Skip to main content

MLCN: Metric Learning Constrained Network for Whole Slide Image Classification with Bilinear Gated Attention Mechanism

  • Conference paper
  • First Online:
  • 426 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13574))

Abstract

Whole Slide Image (WSI) classification is an important part of pathological diagnosis. Although previous approaches (such as DSMIL and CLAM) have achieved good results, the classification performance is still unsatisfactory because the learned features of WSI lack discrimination and the correlation among sub-characteristics of tumor images are ignored. In this paper, we proposed a Metric Learning Constraint Network (referred to as MLCN). Particularly, MLCN benefits from two aspects: 1) It enhances the discriminative power of features by enlarging inter-class distance and narrowing intra-class distance in both slide-level and patch-level. 2) It learns a more powerful feature aggregator by proposing the bilinear gated attention mechanism to capture relations among sub-characteristics of tumor issues. Experiments on CAMELYON16 and TCGA Kidney datasets validate the effectiveness of our approach, and we achieved state-of-the-art performance compared to other popular methods. The codes will be available soon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127–2136 (2018)

    Google Scholar 

  2. Lu, M.Y., Williamson, D.F., Chen, T.Y., et al.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  3. Bejnordi, B.E., Veta, M., Van Diest, P.J., Van Ginneken, B., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  4. Campanella, G., Hanna, M.G., Geneslaw, L., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)

    Article  Google Scholar 

  5. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2021)

    Google Scholar 

  6. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)

    Google Scholar 

  7. Carreira, J., Caseiro, R., Batista, J., Sminchisescu, C.: Semantic segmentation with second-order pooling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 430–443. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_32

    Chapter  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  10. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  11. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  12. Cornish, T.C., Swapp, R.E., Kaplan, K.J.: Whole-slide imaging: routine pathologic diagnosis. Adv. Anat. Pathol. 19(3), 152–159 (2012)

    Article  Google Scholar 

  13. Pantanowitz, L., Valenstein, P.N., Evans, A.J., et al.: Review of the current state of whole slide imaging in pathology. J. Pathol. Inform. 2(1), 36 (2011)

    Article  Google Scholar 

  14. Feng, J., Zhou, Z.H.: Deep MIML network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, No. 1 (2017)

    Google Scholar 

  15. Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1713–1721 (2015)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Wang, D., Khosla, A., Gargeya, R., et al.: Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718 (2016)

  18. Hashimoto, N., Fukushima, D., Koga, R., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3852–3861 (2020)

    Google Scholar 

  19. Komura, D., Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018)

    Article  Google Scholar 

  20. Kaya, M., Bilge, H.Ş: Deep metric learning: a survey. Symmetry 11(9), 1066 (2019)

    Article  Google Scholar 

  21. Cheplygina, V., Tax, D.M., Loog, M.: Multiple instance learning with bag dissimilarities. Pattern Recogn. 48(1), 264–275 (2015)

    Article  Google Scholar 

  22. Dauphin, Y.N., Fan, A., Auli, M., et al.: Language modeling with gated convolutional networks. In: International Conference on Machine Learning, pp. 933–941 (2017)

    Google Scholar 

  23. Wang, X., Yan, Y., Tang, P., et al.: Revisiting multiple instance neural networks. Pattern Recogn. 74, 15–24 (2018)

    Article  Google Scholar 

  24. Kraus, O.Z., Ba, J.L., Frey, B.J.: Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32(12), i52–i59 (2016)

    Article  Google Scholar 

  25. Atlas, T.C.G. Website (2006). https://portal.gdc.cancer.gov/

  26. Jun, W., Jean-Daniel, Z.: Solving the multiple-instance problem: a lazy learning approach. In: Proceedings of the 17th International Conference on Machine Learning, pp. 1119–1125 (2000)

    Google Scholar 

  27. Zhang, Q., Goldman, S.: EM-DD: an improved multiple-instance learning technique. Adv. Neural Inf. Process. Syst. 14 (2001)

    Google Scholar 

  28. Gärtner, T., Flach, P.A., Kowalczyk, A., et al.: Multi-instance kernels. In: ICML, vol. 2, p. 7 (2002)

    Google Scholar 

  29. Ilse, M., Tomczak, J.M., Welling, M.: Deep multiple instance learning for digital histopathology. In: Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 521–546 (2020)

    Google Scholar 

  30. Han, Z., Wei, B., Hong, Y., et al.: Accurate screening of COVID-19 using attention-based deep 3D multiple instance learning. IEEE Trans. Med. Imaging 39(8), 2584–2594 (2020)

    Article  Google Scholar 

  31. Yan, R., Ren, F., Wang, Z., et al.: Breast cancer histopathological image classification using a hybrid deep neural network. Methods 173(1), 52–60 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA16021400), and the NSFC projects grants (61932018, 62072441 and 62072280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, B., Liu, X., Zhang, F. (2022). MLCN: Metric Learning Constrained Network for Whole Slide Image Classification with Bilinear Gated Attention Mechanism. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2022. Lecture Notes in Computer Science, vol 13574. Springer, Cham. https://doi.org/10.1007/978-3-031-17266-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17266-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17265-6

  • Online ISBN: 978-3-031-17266-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics