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Abstract. Deep learning has been widely used to segment tumour re-
gions in stained histopathology images. However, precise annotations
are expensive and labour-consuming. To reduce the manual annotation
workload, we propose a light annotation-based fine-level segmentation
approach for histology images based on a VGG-based Fusion network
with Global Normalisation CAM. The experts are only required to pro-
vide a rough segmentation annotation on the images, and then accurate
fine-level segmentation boundaries can be produced using this method.
To validate the proposed approach, three histopathology datasets with
rough and fine quality segmentation annotation are built. The fine qual-
ity labels are used only as ground truth in evaluation. The VFGN-CAM
method includes three main components: an annotation enhancement
to boost boundary accuracy and model generalisability; a VGG Fusion
module that integrates multi-scale tumour features; and a Global Nor-
malisation CAM module that combines local and global gradient infor-
mation of tumour regions. Our VGG fusion and Global Normalisation
CAM outperform the existing methods with a Dice of 84.188%. The final
improvement for our proposed methods against the original rough labels
is around 22.8%. The codes are released at:xxx.
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1 INTRODUCTION

Cancer is the most deadly illness in the world due to it capability to generate dis-
tant metastases. Digital pathology scanners can provide whole slide image (WSI)
with a very high resolution (e.g. 80000 × 150000). Stained WSIs are the gold
standard for diagnosing cancer and predicting tumour reoccurrence and other
potential deterioration. However, manual tumour segmentation is expensive and
time consuming for pathologists. Therefore, the automatic segmentation method
is essential for efficient and accurate tumour classification on WSIs.

Several challenges exist in labelling tumour regions. Compared with carefully
hand-drawn boundaries that describe exactly the tissue structures, pathologists
tend to mark tumour parts with rough smooth curves in practice, which will
save substantial time for marking. The rough markings are informative but could
be misleading in model training to some extent since these boundaries include
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inevitable. In addition, Intrinsic variance in the tumour, the variances between
patients, and technical variances generated in slicing, staining, and scanning
cause inaccurate manual tumour segmentation annotation.

To relieve the dependence on segmentation annotation, many methods have
been proposed for weakly supervised segmentation (WSS) purposed including
image-level [2], scribble-based [4], point-based [10] and iterative based methods
[11]. Class activation mapping(CAM) [14] with global average pooling (GAP)
is a simple yet effective technique for weakly-supervised segmentation. Wang
et.al propose consistency regularization on predicted CAMs from various trans-
formed images to provide self-supervision [12]. Durand et.al jointly aim at align-
ing image regions for gaining spatial invariance and learning strongly localized
features[1]. Similar to CAM, adversarial erasing is an efficient way to represent
objects partly according to the peak responses of classes [7, 3]. Recently, Multi-
branch WSS methods are proposed to segment objects more preciously such
as complex attention modules [5], cross-image mining [8] and siamese networks
[12]. Most of the existing methods are designed by combining a series of mod-
ules including training classifiers, visualizing activation maps and re-training
segmentation networks.

Inspired by the efficacy of WSS methods, to reduce the dependency on ac-
curate tumour annotations and minimise pathologists’ workload of marking on
WSIs, we build two kinds of annotations including fine quality labels(F-label),
and poor quality labels(P-label). The purpose of this work is to exploit a large
amount of P-labels for training and use a few F-labels for testing.

In this work, we propose a VGG-based fusion network with global normal-
ization CAM (VFGN-CAM). Our contributions are threefold. (1)We refine the
P-labels based on k-means clustering and soft label. This annotation refinement
process ensures the annotation accuracy of tumour boundaries and enhances
the subsequent model generalizability. (2) A VGG-based fusion module (VF-
Net) is proposed based on VGG16. Multi-scale features are fused together for
patch-based tumour classification. (3) A global normalization CAM (GN-CAM)
module is presented to integrate gradient information both in the global whole
image and local patches, to acquire the position features in distinguishing the
tumour and background.

2 METHODS

The overall framework is shown in fig. 1. The rough annotation is first processed
in the annotation enhancement (AE) module which employs the k-means clus-
tering algorithm to improve the annotation for network training with soft labels.
Then we propose a VGG-based fusion classification network based on VGG16
to exploit multi-scale features for fine-grained patch-based classification. After
network training, the information of the last convolution layer of the network
is extracted and calculated by a GN-CAM which combines the normal CAM
result and a global normalization CAM result by specific weights. At last, the
output heat-map for each patch is embedded into the whole slide image and then
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Fig. 1. The structure of VFGN-CAM. VF-Net are trained with the data pre-processed
by annotation enhancement (AE), GN-CAM are used in test stage to acquire more
accurate result.

goes through a convolutional CRFs-based noise eliminator (NE) to smooth the
boundary of the generated annotation and eliminate the noise.

2.1 Annotation enhancement

To reduce the inaccuracy of the rough annotations, we propose an annotation
enhancement (AE) module based on k-means clustering, and a soft label modifier
to refine cancer annotations, especially in tumor marginal regions. The rough
annotation Y0 marked by experts delineates non-tumour regions from tumour
regions.K-means clustering cluster together pixels with similar features together
to create label Y1 that is a refined version of the original tumour boundaries in
Y0. The intersection point set Ŷ = Y1 ∩ Y0 is considered as the refined ground
truth. In addition, to ensure a highly efficient model training and boost the
model generalizability, patch-based soft labels [13] are generated by a sliding
window with the size of (512,512) as shown in algorithm 1.

As several errors still exist in tumour boundaries and especially in isolated
tiny tumour regions, the errors will be propagated if we directly train models
according to pixel-wise refined annotations Y . In this case, we design a patch-
based classification model with GN-CAM supervised by soft labels, to reduce
the error effects around tumour boundaries.
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Algorithm 1 Generate soft label on the refined whole slide annotation Ŷ
1: repeat
2: Assuming the centre of the sliding window is (p, q), the proportion of tumour

areas fp,q is calculated on the adjusted annotation Y , where I is a binary function
to discriminate whether one region in the sliding window belongs to tumor.

fp,q =

p+256∑
i=p−256

p+256∑
j=p−256

I(tumor, i, j)

5122

3: Patches X extracted by the sliding window are stored and marked with soft
label Y

Y =

{
1− σ, fp,q > θ

σ, others

4: until moving the sliding window across all refined annotation boundaries.

2.2 VF Classification Network

Convolution-based design is capable of inferring accurate local features (texture,
boundary and greyscale) with few features. VGG is a universal backbone for im-
age feature extraction, which has been widely applied to classification, detection
and segmentation tasks for medical images. [6]

Fig. 2. The network structure of VF.

Convolution-based design is capable of inferring accurate local features (tex-
ture, boundary and greyscale) with few features. VGG is a universal backbone
for image feature extraction, which has been widely applied to classification,
detection and segmentation tasks for medical images. [6]Inspired by the effec-
tiveness and lightweight of VGG 16, we apply VGG 16 as our base model for
tumour classification, increasing a series of residual connections among convolu-
tions and design a multi-scale fusion module to ensure accurate classification of
tiny tumours. Fig. 2 illustrates the detailed framework of our VF method. Each
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block contains three convolution layers with residual connections to ensure the
stability of network back-propagation. One dropout layer is inserted after the
second convolution layer to increase the network generalization. In addition, a
multi-scale feature fusion module is presented to fuse feature maps generated
by all Max-pooling layers. All feature maps are resampled to the same size as
the feature map from the final Max-pooling. These features are concatenated
together and pass through a convolution layer.

2.3 Global Normalised Class Activation Mapping

Global Normalised Class Activation Mapping (GN-CAM) is a new way of com-
bining feature maps using the gradient signal. Inspired by assigning an impor-
tance factor to each neuron by the gradient of G-CAM, this paper proposes a
global normalized CAM that extracts the guided gradient features Rl flowing
out the last convolution layer. The lth and (l+1)th layers are the last two layers
of the VF. Denote the ith feature map of the (l+1)th layer as f l+1

i , the ith gra-
dient map of the l + 1 layer as Rl+1

i and the output map is fout . The gradient
map of l + 1 layer is calculated by

f l+1
i = relu

(
f l
i

)
= max

(
f l
i , 0

)
, (1)

Rl+1
i =

∂fout

∂f l+1
i

. (2)

The guided gradient map of the l layer Rl is calculated by:

Rl
i =

(
f l
i > 0

)
·
(
Rl+1

i > 0
)
·Rl+1

i . (3)

All guided gradient maps R from the same WSI are stored in a queue Q1.
Then we normalise each map in Q1 with the global mean and standard deviation.
These processed maps R

′
are stored in a new queue Q2. Also, assuming (w, h)

is the spatial position of a gradient map R, every pixel Rl
i,w,h, w ∈ W,h ∈ H is

normalized locally and recalculated by:

µl
i =

∑W
w=1

∑H
h=1 R

l
i,w,h

WH
(4)

sli =

√√√√√∑W
w=1

∑H
h=1

(
Rl

i,w,h − µl
i

)2

(WH)
2 (5)

Rl
i

′′

=
Rl

i − µl
i

sli
(6)

The locally normalised maps R
′′
from the same WSI are stored in a queue

Q3. Two normalised gradient maps Ri

′
and Ri

′′
from Q2 and Q3 are added

together by order. The final segmentation results M is calculated by

Mi =
Ri

′
+Ri

′′

2
. (7)
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2.4 Noise Eliminator

After model training and the CAM process, the generated masks are more accu-
rate, but some noise remains. This is because the tumour regions are calculated
in the region of 512 × 512 pixels, so the predicted boundary is very sharp.
Also, the isolated tumour cells and fine details in boundaries are often not con-
sidered in human manual labelling. Thus, to resemble manual segmentation, a
post-processing step using convolutional CRFs[9] is developed to ensure the seg-
mentation boundary is medically relevant. The output of convolutional CRFs
has more smooth boundaries and less noise, especially inside the tumour region.

3 Experiment and Result

3.1 Data introduction and training details

We train and evaluate our framework on three tumour datasets including basal
cell cancer (BCC), squamous papilloma (SP), and seborrheic keratosis cancer
(SKC) datasets. All three datasets are skin cancer data. The common challenge
of a skin cancer dataset is that the boundary of the tumour region is difficult to
identify. So the rough annotations on this kind of dataset will further influence
the performance of the segmentation network. In the training process, to reduce
the requirement for memory and accelerate the training process, we cut all the
whole slide tumour images into patches the size of (512,512). The Adam opti-
mizer is used with a learning rate of 0.0001 and a step learning scheduler with
step size=60 and γ = 0.95. The loss function is cross entropy. It takes around
10 hours to train our model and test the results on a NVIDIA RTX 3080 GPU.

3.2 Evaluation and results

There are five widely used measurement parameters used in this evaluation: sen-
sitivity, specificity, accuracy, IOU and dice coefficient. IOU and dice coefficient
are widely used to comprehensively evaluate the segmentation performance of
the target network. First, we discuss the performance of annotation enhancement
and our proposed VF network. Tab. 1 demonstrates the evaluation about the
annotation enhancement (AE) and network. All network results with annota-
tion enhancement have a better performance against the same network without
annotation enhancement. It is reasonable to believe that our proposed AE has

Table 1. Network results with or without annotation enhancement.

Sensitivity(%) Specificity(%) Accuracy(%) IOU(%) Dice(%)

VGG 70.480 97.735 93.997 61.077 75.358
VGG-AE 74.592 97.972 94.819 64.602 78.032

VF 75.267 97.869 94.915 64.522 77.766
VF-AE (ours) 80.947 97.703 95.813 68.538 81.090
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Fig. 3. Output patches of GN-CAM for three dataset: (a) basal cell cancer (BCC); (b)
squamous papilloma (SP); (c) seborrheic keratosis cancer (SKC).

a non-negligible effect in a weakly trained segmentation task, especially in the
poor quality annotation situation. Also, our proposed VF network has an av-
erage of 3 percent improvement against the VGG network. Which proves the
VFGN-CAM structure is more suitable for this work.

Table 2. Results of different CAM based on annotation enhancement.

Sensitivity(%) Specificity(%) Accuracy(%) IOU(%) Dice(%)

VGG
CAM 69.386 98.212 94.010 61.574 75.697

GN-CAM 79.799 97.732 95.628 67.629 80.367

VF
CAM 78.890 97.790 95.597 67.569 80.316

GN-CAM 83.003 97.615 96.029 69.507 81.865

CAM aims to extract the information in the convolution layer to explain
the results of network training. In this work, information is extracted from the
last convolution layer of the trained network. We propose a global normalization
CAM in tumour segmentation task, the result of this CAM of patches is shown
in fig. 3. We explore the differences between two kinds of CAM, the segmentation
result are shown in tab. 2. Using annotation enhancement or not, our proposed
GN-CAM achieve better performance in all parameter against the normal CAM.

Table 3. Results of noise eliminator under annotation enhancement and GN-CAM.

Sensitivity(%) Specificity(%) Accuracy(%) IOU(%) Dice(%)

VGG 79.799 97.732 95.628 67.629 80.367
VGG-NE 81.961 98.106 96.187 70.837 82.626

VF 83.003 97.615 96.029 69.507 81.865
VF-NE (ours) 85.461 98.000 96.600 72.963 84.188

Two ablation studies are presented on the tab. v and the tab.4. As shown
in tab. 3, average segmentation improvements on three datasets are around 3
% with the proposed noise eliminator, regardless of whether we use VGG or
VF. Tab. 4 shows the comparison of the P-label and the predicted segmentation
evaluated against the F-label. All the machine learning results are generated
under the annotation enhancement and noise eliminator by GN-CAM. The gen-
erated mask presents a great improvement against the P-label. Among all the
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Fig. 4. Some examples of CAM output heat map and tumor segmentation results: (a)
original image; (b) Poor quality label (P-label); (c) annotation for VGG; (d) heat map
for VGG; (e) annotation for VF; (f) heat map for VF; (g) Fine quality label (F-label).

results, our proposed VF and GN-CAM with annotation enhancement and noise
eliminator achieve the best result. Fig. 4 shows the result of CAM heat map out-
put and final annotations after noise eliminator. Compare to poor quality labels
(P-label), our method generates more accurate and detailed boundaries. The
proposed VF methods lead to an improvement of 22.846% in Dice coefficient
against the P-label, which proves the success of the VFGN-CAM framework.
Also, the heat map generated by GN-CAM shows a significant visual correla-
tion to the tumour area, meaning that the output segmentation can be used for
medical assessment tasks which have roughly annotated training sets.

Table 4. Segmentation results compared to original P-label by F-label as ground truth.

Sensitivity(%) Specificity(%) Accuracy(%) IOU(%) Dice(%)
P-label 57.601 97.898 87.972 45.048 61.342

CAM
VGG 70.821 98.907 94.473 65.037 78.600
VF 80.569 98.329 96.162 71.001 82.759

GN-CAM
VGG 81.961 98.106 96.187 70.837 82.626
VF 85.461 98.000 96.600 72.963 84.188

4 Conclusion

In this paper, we explore a new patch-based tumour segmentation method super-
vised by rough annotations called VFGN-CAM. More specifically, an annotation
enhancement is presented to progressively refine the annotations, which ensures
accuracy in tumour boundary shape. A VF net is used to classify the patches.
We also propose a GN-CAM to integrate global and local gradient information
of tumour regions. Experiments on three tumour datasets show the effectiveness
and superiority of our model. In future, more weakly supervised work will be
proposed based on our P-labels and our method.
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