeterministi-

cally assigned a real value which is then checked by the subsequent test for adherence

to the environment assumptions P, which define the operational domain. The auxiliary

system (aux) describes the internal digital system that the controller interacts with, in

addition to the environment. Similarly to env, aux (5) nondeterministically assigns a real

value to the control action a followed by a subsequent test which checks whether the

internal assumptions Q hold. These internal assumptions typically describe conditions

that stem from the design of the CPS such as physical limits on the system actuators.
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Perception

(env)

Nominal

Controller

(aux)

Safety

Controller

(ctrl)

Actuators

(plant)

xc

vehicle

state

aa

Fig. 1: Architecture of the automated driving feature.

The controller’s (ctrl) task is to ensure that the requirement guarantee is fulfilled

and is modeled as an if-statement as seen in (6). First, the control action a set by aux

is tested with ok. If the test is not ok, then ctrl overrides the control action a by the

control law C, and finally it passes on the control action to the plant (7), which models

the physical part of the system. It is described as an ordinary differential equation.

However, the sampling time of ctrl is bounded, so the evolution of plant must stop

before the sampling time T [11].

In the most abstract setting, the parameterized FOL formulas in Model 1 are treated

as uninterpreted predicates, which could be replaced by any concrete hybrid model with

specific formulas and HPs, as long as the assignment of values to variables follows the

flow of Model 1. Hence, the conclusions drawn from Model 1 can be applied and used

for a wide variety of hybrid systems.

Running Example: Automated Driving Controller

To illustrate the problems and solutions, this paper considers an example of an in-lane

automated driving feature for an AV, the ego-vehicle. Fig. 1 shows a simplified architec-

ture of the automated driving feature, which can be modeled as a HP of the general form

in Model 1. The safety requirement is for the ego-vehicle to safely stop for stationary

obstacles that have entered its path.

The perception senses the world around the ego-vehicle and corresponds to the env

in Model 1. The env models the perception algorithms that communicate the obstacle

position xc to the controller and thus the env assumptions describe the dynamics of

the obstacles appearing in the ego-vehicle’s path. The nominal controller, described by

aux, represents any algorithm solving the nominal driving task subjected to different

constraints (e.g. comfort) and requests a nominal acceleration. Thus, aux of the form

in (5) allows to keep the model parametric to arbitrary nominal controller implemen-

tations while being regarded as a black box. The aux assumptions therefore capture

design conditions on the nominal controller such as always requesting an acceleration

within certain bounds.

The safety controller described by ctrl ensures that only safe control actions, i.e.,

acceleration commands a, are communicated to the actuators. It evaluates the nominal

acceleration and overrides it with a safe acceleration if needed, thereby satisfying the

safety requirement. Thus, the verification of the safety requirement can be limited to

verifying the decision logic in one component, the safety controller.

The plant is a dynamic model of the ego-vehicle. It is modeled as a double inte-

grator with position x and velocity v of the ego-vehicle as the dynamic states and the
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Model 2: Example hybrid system

init , v = 0 ∧ x ≤ xc ∧ amin
s > 0 ∧ amax

n > 0

∧ amin
n > 0 ∧ amin

s > amin
n ∧ T > 0 (8)

guarantee , (x ≤ xc) (9)

plant , τ ≔ 0; x′ = v, v′ = a, τ′ = 1 & v ≥ 0 ∧ τ ≤ T (10)

acceleration a as control input, as seen in (10) of Model 2. The ego-vehicle is not al-

lowed to drive backwards, so v must be non-negative through the entire evolution. In

other words, the evolution would stop before v gets negative.

In the next section, the general dL formula in (3) is refined with concrete descrip-

tions of env, aux, and ctrl to illustrate the modeling errors where a faulty controller

can be proven safe. However, init, plant, and guarantee remain unchanged in the sub-

sequent models and are shown in Model 2. The initial condition init (8) specifies that

the ego-vehicle starts stationary (v = 0) at an arbitrary position x before the position

xc of an obstacle. It also sets up assumptions on the constant parameters such as the

minimum safety and nominal acceleration amin
s and amin

n , and maximum nominal ac-

celeration, amax
n , and that the sampling time T is positive. These constant parameters do

not change value during the execution of the HP [(env; aux; ctrl; plant)∗], and therefore

the assumptions on the constant parameters remain true in all contexts. The requirement

that the ego-vehicle must stop before stationary obstacles is expressed by the post con-

dition guarantee (9), which says that the obstacle’s position may not be exceeded.

4 Discover Modeling Errors

This section presents two erroneous models to illustrate how a faulty ctrl can be proven

safe with respect to guarantee. In the first case, shown in Model 3, improper interaction

between env and ctrl results in env adapting to faulty ctrl actions. Such an erroneous

model can be proven safe since the loop invariant ζ is not strong enough to prevent

improper interactions. Theorem 1 gives conditions to strengthen ζ to avoid such issues.

In the second erroneous case, Model 4, the error arises due to over-constrained env

and aux assumptions that discard executions where ctrl is at fault. Theorem 2 presents

conditions to identify and avoid errors due to such over-constrained assumptions.

4.1 Exploiting Controller

Consider Model 3 where the assumptions on env and aux are given by (11) and (12)

respectively. env assigns xc such that it is possible to brake and stop before the position

of the obstacle. This is necessary since if an obstacle appears immediately in front of

the moving ego-vehicle it is physically impossible for any controller to safely stop the

vehicle. aux is a black box, but it is known that the nominal acceleration request a is

bounded. The ctrl test ok (14) checks whether maximal acceleration for a time period

of T leads to a violation of the requirement, and if it does, the controller action C (15)
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Model 3: ctrl is exploiting

env , xc ≔ ∗; ?

(

xc − x ≥
v2

2amin
n

)

(11)

aux , a ≔ ∗; ? (−amin
n ≤ a ≤ amax

n ) (12)

ctrl , if ¬ok(x, v, xc, a) then a ≔ ∗; ? C(x, v, xc, a) fi (13)

ok(x, v, xc, a) ,

(

xc − x ≥ vT +
amax

n T 2

2

)

(14)

C(x, v, xc, a) , a = −amin
s (15)

sets the deceleration to its maximum. This maximum deceleration is a symbolic value,

parameterized over the other model variables.

Denote by θ the dL formula (3) together with the definitions of Model 2 and Model 3.

θ is proved [12] with the loop invariant ζ1 ≡ x ≤ xc. Though the goal is to find a proof

that θ is valid, and thereby establish that ctrl is safe with respect to guarantee, it is in

this case incorrect to draw that conclusion from the proof, as will now be shown.

The env assumption (11) discards executions where the distance between the obsta-

cle position xc and the ego-vehicle position x is less than the minimum possible braking

distance of the ego-vehicle. This assumption is reasonable as it only discards situations

where it is physically impossible for ctrl to safely stop the vehicle. Still, infinitely many

env behaviors are possible since xc is nondeterministically assigned any value that ful-

fills the assumption. Among other behaviors, this allows xc to remain constant, as would

be the case for stationary obstacles. However, due to improper interaction between env

and a faulty ctrl, env can be forced by ctrl to not have xc constant.

Consider a state ω0 ∈ Lζ1M, illustrated in Fig. 2a, such that

ω0(x) = 0 ω0(xc) = 1 ω0(T ) = 1

ω0(v) = 0 ω0(a) = 1.8 ω0(amax
n ) = 2 ω0(amin

n ) = 3 .

The ego-vehicle is currently at (x, v) = (0, 0) as shown by the black circle. The

hatched area represents all the points in the xv-plane from which it is possible to stop

before the obstacle position, xc, at the dashed vertical line. It holds that (ω0,ω0) ∈ JenvK
since xc− x = 1 ≥ 02/(2×3) = v2/(2amin

n ), so the assumptions on env allow xc = 1. This

can also be seen in the figure since the black circle is within the hatched area. The arrow

labeled a in Fig. 2a represents the acceleration request by aux, and if plant evolves for

1 second with a as input, the ego-vehicle ends up at the white circle. As a is within the

bounds of aux, it holds that (ω0,ω0) ∈ JauxK. The controller ctrl is ok with this choice

since xc is not passed if maximum acceleration amax
n is input to plant, as illustrated by

the gray circle in the figure. Formally, xc − x = 1 ≥ 0 × 1 + 2 × 12/2 = vT + amax
n T 2/2

and therefore it holds by (14) that ω0 ∈ Lok(x, v, an, a)M. Thus, (ω0,ω0) ∈ JctrlK. Let

ω1 = ω0(x ≔ 0.9, v ≔ 1.8). Now it holds that (ω0,ω1) ∈ JplantK, i.e., starting at x = 0

and v = 0, with a = 1.8 as input, plant evolves to x = 0.9 and v = 1.8 in 1 second.
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x

v

xc
(x, v)

a

(a) Graphical representation of the stateω0.

The hatched area contains all points in the

xv-plane from which it is possible to stop

before the obstacle xc. The invariant ζ1

evaluates to true in the shaded area.

x

v

xc

(x, v)

x+c

(b) Graphical representation of the stateω1.

A friendly env discards all obstacle posi-

tions in the interval between xc and the start

of the thick black line, and places the obsta-

cle along the interval indicated by x+c .

Fig. 2: The controller chooses an action such that the plant evolves to a state where

x ≤ xc. In the next loop iteration, env moves xc to adapt to the controller’s action.

After plant has evolved and the system has transited to ω1, the ego-vehicle is now

at the black circle in Fig. 2b. It is clear thatω1 ∈ Lζ1M as x ≤ xc. The intersection of the

dashed curve with the x-axis in Fig. 2b represents the lower bound for xc to satisfy (11)

in the state ω1. Therefore, in the next iteration, xc can only be positioned somewhere

along the interval indicated by the thick black line in Fig. 2b and all other values are

discarded by (11). Semantically, as xc − x = 0.1 < 22/(2 × 3) = v2/(2amin
n ), it follows

that (ω1,ω1) < JenvK so xc cannot be kept constant between iterations.

To summarize, it holds that ω0 ∈ Lζ1M, (ω0,ω1) ∈ Jenv; aux; ctrl; plantK, and

ω1 ∈ Lζ1M. The acceleration requested by aux is ok’d by ctrl in ω0 because the worst-

case acceleration amax
n in ω0 leads to a state that fulfills ζ1, and therefore also fulfills

guarantee. Since there exists no control action allowed by the system dynamics in the

assumed operational domain that can fulfill guarantee from ω1, the decision made by

ctrl is unsafe in this case. However, since (ω1,ω1) < JenvK, Model 3 can be proven to

fulfill guarantee with this faulty ctrl.

So, the model is proven to fulfill guarantee only because env is not allowed to keep

the obstacle stationary. Thus, ctrl exploits the behavior of env to move the obstacle so

ctrl can keep accelerating rather than stopping safely. Though env is assumed to discard

only those behaviors where it is physically impossible for ctrl to fulfill guarantee, the

interaction between env and ctrl causes env to behave in a friendly way to adapt to faulty

ctrl actions, thereby discarding env behaviors in which xc remains constant.

Problem 1. How can the dL formula (3) be guaranteed not to be valid with a controller

that exploits the environment?

Observe from Fig. 2a that for the state ω0, the shaded area describes the region

where the loop invariant ζ1 holds. The hatched area describes the states from where it

is possible for ctrl to stop before the obstacle xc, i.e., all the xv-points for which the env
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assumption xc− x ≥ v2

2amin
n

in (11) is true. The shaded area contains some states in the xv-

plane that are outside of the hatched area. From these states it is not possible for ctrl to

stop before xc. Thus, control actions leading to such states should not be allowed. How-

ever, ζ1 is not strong enough to prevent this. If ζ1 is strengthened to allow only states

contained in the hatched area then the controller is prevented from exploiting the envi-

ronment. In other words, any state allowed by the loop invariant shall also be allowed

by the env assumptions, i.e., the loop invariant should imply the env assumptions.

The assumption xc − x ≥ v2

2amin
n

in (11) corresponds to P in the generalized Model 1.

Therefore, it can be hypothesized from the above observation that the required condi-

tion to solve Problem 1 can be stated as ζ → P, where ζ is the loop invariant and P

is the env assumptions. Indeed, the condition ζ → P solves Problem 1 for Model 3.

However, Problem 1 is not specific to Model 3 and it remains unestablished whether

ζ → P solves Problem 1 for models of the general form considered in Model 1. For

example, in Model 3, the controller exploits the friendliness of env to not keep the ob-

stacle position xc constant between iterations, i.e., xc , x+c for two env actions (xc, x
+
c ).

Admittedly, such a behavior does not characterize friendly behavior in all models. In

general, the relation between two env actions (e0, e1) can be any relation R ⊆ R × R

such that (e0, e1) ∈ R. Note that R only defines certain behaviors in the assumed oper-

ational domain. In Model 3, the exploiting controller could be proven safe because the

environment behaves friendly by discarding some behaviors characterized by R. This is

illustrated in Fig. 2b where xc cannot be kept constant as (ω1,ω1) < JenvK.

Definition 1. If there exists two states ω0 and ω1 that differ only in the assignment of

the env variable e, i.e., ω0(e) = e0 and ω1 = ω0(e := e1), and such that (e0, e1) ∈ R

and (ω0,ω1) < JenvK, then the environment env is friendly w.r.t the relation R. Thus,

env is unfriendly if (e0, e1) ∈ R→ (ω0,ω1) ∈ JenvK is true in all statesω0 andω1 that

differ only in the assignment of the env variable e.

The hypothesis ζ → P can now be generalized to include the relation R to describe

the existence of an unfriendly env as:

ρ ≡ ∀s.∀e.∀e1.
(

ζ(s, e) ∧ R(e, e1)→ 〈env〉 (e = e1)
)

, (16)

where ζ is parameterized to make it explicitly depend on the variables of the HP. The

meaning of ρ is that, if a state fulfills the invariant, then for every next env action e1

characterized by R there is at least one execution of env in which the action e1 is chosen.

The loop invariant ζ1 ≡ x ≤ xc is used to prove the dL formula (3) with the defini-

tions of Model 2 and Model 3. Thus, it follows that |= ζ1 → [env; aux; ctrl; plant] ζ1

holds by loop (ii). But, ζ1 is not strong enough to prevent control actions that exploit

friendly env behaviors. For instance, as illustrated in Fig. 2, the control action that leads

toω1 fromω0 should not be allowed since env must discard some behaviors fromω1 to

preserve ζ1. These discarded behaviors include all executions where (aux; ctrl; plant)

do not preserve ζ1. Thus ctrl exploits env to act friendly such that ζ1 is preserved.

Definition 2. A controller ctrl exploits a friendly environment env w.r.t the relation R if

the loop invariant ζ is preserved by the loop body, i.e. |= γ, where

γ ≡ ∀s.∀e.
(

ζ(s, e)→ [env; aux; ctrl; plant] ζ(s, e)
)

, (17)
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but

∃s.∃e.∃e0.
(

ζ(s, e0) ∧ R(e0, e) ∧ 〈aux; ctrl; plant〉 ¬ ζ(s, e)
)

. (18)

Thus, ctrl exploits env if it makes it necessary for env to behave friendly. In the following

theorem it is shown that an exploiting controller can be prevented if the loop invariant

is strong enough to ensure the existence of an unfriendly environment.

Theorem 1. Let s and e be variables used in plant and env respectively as defined in

Model 1. Let ζ(s, e) be a loop invariant candidate, and let R be a relation over the

domain of e. Let γ (17) be the dL formula from the inductive step loop (ii) of the loop

invariant proof rule, and let ρ be as defined by (16). If γ ∧ ρ is valid, then the loop

invariant candidate ζ(s, e) is sufficiently strong to prevent an exploiting controller.

Proof. The following dL formula is proved [12] in KeYmaera X:

γ ∧ ρ→ ∀s.∀e0.∀e.
(

ζ(s, e0) ∧ R(e0, e)→ [aux; ctrl; plant] ζ(s, e)
)

. (19)

This asserts that the loop invariant is strong enough to prevent ctrl from exploiting env’s

friendly behavior because the clause implied by γ∧ρ in (19) is the negation of (18). ⊓⊔

In addition to solving Problem 1, Theorem 1 gives hints on how the loop invariant

must be constructed. In some cases, as in Fig. 2 where xc ≤ x+c , it suggests that ζ ≡ P

might be a loop invariant candidate. In summary, Theorem 1 is useful in two ways:

(i) By adding ρ to a dL formula, it is known that a proof of validity is not because env is

friendly to ctrl, (ii) ρ can also be a useful tool to aid in the search for a loop invariant.

For the specific model instance considered in this section, and probably others,

changes to the model can ensure that the environment is not too friendly. However,

as this paper deals with modeling errors and ascertaining that models cannot be proven

valid for wrong reasons, such changes do not solve the general problem, but might

nonetheless be good as best practices to avoid modeling pitfalls.

4.2 Unchallenged Controller

The previous section dealt with modeling problems where ctrl causes env to exhibit

friendly behaviors despite correct env assumptions. This section discusses modeling

problems due to over-constrained assumptions, whereby ctrl is never challenged.

Consider Model 4, identical to Model 3, except for aux ((20) and (21)). As before,

aux is a black box. However, in addition to the acceleration bounds, aux also fulfills

a design requirement req given by (21). req describes that the nominal controller only

requests an acceleration a such that the ego-vehicle does not travel more than the brak-

ing distance (with amin
n ) from any given state in one execution of T duration. Similar to

Model 3, the requested acceleration is passed to the plant if the ctrl test ok (14) is true;

if not, the controller action C (15) sets the maximal possible deceleration.

To verify that ctrl fulfills guarantee (9), the dL formula (3) together with the defi-

nitions in Model 2 and Model 4 must be proven valid. Though the validity can indeed

be proven in KeYmaera X using the loop invariant ζ1 ≡ x ≤ xc, ctrl is faulty. Strong

env and aux assumptions might result in the invariant ζ being true in all HP executions
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Model 4: ctrl is unchallenged

aux , a ≔ ∗; ?
(

−amin
n ≤ a ≤ amax

n ∧ req
)

(20)

req , (v + aT ≥ 0)→ vT +
aT 2

2
≤

v2

2amin
n

(21)

∧ (v + aT < 0)→ a ≤ −amin
n

irrespective of ctrl’s actions, and hence ctrl is never verified. This manifests itself in

Model 4; env assigns xc such that it is possible to brake to stop before the position of

the obstacle, and aux assumes that the ego-vehicle does not travel more than the braking

distance in T time. Therefore, guarantee is true for all executions of [env; aux; plant],

i.e., the model fulfills guarantee no matter which branch of ctrl is executed. Thus, this

problem with strong env and aux assumptions, i.e., an over-constrained model such that

ctrl is not challenged in any HP execution, may allow a faulty controller be proven safe.

Problem 2. How can the dL formula (3) be guaranteed not to be valid with an un-

challenged controller?

In general, if aux and/or env assumptions are too strong, many relevant executions

may be discarded when the respective tests fail. A worst-case situation is when a con-

tradiction is present in the assumption, thereby discarding all possible executions of

the HP. In that case, the dL formula (3) is vacuously true, irrespective of the correct-

ness of ctrl. In situations where all possible executions are discarded due to failed

tests, a potential work-around is to check for such issues by proving the validity of

init → 〈env; aux; ctrl; plant〉 (guarantee) to verify that there exists at least one exe-

cution of the hybrid program that fulfills guarantee. However, that work-around is not

helpful to discover models susceptible to Problem 2 because it is possible to prove that

there is at least one execution of (env; aux; ctrl; plant) for which guarantee is true even

in over-constrained systems as seen in the HP with definitions of Model 2 and Model 4.

Observe that if ctrl is removed from the dL formula (3) and the formula is still valid,

then ctrl is not verified. Equivalently, if the invariant is preserved when ctrl is removed

from the dL formula, i.e., χ ≡ ∀s.∀e.∀a. ζ → [env; aux; plant] ζ is valid, then ctrl is

not verified. So the negation, i.e.,

¬χ ≡ ∃s.∃e.∃a. ζ ∧ 〈env; aux; plant〉¬ζ . (22)

can be proved to ascertain the absence of Problem 2 in the proof of (3).

Definition 3. For hybrid systems described by Model 1 where the loop body is defined

by (env; aux; ctrl; plant), ctrl is challenged w.r.t. env, aux, plant, and the loop invariant ζ

if ζ ∧ 〈env; aux; plant〉 ¬ζ is true in some state.

However, proving ¬χ (22) might not be beneficial in practice. While failed attempts

to prove ¬χmight illuminate modeling errors, the presence of env, aux, plant, and their

interaction might complicate both the proof attempts and the identification of problem-

atic fragments of the HP, especially for large and complicated models.
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Note that if there exists one execution of (env; aux) that does not preserve the in-

variant ζ, then ctrl must choose a safe control action such that the hybrid system can be

controlled to remain within the invariant states, i.e, LζM. However, this is not sufficient

to conclude that the controller is verified to be safe since it could be the case that for all

such invariant violating executions, the plant forces the hybrid system back into the in-

variant states. Therefore, it is necessary that not all executions of the uncontrolled plant

reestablish the invariant. So, if (env; aux) does not preserve the invariant, plant does not

reestablish the invariant, then ctrl is indeed verified to be safe as shown in Theorem 2.

Theorem 2. Let s, e, and a be variables used in plant, env, and ctrl respectively as

defined in Model 1, and let the loop invariant candidate ζ(s, e, a1) be a specific instan-

tiation of the dL formula ζ(s, e, a). Let

ψ ≡ ∃s.∃e.∃a1.
(

ζ(s, e, a1) ∧ 〈env; aux〉
(

¬ζ(s, e, a) ∧ 〈plant〉¬ζ(s, e, a1)
))

. (23)

Then, if ψ is valid, ctrl is challenged in some executions of [env; aux; ctrl; plant].

Proof. The following dL formula is proved [12] in KeYmaera X:

ψ→ ∃s.∃e.∃a1. ζ(s, e, a1) ∧ 〈env; aux; plant〉¬ζ(s, e, a1) . (24)

The dL formula ψ (23) states that there exists at least one execution of (env; aux)

where the invariant is not preserved, and plant does not always reestablish the invariant.

The implied clause (24) asserts that ctrl is challenged by Definition 3. ⊓⊔

By the conjunction of ψ (23) to a dL formula of the form (3), Theorem 2 can be

used to identify Problem 2 and also the problematic fragments in all models of the

form of Model 1. Furthermore, in HPs of the form (env; ctrl; plant)∗, with no distinc-

tion between env and aux, Theorem 2 can still be used to determine whether the env

assumption is over-constrained. In addition, ψ provides insights to aid in the search of

a loop invariant and its dependency on the HP variables.

5 Results

This section shows how Theorem 1 and Theorem 2 are used to (i) identify that Model 3

and Model 4 are deceptive for the verification of ctrl, (ii) aid in the identification of a

candidate loop invariant, and (iii) increase confidence in the fidelity of Model 5 where

the errors are corrected. The HPs and the KeYmaera X proofs are available from [12].

The dL formula (3) with the definitions in Model 2 and Model 3, denoted as θ,

is proved in KeYmaera X with the loop invariant ζ1 ≡ x ≤ xc. Therefore it follows

from loop (ii) that |= γ, where γ ≡ ζ1 → [env; aux; ctrl; plant] ζ1. By Theorem 1, ρ

must hold for Model 3 to conclude the absence of Problem 1. The formula

¬ρ1 ≡ ∃x.∃v.∃xc.∃x+c .¬
(

x ≤ xc ∧ xc ≤ x+c →

〈

xc ≔ ∗; ? (v2 ≤ 2amin
n (xc − x))

〉

(xc = x+c )
)

, (25)



14 Y. Selvaraj et al.

Table 2: Summary of validity results for incorrect and correct models

Model Loop Conjuncts Valid Reason

invariant

3 ζ1 - Yes Exploiting controller

3 ζ1 ρ
1

No Invariant not strong enough

3 ζ2 ρ
2

No Controller does not fulfill requirement

4 ζ1 - Yes Unchallenged controller

4 ζ1 ¬χ
1

No Invariant preserved without controller

5 ζ1 - Yes

5 ζ1 ρ
1
∧¬χ

1
No Invariant not strong enough

5 ζ2 ρ
2
∧¬χ

2
Yes

Model 5: Correct env, aux, and ctrl

env , xc ≔ ∗; ?

(

xc − x ≥
v2

2amin
n

)

(27)

aux , an ≔ ∗; ?
(

−amin
n ≤ a ≤ amax

n

)

(28)

ctrl , if ¬ok(x, v, xc, a) then a ≔ ∗; ? C(x, v, xc, a) fi (29)

ok , xc − x ≥ vT +
amax

n T 2

2
+

(

v + amax
n T

)2

2amin
n

(30)

C(x, v, xc, a) , a = −amin
s (31)

expressed from (16) for Model 3 with ζ(x, v, xc) ≡ ζ1 and R(xc, x
+
c ) ≡ xc ≤ x+c is proven

valid in KeYmaera X, thereby confirming that Model 3 is susceptible to Problem 1.

As |= ¬ρ
1
, it follows that a stronger loop invariant is needed to not verify an ex-

ploiting ctrl. A possible candidate is the env assumptions themselves, so let ζ2 ≡ v2 ≤

2amin
n (xc − x). For this choice of loop invariant, ρ

2
is valid with ζ(x, v, xc) ≡ ζ2 and

R(xc, x
+
c ) ≡ xc ≤ x+c . However, γ cannot be proven with ζ2 since the ctrl actions do not

maintain ζ2, as already illustrated in Fig. 2. Hence, the exploiting ctrl cannot be proven

to fulfill guarantee. These results are summarized in the first three rows of Table 2.

The next two rows of Table 2 summarize the results of the dL formula (3) with

the definitions in Model 2 and Model 4 which is proved using the loop invariant ζ1.

Therefore it follows from loop (ii) that |= γ. By Theorem 2, |= ¬χ (22) must hold to

ensure that ctrl is indeed verified safe. However the dL formula χ
1

(26) with ζ1 and env,

aux, plant defined by (11), (20), and (10), respectively, is proven in KeYmaera X and

thus, it follows that Model 4 is vulnerable to Problem 2.

χ1 ≡ (x ≤ xc)→ [env; aux; plant] (x ≤ xc) (26)
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The last three rows of Table 2 summarize the results of the dL formula (3) with the

definitions in Model 2 and Model 5, where all three parts conjuncted together is denoted

by κ. Based on the insights about Model 3 and Model 4 from Table 2, Model 5 rectifies

Problem 1 and Problem 2. Similar to the previous models, the env assumption (27)

assigns xc such that it is possible to brake to stop before the obstacle and aux (28) is a

black box. Unlike the previous models, the ctrl test ok in (30) not only checks whether

the worst-case acceleration is safe in the current execution but also checks whether, in

doing so guarantee is fulfilled in the next loop execution.

The dL formula κ is proved in KeYmaera X using the loop invariant ζ1 ≡ x ≤ xc.

Since R(xc, x
+
c ) ≡ xc ≤ x+c is also applicable for Model 5, it follows from |= ¬ρ

1
(25)

that ζ1 is not sufficiently strong to solve Problem 1. The stronger invariant candidate

ζ2 ≡ v2 ≤ 2amin
n (xc − x) is used to prove κ and since |= ρ

2
, it is concluded that ζ2 is

sufficiently strong to solve Problem 1 for Model 5.

Finally, to confirm that Model 5 is not susceptible to Problem 2, ψ from Theorem 2

must hold. The dL formula ψ
2

(32) is proven in KeYmaera X:

ψ2 ≡ ∃x.∃v.∃xc.
(

ζ(x, v, xc, a
min
n )∧

〈env; aux〉
(

¬ζ(x, v, xc, a) ∧ 〈plant〉¬ζ(x, v, xc, a
min
n )

))

,
(32)

where env, aux and plant are as defined in (27), (28) and (10) respectively, and the loop

invariant ζ2 ≡ ζ(x, v, xc, a
min
n ) is a specific instantiation of the dL formula ζ(x, v, xc, a)

given by:

ζ(x, v, xc, a) ≡ (v + aT ≥ 0)→ (v + aT )2 ≤ 2amin
n

(

xc − x − vT −
aT 2

2

)

∧

(v + aT < 0)→ v2 ≤ 2amin
n (xc − x) .

With this result, it holds that |= ψ
2
, and therefore it follows from Theorem 2 that |= ¬χ

2

for the choice of ζ2. Thus, it entails that Model 5 is bereft of Problem 1 and Problem 2,

as summarized in the last row of Table 2.

6 Related Work

The models considered in this paper are similar to the models used to verify the Euro-

pean Train Controller System (ETCS) [10]. Though not explicitly stated, the modeling

pitfalls are avoided for the ETCS models by the use of an iterative refinement process

that determines a loop invariant based on a controllability constraint. The process is

used to design a correct controller rather than to verify one.

An alternative to guarantee CPS correctness is runtime validation [6], where run-

time monitors are added to the physical implementation, monitoring whether the system

deviates from its model. If it does, correctness is no longer guaranteed, and safe fall-

backs are activated. However, for Model 3, the safe fallback would be activated too late

since ctrl had already taken an unsafe action when the violation of the env assumptions

are detected. Furthermore, the safe fallbacks might cause spurious braking for Model 4.
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The issue in Model 3 is not unique to dL; the issue manifests itself similarly in reac-

tive synthesis [1, 5]. The cause of the issue, in both paradigms, stems from the logical

implication from the env assumptions to the ctrl actions and requirements. Instead of

taking actions to fulfill the consequent, an exploiting ctrl can invalidate the premise

to fulfill the implication. However, Bloem et al. [1] conclude that none of the existing

approaches completely solve the problem and emphasize the need for further research.

Theorems 1 and 2 put conditions on individual components, but these conditions, in

the form of the loop invariant, stem from the same global requirement. Müller et al. [7]

take the other approach and start with separate requirements for each of the components

to support the global requirement. The goal of the decomposition is to ease the modeling

and verification effort, and not directly to validate the model. However, these methods

would likely be beneficial in tandem.

The contributions of this paper give additional constraints, apart from the three im-

plications of the loop rule, that can aid the construction of invariants. This might be

useful in automatic invariant inference, which is a field of active research where loop

invariants are synthesized. Furia and Meyer [3] note that the automatic synthesis of in-

variants based on the implementation (or the model) might be self-fulfilling, and go on

to argue that the postconditions and the global requirements must be considered in the

invariant synthesis. This paper, however, suggests that, for certain models, it might not

be sufficient to consider only the postconditions in the invariant synthesis.

7 Conclusion

Modeling errors present a risk of unsound conclusions from provably safe erroneous

models, if used in the safety argument of safety-critical systems. This paper formulates

and proves conditions in Theorem 1 and Theorem 2 that, when fulfilled, help iden-

tify and avoid two kinds of modeling errors that may result in a faulty controller be-

ing proven safe. Furthermore, the formulated conditions aid in finding a loop invariant

which is typically necessary to verify the safety of hybrid systems.

Using a running example of an automated driving controller, the problematic cases

are shown to exist in practical CPS designs. The formulated conditions are then applied

to the erroneous models to show that the errors are captured. Finally, the errors are

rectified to obtain a correct model, which is then proved using a loop invariant that

satisfies the formulated conditions, thus ensuring absence of the two modeling errors

discussed in this paper.

A natural extension of this work will be to investigate also other kinds of modeling

errors that might arise in the verification of complex CPS designs. Moreover, it would

also be beneficial to investigate the connection between loop invariants and differential

invariants, which are used to prove properties about hybrid systems with differential

equations without their closed-form solutions.
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