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Abstract. We investigate networks of automata that synchronise over
common action labels. A graph synchronisation topology between the
automata is defined in such a way that two automata are connected iff
they can synchronise over an action. We show a very effective reduction
of networks of automata with tree-like synchronisation topologies. The
reduction preserves a certain form of reachability, but not safety. The
procedure is implemented in an open-source tool.

1 Introduction

Networks of various flavours of finite automata are the usual choice of formalism
when modeling complex systems such as protocols. This approach also plays well
with the divide-and-conquer paradigm, as the investigated system can be divided
into components modeled with various degree of granularity. However, the cost
of computing the synchronised product of these submodules can be prohibitive:
in practice the size of the statespace grows exponentially with the number of
components.

In this paper we tackle the problem of computing of a part of the state-
space of the entire synchronised product in such a way that a certain version of
reachability is preserved. At this stage we only deal with systems that exhibit
tree-like synchronisation structure and consist of live-reset automata. Namely,
each component can synchronise via shared upstream actions with a single other
module (its parent) after which it resets, i.e. returns to the initial state. We pro-
pose a bottom-up reduction based on the observation that any execution of the
entire system can be rewritten in a reachability-preserving way into a sequence
of interactions between components and their parents followed by upstream syn-
chronisations. Thus, the reduced model is constructed by creating synchronised
products of pairs consisting of a component and its parent. The size of the state-
space of the resulting automaton is much smaller than the product of the entire
network.

The theory has been implemented in an open-source tool [1].

∗This work was supported by the PICS CNRS/PAN project PARTIES and by PAN.
Micha l Knapik is supported by POLLUX VoteVerif project.
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2 Tree Synchronisation Systems

In this section we recall the basic notions of networks of Labelled Transition
Systems and their synchronisation topologies. We also introduce and explain
the restrictions on the models assumed in this paper. In what follows let PV
denote the set of propositions.

Definition 1 (Labelled Transition System). A Labelled Transition System
(LT S) is a tuple M = 〈S, s0,Acts,→,L〉 where:

1. S is a finite set of states and s0 ∈ S the initial state;
2. Acts is a finite set of action names;
3. → ⊆ S ×Acts ××S is a transition relation;
4. L : S → 2PV assigns to each state a set of propositions that hold therein.

We usually write s
act−−→ s′ instead of (s, act , s′) ∈→. We also denote acts(M) =

Acts and states(M) = S. A run in LT S M is an infinite sequence of states and

actions ρ = s0act0s1act1 . . . s.t. si
acti−−→ si+1 for all i ≥ 0. By Runs(M, s) we

denote the set of all the runs starting from state s ∈ S; if s is the initial state,
we simply write Runs(M).

2.1 LT S Nets and Synchronisation Topologies

Both the commercial and research model checkers such as spin, Uppaal or
IMITATOR [2,3,4] typically expect the systems described in a form of interacting
modules. Concurrent transitions via common actions (or channels) are one of
the most basic synchronisation primitives [5].

Definition 2 (Asynchronous Product). Let Mi = 〈Si, s0i ,→i,Actsi,Li〉 be
LT S, for i ∈ {1, 2}. The asynchronous product of M1 and M2 is the LT S
M1||M2 = 〈S1 ×S2, (s01 , s

0
2 ),→,Acts1 ∪Acts2,L1 ∪L2〉 with the transition rule

defined in the usual way:

act ∈ Acts1 \Acts2 ∧ s1
act−−→1 s ′1

(s1, s2)
act−−→ (s ′1, s2)

act ∈ Acts2 \Acts1 ∧ s2
act−−→2 s ′2

(s1, s2)
act−−→ (s1, s

′
2)

act ∈ Acts1 ∩Acts2 ∧ s1
act−−→1 s ′1 ∧ s2

act−−→2 s ′2

(s1, s2)
act−−→ (s ′1, s

′
2)

The above definition is naturally extended to an arbitrary number of compo-
nents, where we sometimes write ||ni=0Mi instead of M1|| . . . ||Mn.

The synchronisation topology is an undirected graph that records how com-
ponents synchronise with one another.
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Fig. 1: A simple tree synchronisation topology Gx.

Definition 3 (Synchronisation Topology). A synchronisation topology (ST )
is a tuple G = 〈Net , T 〉, where Net = {Mi}ni=1 is a set of LT S for i ∈ {1, . . . , n},
and T ⊆ Net ×Net is s.t. (Mi,Mj) ∈ T iff i 6= j and Actsi ∩Actsj 6= ∅.

Note that T is induced by Net . Thus, with a slight notational abuse we
sometimes treat G as Net . Moreover, we put acts(G) =

⋃n
i=1 acts(Mi).

In what follows we assume that G is a tree with the root root(G). Moreover, for
eachM∈ Net by parent(M) we denote its parent (we assume parent(root(G)) =
∅) and by children(M) we mean the set of its children. By upacts(M) (resp.,
downacts(M)) we denote the set of actions via which M synchronises with its
parent (children, resp.). For each act ∈ downacts(M) by snd(M, act) we denote
the component M′ ∈ children(M) s.t. act ∈ upacts(M′). Thus, snd(M, act)
is the child of M that synchronises with M over act . If M is clear from the
context, we simply write snd(act). The local, unsynchronised actions of M are
defined as locacts(M) = acts(M) \ (downacts(M) ∪ upacts(M)). For brevity,
whenever we refer to a state or transition of G we mean a state or transition
of ||ni=0Mi. We also extend the notion of runs to synchronisation topologies:
Runs(G, s) = Runs(||ni=0Mi, s) for each s ∈ states(||ni=0Mi).

We are interested in networks whose all components share a similar, simple
structure. Namely, we say that an LT S M is live-reset if every run ρ ∈ Runs(M)
is s.t. executing any action from upacts(M) leads to the initial state. Intuitively,
M can freely synchronise with its children and execute local actions but resets
once synchronising with the parent. If every component of an ST G is live-reset
then we say that G is live-reset.

Example 1. Figure 1 presents a small tree ST Gx with the root R and two
children M1 and M2. The auxiliary symbols ?/! are syntactic sugar, used to
distinguish between upacts and downacts. Here, upacts(R) = ∅, downacts(R) =
{open, chooseL, chooseR}, and locacts(R) = {beep}. Similarly, upacts(M1) =
{open}, upacts(M2) = {chooseL, chooseR}, downacts(M1) = locacts(M1) =

3



downacts(M2) = ∅, and locacts(M2) = τ . All the components of the model are
live-reset.

Let G = 〈Net , T 〉 be a ST . For each M ∈ Net by GM we denote the ST
induced by the subtree of G rooted inM. Let M ⊆ Net and ρ∗ be a prefix of some
run ∈ Runs(G) s.t. ρ∗ = s0act0s1act1 . . . By ρ∗↓ (M) we denote the projection
of ρ∗ to the the product of components in M , i.e. the result of transforming ρ∗
by (1) firstly projecting each si on the components in M ; (2) secondly, removing
the actions that do not belong to M , together with their sources.

Example 2. Consider a sequence:

η = (r0, s0, t0)τ(r0, s0, t1)τ(r0, s0, t2)open(r1, s0, t2)

chooseR(r4, s0, t0)τ(r4, s0, t1)chooseL(r0, s0, t0).

Here, we have ρ↓ (R,M1) = (r0, s0)open(r1, s0)chooseR
(r4, s0)chooseL(r0, s0).

3 Reducing Live-Reset Trees

In this section we show how to create for a given synchronisation topology G
of live-reset components an LT S that preserves reachability. The procedure is
presented in two steps. Firstly, we show how to build an LT S for two-level trees.
Secondly, we show how to modify the former to deal with trees of arbitrary height
in a bottom-up manner.

3.1 Reduction for Two-level Trees

Throughout this subsection let G be a live-reset tree ST with components
Net = {R,M1, . . . ,Mn} s.t. root(G) = R and children(R) = {M1, . . . ,Mn}.
Moreover, let R = 〈SR, s0R,ActsR,→R,LR〉 and Mi = 〈Si, s0i ,Actsi,→i,Li〉,
for i ∈ {1, . . . , n}. We employ the observations on the nature of synchronisations
with live-reset components in the following definition.

Definition 4 (Unreduced Sum-of-squares Product). Let SQu(G) = 〈Susq, s0sq,
Actssq,→sq,Lsq〉 be an LT S s.t.:

– Susq =
⋃n
i=1Mi ×R.

– s0sq 6∈ Susq is a fresh initial state.

– Actssq = acts(G) ∪ {ε}, where ε 6∈ acts(G) is a fresh, silent action.

– The transition relation →sq is defined as follows:

• s0sq
ε−→sq (s0i , s

0
R), for all i ∈ {1, . . . , n}; intuitively, using the new initial

state of SQ(G) and ε-transitions we can visit the initial state of any
square product Mi ×R.
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• If si
act−−→i s

′
i and act ∈ locacts(Mi), then (si, sR)

act−−→sq (s′i, sR), for

each sR ∈ SR; similarly, if sR
act−−→R s′R and act ∈ locacts(R), then

(si, sR)
act−−→sq (si, s

′
R), for each si ∈ Si. Thus, the square products are

fully asynchronous over local actions.

• If act ∈ upacts(Mi), si
act−−→i s0i , and sR

act−−→R s′R, then (si, sR)
act−−→sq

(s0j , s
′
R), for all j ∈ {1, . . . , n}. Intuitively, after synchronising with R,

a component Mi will reset and can release control to another module.
– Lsq(si, sR) = LR(si) ∪ LR(sR), for each (si, sR) ∈ Ssq.

We call SQu(G) the Unreduced Sum-of-squares Product of G.

We say that a state s of G is locked iff there is no run ρ ∈ Runs(G, s) s.t.
ρ = s0act0s1act1 . . . with act i ∈ acts(R), where s0 = s, for some i ∈ N. Observe
that from a point of view of the root, a locked state is in a full deadlock. The
set of locked states of an LT S can be computed in polynomial time using either
a model checker or conventional graph algorithms.

Definition 5 (Sum-of-squares Product). We call the Sum-of-squares Prod-
uct SQ(G) of G the result of removing all the locked states from SQu(G) and
restricting the relevant transition and labelling functions.
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s0r4

open

open
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t2r1
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Fig. 2: The unreduced sum-of-squares product of a simple tree ST Gx.

5



s0r0

s0r3s0r2
open

beep

t0r4

t2r1

t0r1 t1r1

t0r3t1r3t2r3

t1r4

τ
τ

chooseR

ττ

beepbeepbeep

τchooseL

chooseL

open

open
s0sq

ε

Fig. 3: The sum-of-squares product of a simple tree ST Gx.

Example 3. Fig. 2 presents the unreduced sum-of-squares product SQu(Gx) for
the small tree ST from Example 1. The locked states are coloured red. Fig. 3
displays the sum-of-squares product SQ(Gx) of the topology. Note the similarity
of the model to the root of Fig. 1 that reveals that the children do not restrict
the root’s freedom.

As shown in the above example, it is possible that the size of the state space
of an (unreduced) sum-of-squares product of a live tree ST G is equal to or
greater than the size of the state space of G. On the other hand, the size of a
representation of a state will be smaller in (unreduced) sum-of-squares product,
as it records only local states of at most two components of the network. However,
in less degenerate cases than our toy model we can expect significant reductions.
In particular, if a two-level tree ST contains n components, where the statespace
of each is of size m, then the size of its asynchronous product can reach mn. In
contrast, the size of the (unreduced) sum-of-squares product of such topology
is at most (n − 1) · m2. The structure of the sum-of-squares is similar to the
structure of the root. This construction preserves reachability, but not the EG
modality of CTL, as shown in Proposition 1.

Theorem 1 (Sum-of-squares Preserves Reachability). Let G be a live
two-level tree ST . For each p ∈ PV G |= EFp iff SQ(G) |= EFp.

Proof. Recall that we assume Net = {R,M1, . . . ,Mn} with root R and chil-
dren {Mi}ni=1. Let G |= EFp and ρ = s0act0s1act1 . . . be a run of G s.t.
p ∈ L(si) for some i ∈ N. Now, ρ can be represented as ρ = α1F1α2F2 . . .,
where for each i ∈ N there exist j, k ∈ N such that αi = sjactj . . . skactksk+1

and actj , . . . , actk ∈ locacts(R) ∪
⋃n
i=1 locacts(Mi) and Fi ∈ downacts(R). Ac-

tions are never synchronised between children, thus it can be proven by induction
on the length of the run that the actions in ρ can be reordered to obtain a run
ρ′ ∈ Runs(G, s0) that can be represented as ρ′ = α′1F1α

′
2F2 . . ., such that:

1. For any i ∈ N there exist j, k ∈ N such that α′i = s′jact ′j . . . s′kact ′ks′k+1

and actj , . . . , actk ∈ locacts(R) ∪ locacts(snd(Fi)).
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Fig. 4: Sum-of-squares does not preserve EG.

2. For each i ∈ N and 1 ≤ j ≤ n we have αi ↓ (R, snd(Fi)) = α′i ↓ (R, snd(Fi)).
3. For each s′j in αi, if 0 is the coordinate of root and k is the coordinate of

snd(Fi), then s′j = (s0, s
0
1 , . . . , s

0
k−1, sk, s

0
k+1, . . .) for some s0 ∈ states(R),

sk ∈ states(snd(Fi)).

Intuitively, ρ′ is built from ρ in such a way that firstly only the root and the
component that synchronises with the root over F1 are allowed to execute their
local actions while all the other components stay in their initial states; then F1

is fired; and then this scheme is repeated for F2, F3, etc. We can now project ρ′

on spaces of squares of the root and components active in a given interval, to
obtain ρ′′ = α′i ↓ (R, snd(F1))F1α

′
i ↓ (R, snd(F2))F2 . . . As ρ′′ ∈ SQ(G) and it

can be observed that ρ′′ visits each local state that appears along ρ, this part of
the proof is concluded.

Let SQ(G) |= EFp and ρ ∈ Runs(SQ(G)) visit a state labelled with p.
Now, it suffices to replace in ρ each state (sk, s0) that belongs to the square
Mk ×R with the global state (s0, s

0
1 , . . . , s

0
k−1, sk, s

0
k+1, . . .) of G. The result of

this substitution is a run of G that visits p.

Proposition 1 (Sum-of-squares Does Not Preserve EG). There exists a
live two-level tree ST G s.t. for some p ∈ PV G |= EGp and SQ(G) 6|= EGp.

Proof. Consider the tree ST Gy in Fig. 4. Here, we have Gy |= EGp, but each
path ρ along which p holds globally, starts withMy

1 executing τ followed byMy
2

executing τ and, consecutively, chooseR. Thus, it is not possible to partition ρ
into intervals where one child executes local actions until synchronisation with
the root and possible release of control to another child. Hence, SQ(Gy) 6|= EGp.

3.2 Adaptation for Any Tree Height

It is rather straightforward to adapt the sum-of-squares of a subtree to allow
for synchronisation of the root with its parent. By cmpl(SQ(G)) we denote the
result of replacing in SQ(G) every transition (s, act , s′), where act ∈ upacts(R)
with (s, act , s0sq). Note that cmpl(SQ(G)) is a live-reset tree ST .
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Example 4. To obtain cmpl(SQ(Gx)) for the sum-of-squares product from Fig. 3
move the targets of the looped beep transitions to s0sq.

We are now ready to provide the algorithm for reducing any live tree ST to
a single component while preserving reachability.

Alg. 1 reduceNet(G)

Input: live-reset tree sync. topology G
Output: LT S M s.t. G |= EFp iff MG |= EFp.

1: if |mods(G)| = 1 then
2: return G (* G is a leaf *)
3: end if
4: let redChldn := ∅
5: for chld ∈ children(root(G)) do
6: redChldn.append(reduceNet(Gchld))
7: end for
8: let G′ := {root(G)} ∪ redChldn
9: return cmpl(SQ(G′))

Algorithm 1 applies the two-level reduction cmpl(SQ(·)) to all the nodes of
the ST , in a bottom-up manner. Its soundness and correctness is expressed by
the following theorem.

Theorem 2 (reduceNet(G) Preserves Reachability). Let G be a live tree
ST . For each p ∈ PV G |= EFp iff reduceNet(G) |= EFp.

Proof. (Sketch) The proof follows via induction on the height of the tree G. As
we have Theorem 1, it suffices to prove that cmpl(SQ(G)) preserves reachability
for any two-level live ST G. This, however, can be done in a way very similar to
the proof of Theorem 1 and is omitted.

4 Conclusion

In this paper we have outlined how to simplify large tree networks of automata
that reset after synchronising with their parents. It is shown that the reduction
preserves a certain form of reachability, but it does not preserve safety. While the
procedure is quite fast and effective, it has several limitations. Firstly, it preserves
reachability of labelings, but not their conjunctions; namely, it is not guaranteed
that reduceNet(G) |= EF (p ∧ q) iff G |= EF (p ∧ q). Secondly, we would like to
relax the assumption that all the components are live-reset automata. It is not
difficult to see how to adapt the original construction to the general case. To this
end it suffices to extend the sum-of-squares product with an explicit model of the
memory of last synchronisations. Interacting modules can then use this memory
to register the return states, i.e. the locations entered after synchronising action.
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Thus, a synchronising step between a root and one of its children would become
a process consisting of the following four steps: (1) perform joint synchronising
transition; (2) record the target locations; (3) make a non-deterministic selection
of a child and read from the memory its return state; (4) continue the execution
of the pair of the root and the new child. This construction, however, can hinder
the expected reduction due to the size of the memory component. Finally, it is
possible that the assumption of tree-like communication between the components
is too strong for any real-life applications. Thus it should be investigated if the
proposed procedures can be easily extended to other topologies.

We plan to address these limitations in future work.
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