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Abstract. Automated and accurate classification of Whole Slide Image
(WSI) is of great significance for the early diagnosis and treatment of can-
cer, which can be realized by Multi-Instance Learning (MIL). However,
the current MIL method easily suffers from over-fitting due to the weak
supervision of slide-level labels. In addition, it is difficult to distinguish
discriminative instances in a WSI bag in the absence of pixel-level anno-
tations. To address these problems, we propose a novel Clustering-Based
Multi-Instance Learning method (CBMIL) for WSI classification. The
CBMIL constructs feature set from phenotypic clusters to augment data
for training the aggregation network. Meanwhile, a contrastive learning
task is incorporated into the CBMIL for multi-task learning, which helps
to regularize the feature aggregation process. In addition, the centroid of
each phenotypic cluster is updated by the model, and the weights of the
WSI patches are calculated by their similarity to the phenotypic centroids
to highlight the significant patches. Our method is evaluated on two pub-
lic WSI datasets (CAMELYON16 and TCGA-Lung) for binary tumor
and cancer sub-types classification and achieves better performance and
great interpretability compared with the state-of-the-art methods. The
code is available at: https://github.com/wwu98934/CBMIL.

Keywords: Whole slide image · Multiple instance learning · Multi-task.

1 Introduction

Whole Slide Images (WSIs) which are digital visualization of tissue section are
widely used in disease diagnosis [5,22]. Recently, deep learning approaches have
been used in WSI analysis, which is a long-standing challenge due to the gigapixel
resolution and the lack of pixel-level annotations [24]. Therefore, the analysis
of WSI which is a weakly supervised learning problem usually follows a MIL
problem formulation [7,20], where each WSI is regarded as a bag containing
many instances that are patches of the WSI.

In previous MIL approaches for WSI analysis, a WSI has been tiled into a
large number of small patches and further extracted into features by a pre-trained
Convolutional Neural Network (CNN) e.g., ResNet-18 [11]. Then, patch-level
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features are aggregated, and examined by a classifier that predicts slide-level
labels. For aggregation operator, a straightforward method is named pooling,
such as mean-pooling and max-pooling [8,27,13]. However, the pooling opera-
tion is a handcrafted method that guides limited performance. To address this
problem, Ilse et al. [12] proposed an attention-based aggregation operator pa-
rameterized by deep neural networks, assigning the contribution to each instance
for aggregating all instance-level features to a bag-level embedding. Recently, Li
et al. [16] proposed a non-local attention aggregator that gives the contribu-
tion to each instance by the similarity between the highest-score instance and
others. Shao et al. [23] introduced the self-attention mechanism into the MIL
framework which considers the contextual and spatial information between dif-
ferent instances. Notably, WSI contains rich phenotypic information that reflects
underlying molecular processes and disease progression. Several studies have
shown phenotypic information could provide a convenient visual representation
of disease aggressiveness [31,21,29]. Yao et al. [29] proposed a MIL framework
for survival prediction that considers phenotype clusters as instances instead of
patches.

Nevertheless, there are several challenges that exist in developing robust deep
MIL models to learn rich representation. First, a positive WSI might contain few
disease-positive patches as well as a lot of redundant instances [12,19,16,23,29],
leading to the prediction failure of the models due to the weak supervision of
the bag-level labels. Second, the model can easily suffer from over-fitting with
limited number of training data (WSIs) [16,18] and labels.

To address these challenges, we propose a novel Clustering-Based Multi-
Instance Learning (CBMIL) model, which constructs discriminative set from
phenotypic clusters that highlight the significant patches of WSI. Meanwhile, a
random set is constructed to augment training data for the contrastive task in
our multi-task learning module. Hence, the main contributions of our work are
summarized as follows:

• A novel clustering-based multi-instance learning model is proposed: it con-
structs discriminative set by adaptively sampling from phenotypic clusters
based on the similarity between instance and phenotypic centroid.

• A mechanism for updating centroid of the phenotypic cluster is designed,
which is to calculate the aggregation feature of each phenotypic cluster as
the new cluster centroid in each epoch to improve the reliability of prediction.

• The contrastive learning is set as an auxiliary task of the classification task
to regularize the feature aggregation process.

• CBMIL is evaluated for WSI classification on two public WSI datasets,
namely: CAMELYON16 and TCGA-Lung. Great performances over these
datasets and interpretability demonstrate the superiority of the proposed
model compared with other state-of-the-art methods.
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Fig. 1. The pipeline of our method. With the input feature bag, first, a feature selec-
tor constructs discriminative set S and random set Sr. Then a MIL backbone encodes
the two sets to obtain high-level representations. Finally, the whole model is jointly
trained by classification loss Lcls and contrastive loss Lcts. (a) represents the construc-
tion of discriminative set using the selector, and (b) depicts the framework of the MIL
backbone which is consisted of patch-level aggregator Apatch and phenotype-level ag-
gregator Apheno.

2 Method

Fig. 1 depicts the overall architecture of our proposed MIL-based framework.
Given an input feature bag of a WSI after clustering, two separate sets (i.e.,
discriminative and random sets) are constructed by a feature selector, then, the
selector and a MIL backbone are trained to maximize the agreement of the sets
using a contrastive loss. Meanwhile, the discriminative set is involved in classifi-
cation training, establishing a multi-task learning framework with the contrastive
task. Specifically, in Fig. 1(a), where the construction of the discriminative set
is illustrated for each training epoch. With the input feature bag, the patch-
level aggregator of the previous epoch produces a sequence of centroids for each
phenotypic cluster. These centroids are used to select discriminative features
based on distance measurement. These discriminative features are aggregated to
generate the phenotype-level features to form the discriminative set.
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2.1 Clustering-based MIL Framework

As shown in Fig. 1, a clustering-based multi-instance learning framework with
multi-task learning is built for WSI classification, in which a feature selector
is used to construct discriminative set fed into the MIL backbone to obtain
the high-level representation (see respectively Figs. 1(a) and (b)). Then, the
representation hf is used to generate bag-level prediction which will be used to
calculate the cross-entropy loss with the slide-level ground truth labels. Also, a
small neural network projector that maps hf and hr

f to the latent space where
contrastive loss is applied.

Let B = {Bi}Ci=1 denotes a bag of the clustered features of a WSI, where
C is the number of clusters, Bi = {xi,j}Ni

j=1 is the ith phenotypic cluster that
consists of patch features xi,j ∈ RL×1 extracted by pre-trained ResNet-18 [11]
from image patches, where Ni is the number of patches of ith cluster could vary
for different clusters and L is the dimension of the patch feature.

As detailed in Fig. 1(a), a discriminative set is generated by the two following
processes: ranking and constructing. In the ranking phase, different non-local
attention scores are assigned to patches within each cluster respectively. In a
phenotypic cluster, the score of a patch is obtained based on the similarity of
the patch feature to the centroid hc of the cluster. The centroid is inferred from
the patch-level aggregator Apatch of the previous epoch during training. Given
a phenotypic cluster Bi = {xi,j}Ni

j=1, the score ri,j of the jth patch can be
formulated as:

ri,j =
exp(⟨Wqhc,i,Wqxi,j⟩)∑Ni

k=1 exp(⟨Wqhc,i,Wqxi,k⟩)
, (1)

where ⟨·, ·⟩ denotes the inner product of two vectors, and Wq is a weight matrix
of fully-connected layer. In constructing phase, N patches are sampled with top
scores from all phenotypic clusters, given by:

B′
i = T (Bi;Ki, ri), Ki =

[
Ni ×

N∑C
k=1 Nk

]
, (2)

where T is the top-k operation of choosing patches from Bi according to the
scores ri = {ri,j}Ni

j=1. Also, Ki denotes the number of chosen patches in the ith

cluster. Then, compose all the B′
i to get the subset of WSI Spatch = {xn}Nn=1.

Furthermore, the phenotype-level feature is aggregated by the scores within each
sampled phenotypic cluster, is given by xp

i =
∑Ki

j=1 ri,jWvxi,j , where Wv is a
weight matrix used to transform xi,j ∈ B′

i into an information vector. The
phenotype-level features are represented as Spheno = {xp

i }Ci=1. Finally, Spatch

and Spheno together form the discriminative set S = {Spatch, Spheno}. Notably,
the only difference between the construction of random set and discriminative set
is that the features in the random set are sampled randomly and do not depend
on the attention scores. As Spatch is sampled from the phenotypic cluster whose
patches are uniformly distributed in WSI and which has the same proportion
of phenotypic features as the WSI. As Apatch is updated during training, the
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selector can sample the more informative patches from each phenotypic cluster,
and the model benefits from the selector as well.

Meanwhile, the network of our MIL backbone includes two feature aggrega-
tors: Apatch and Apheno, as shown in Fig. 1(b). These two aggregators encode
the constructed WSI set to patch-level and phenotype-level features which are
concatenated to obtain the high-level representation of WSI. Given a WSI set
S = {Spatch, Spheno}, the fused representation hf is given by:

hf = Cat(Apatch(Spatch), Apheno(Spheno)), (3)

where Cat is a concatenation operator. With the two aggregators and concate-
nation operator, the MIL backbone generates a high-level representation of WSI,
providing rich information for following the multi-task learning module.

2.2 Multi-task Learning

In this sub-section, a multi-task learning module is detailed, it is designed to
improve the representational power of our model and mitigate over-fitting as
shown in Fig. 1. Inspired by recent contrastive algorithms [2,3,10,9,4], we propose
an auxiliary contrastive task based on our adaptive selector and MIL backbone
to update our model together with the classification task.

The contrastive algorithm learns representations by maximizing agreement
between differently augmented views of the same data example via a contrastive
loss in the latent space [2]. The two different views of a sample are generated by
a stochastic data augmentation module in previous works. Different from this,
in CBMIL, a discriminative set S and a random set Sr are generated by the
proposed feature selector from the same bag B, as shown in Fig. 1.

Then, the two sets from the same WSI bag as a positive pair will be trans-
formed into two representations hf and hr

f by our MIL backbone. Then, the
representations are mapped to vectors in latent space and NT-Xent contrastive
loss is applied to maximize their agreement. In addition, hf is also used for the
classification task, which is trained using a standard cross-entropy loss. The total
loss L for a given mini-batch WSIs is the weighted sum of both the contrastive
loss Lcts and classification loss Lcls, given by L = β · Lcts + (1− β) · Lcls, where
β ∈ [0, 1] is a scalar for scaling.

2.3 Model Structure and Training Procedure

In the proposed MIL backbone, the aggregator could be an arbitrary MIL-
based model that satisfies the permutation-invariant MIL formulation, such as
in [12,19,16]. We use CLAM-SB [19], a solid MIL aggregator, as our Apatch to ag-
gregate the sampled features of WSI, and, Apheno, a simple gated attention [12]
is used to aggregate the phenotype-level features. As denoted in Eq. (2), N is a
constant number that denotes the number of selected patch features. For a few
WSIs with patches less than N , we will pad the bag with 0 vectors.
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Stochasticity is important in contrastive learning, previous works [2,10,9,4]
usually use stronger data augmentation on images. But the WSI bag is a feature-
level data sample, consequently, the natural data augmentation methods are not
available. To address this problem, we apply Mixup [30] based data interpola-
tion for Spatch inspired by [26]. The Mixup operation is only used during the
training phase. Given a mini-batch of M bags B = {Bm}Mm=1 with the same
constant shape, the augmented sample for a B is created by taking its random
interpolation with another randomly chosen sample B̃ from B, formulated as:

B+ = λ ·B+ (1− λ) · B̃, (4)

where λ is a coefficient sampled from a uniform distribution λ ∼ U(α, 1.0). The
value of α is usually high such as 0.9. It means that B+ is closer to B than B̃,
and the B̃ could be thought of as a data noise being added.

In the inference step, we throw away the contrastive branch and the generated
random set, and keep only the discriminative set for predicting the WSI label.

3 Experiments and Results

In this section, the implementation of the proposed method is detailed; also,
experiments and results are reported. Our experiments are conducted on two
public datasets: CAMELYONG16 [1] and the lung cancer dataset of The Cancer
Genome Atlas (TCGA-Lung) [25].

3.1 Dataset and Evaluation Metrics

CAMELYON16 is a widely used public dataset for metastasis detection in breast
cancer, including 270 training WSIs and 129 test WSIs. TCGA-Lung consists of
two subtype projects, i.e., Lung Squamous Cell Carcinoma (TGCA-LUSC) and
Lung Adenocarcinoma (TCGA-LUAD), which contains 529 LUAD WSIs and
512 LUSC WSIs.

For all WSIs in both datasets, tissue segmentation of the WSI was performed
by applying a combination of filters [28]. Each WSI is tiled into a series of 256×
256 patches without overlap at 20× magnification, where the background patches
(tissue region < 35%) are discarded. After pre-processing, CAMELYON16 yields
about 6881 patches per WSI, and TCGA-Lung yields about 11540 patches per
WSI. As in [16], the feature of each patch is embedded in a 512-dimensional
(L = 512, L is defined at the beginning of the Sec. 2.1) vector by a ResNet-
18 [11] model pre-trained by [16]. Then, we adopt K-means algorithm to cluster
patch features into C = 10 phenotypic cluster to form bag B, following [29].

Regarding CAMELYON16 dataset, the training set is done after splitting
the 270 WSIs into approximately 80% training and 20% validation and tested
on the official test set. For TCGA-Lung, we randomly split the data in the ratio
of training:validation:test = 60:15:25. For evaluation metrics, the accuracy, Area
Under Che curve (AUC) scores and F1-score are reported in Sec. 3.3 on both
datasets. The average results are obtained by 4-fold cross-validation on TCGA-
Lung dataset.
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Table 1. Results on CAMELYON16 and TCGA-Lung, respectively.

CAMELYON16 TCGA-Lung
Accuracy AUC F1-score Accuracy AUC F1-score

MinMax [6] 0.8504 0.8757 0.7800 0.8373 0.9088 0.8396
ABMIL [12] 0.8640 0.8939 0.7988 0.8457 0.9073 0.8419

ABMIL-Gated [12] 0.8550 0.8766 0.7833 0.8468 0.9078 0.8426
SetTransformer [15] 0.7775 0.8493 0.7415 0.6758 0.7800 0.7176
DeepAttnMISL [29] 0.8791 0.9213 0.8236 0.7992 0.8744 0.79506

CLAM-SB [19] 0.8713 0.8926 0.8107 0.8687 0.9412 0.8697
CLAM-MB [19] 0.8508 0.8938 0.7866 0.8661 0.9420 0.8660

DSMIL [16] 0.8682 0.8832 0.7952 0.8597 0.9300 0.8590
CBMIL (ours) 0.9380 0.9541 0.9184 0.8849 0.9429 0.8853

3.2 Implementation Details

The number of sampled patches N is experimentally set to 1024. In the training
step, we use Adam [14] optimizer with an initial learning rate of 0.0001, a cosine
annealing (without warm restarts) scheme for learning rate scheduling [17], and
a mini-batch size of 16. The parameter α of Mixup is set to 0.8, the temperature
parameter τ defined in NT-Xent loss [2] is set to 1.0, and the loss scaling param-
eter β is set to 0.1. The classifier and projector are two Multilayer Perceptron
(MLP) with one hidden layer, where the classifier calculates the prediction scores
and the projector maps the representations to a 128-dimensional latent space.

3.3 Experimental Results

To demonstrate the performance of our model, we first compare our proposed
model with the current state-of-the-art deep MIL models [6,12,15,29,19,16]. All
the results are provided in Table 1. In CAMELYON16, only a small portion of
regions in a positive slide contains tumor (roughly < 10% of the total tissue
area per slide) which leads to the positive bags being highly unbalanced. CB-
MIL outperforms its Apatch CLAM-SB [19] (i.e., 5% and 6% higher in accuracy
and AUC) and other deep MIL-based models. In TCGA-Lung, a positive slide
contains a relatively larger area of tumor region (roughly > 80% of the total
tissue area per slide). CBMIL also outperforms all the other methods. Overall,
the results demonstrate the superiority of our CBMIL model.

Table 2. Effects of the adaptive sampling and multi-task module.

Method A M CAMELYON16 TCGA-Lung
Accuracy AUC F1-score Accuracy AUC F1-score

Random MIL 0.8915 0.9173 0.8409 0.8626 0.9344 0.8603
Adaptive MIL ✓ 0.9302 0.9438 0.9032 0.8769 0.9301 0.8755

CBMIL ✓ ✓ 0.9380 0.9541 0.9184 0.8849 0.9429 0.8853
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Fig. 2. The visualization of phenotypes and attention heatmaps: (a) is the visualization
of phenotypes of a WSI from CAMELYON16 testing set, (b) and (c) are heatmaps of
attention weights in aggregators. Note: for (b) and (c), attention weights are re-scaled
from min-max to [0, 1] and used for patch intensities. (The details and colors are better
seen by zooming on a computer screen.)

In addition, to further determine the effect of the adaptive sampling mecha-
nism and multi-task module combined with contrastive learning, we report abla-
tion study results as shown in Table 2. This table shows the experimental results
of whether our proposed model has adaptive sampling and multi-task module.
Here, the A indicates whether to sample patch features based on the attention
scores in the feature selector, and the M indicates whether to add contrastive
learning branch in the training phase to establish multi-task learning. It could
be noted that the performance of classification can be substantially improved by
the adaptive sampling mechanism, and the performance can be further improved
by adding the multi-task learning module.

In closing, we also show the interpretability of CBMIL as displayed in Fig. 2.
The yellow curve depicts the official pixel-level annotation of the tumor region
in CAMELYON16. Fig. 2(a) allows the visualization of phenotypic clusters af-
ter clustering, where each color represents a cluster, and it can be noticed that
the phenotypic cluster of the tumor region are very obvious, while other nor-
mal tissues are uniformly distributed throughout the WSI. It is remarkable in
Fig. 2(b) that the phenotypic clusters belonging to the tumor region are given
high weights. Finally, Fig. 2(c) shows a more fine-grained attention heatmap: the
boundaries of which can highly overlap with the labeled regions. These visual-
ization results demonstrate the reliable interpretability of our proposed model.

4 Conclusion

In this paper, a novel Clustering-Based Multi-Instance Learning framework (CB-
MIL) is proposed for weakly supervised classification of Whole Slide Image
(WSI). Firstly, we design a feature selector that constructs discriminative set
of WSI from phenotypic clusters by sampling patches based on centroids. The
centroids are updated during training and are used to sample patches that are
highly correlated with the prediction results. In addition, with the represen-
tational power of contrastive learning, we integrate contrastive learning task
directly into MIL, establishing a multi-task learning framework to improve the
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performance of our method. Meanwhile, a Mixup operator is introduced for
feature-level data augmentation. Most importantly, the proposed method out-
performs the state-of-the-art MIL algorithms in terms of accuracy, AUC and
F1-score over two public datasets, namely: CAMELYON16 and TCGA-Lung.
Eventually, CBMIL can provide great interpretability by visualizing the atten-
tion weights in the MIL backbone.
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