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Abstract
Reliable broadcast is a fundamental primitive, widely used as a building block for data replication in
distributed systems. Informally, it ensures that system members deliver the same values, even in the
presence of equivocating Byzantine participants. Classical broadcast protocols are based on centralized
(globally known) trust assumptions defined via sets of participants (quorums) that are likely not to fail
in system executions. In this paper, we consider the reliable broadcast abstraction in decentralized trust
settings, where every system participant chooses its quorums locally. We introduce a class of relaxed reliable
broadcast abstractions that perfectly match these settings. We then describe a broadcast protocol that
achieves optimal consistency, measured as the maximal number of different values from the same source
that the system members may deliver. In particular, we establish how this optimal consistency is related to
parameters of a graph representation of decentralized trust assumptions.
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1 Introduction

Reliable broadcast is widely used for replicating data in countless applications: storage systems,
state-machine replication, cryptocurrencies, etc. Intuitively, a reliable broadcast protocol allows a
system member (the source) to broadcast a value, and ensures that correct system members agree
on the value they deliver, despite arbitrary (Byzantine [20]) behavior of some of them (including
the source) and asynchrony of the underlying network. More precisely, the primitive ensures the
following properties:

(Validity) If the source broadcasts m, then every correct process eventually delivers m.
(Consistency) If correct processes p and q deliver, respectively, m and m′, then m = m′.
(Integrity) Every correct process delivers at most one value, and, if the source is correct, only if
it previously broadcast it.
(Totality) If a correct process delivers a value, then all correct processes eventually deliver some
value.

Classical reliable broadcast algorithms, starting from Bracha’s broadcast [3], assume that “enough”
system members remain correct. In the uniform fault model, where processes fail with equal
probabilities, independently of each other, this assumption implies that only less than one third of
processes can fail [4].

More general fault models can be captured via quorum systems [22]. Formally, a quorum
system is a collection of member subsets (quorums). Every two quorums must have at least one
correct process in common, and in every system run, at least one quorum must only contain correct
processes.

Intuitively, quorums encapsulate trust the system members express to each other. Every quorum
can act on behalf of the whole system: before delivering a value from a potentially Byzantine
source, one should make sure that a quorum of system members have acknowledged the value.
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Conventionally, these trust assumptions are centralized: all participants share the same quorum
system.

In a large-scale distributed system, it might be, however, difficult to expect that all participants
come to the same trust assumptions. It could be more realistic to resort to decentralized trust
assumptions by allowing each participant to individually choose its quorum system.

Damgård et al. [11] appear to be the first to consider the decentralized trust setting. They
focused on solving broadcast, verifiable secret sharing and multiparty computation, assuming
synchronous communication. Recently, the approach has found promising applications in the field
of cryptocurrencies, with the advent of Ripple [27] and Stellar [24] that were conceived as open
payment systems, alternatives to proof-of-work-based protocols [26, 29]. In particular, Stellar
and its followups [13, 14] determine necessary and sufficient conditions on the individual quorum
systems, so that a well-defined subset of participants can solve the problems of consensus and
reliable broadcast.

In this paper, we propose to take a more general, and arguably more realistic, perspective
on decentralized trust. Instead of determining the weakest model in which a given problem can
be solved, we rather focus on determining the strongest problem that can be solved in a given
model. Indeed, we might have to accept that individual trust assumptions are chosen by the users
independently and may turn out to be poorly justified. Furthermore, as in the real world, where a
national economy typically exhibits strong internal trust but may distrust other national economies,
the system may have multiple mutually distrusting “trust clusters”. Therefore it is important to
characterize the class of problems that can be solved, given specific decentralized trust assumptions.

To this purpose, we introduce a class of relaxed broadcast abstractions, k-consistent reliable
broadcast (k-CRB), k ∈ N, that appear to match systems with decentralized trust. If the source
of the broadcast value is correct, then k-CRB ensures the safety properties of reliable broadcast
(Consistency and Integrity). However, if the source is Byzantine, then Consistency is relaxed so
that correct participants are allowed to deliver up to k distinct values. Moreover, we also refine the
Totality property: if a correct process delivers a value, then every live correct process1 eventually
delivers a value or produces an irrefutable evidence that the source is Byzantine. In other words, we
introduce the accountability feature to the broadcast abstraction: either the live correct processes
agree on the values broadcast by the source or detect its misbehavior.

The question now is how to determine the smallest k such that k-CRB can be implemented
given specific decentralized trust assumptions. We show that the trust assumptions induce a
collection of trust graphs. It turns out that the optimal k is then precisely the size of the largest
maximum independent set over this collection of graphs.

Reliable broadcast is a principal building block for higher-order abstractions, such as state-
machine replication [7] and asset transfer [15, 10]. We see this work as the first step towards
determining the strongest relaxed variants of these abstractions that can be implemented in
decentralized-trust settings.

The rest of the paper is organized as follows. In Section 2, we present our system model. In
Section 3, we recall definitions of classical broadcast primitives and introduce a relaxed variant
adjusted for decentralized trust settings—k-consistent broadcast (k-CB). Section 4 introduces graph
representations of trust assumptions, which are used to establish a lower bound on parameter k of
relaxed broadcast. In Section 5, we introduce a stronger primitive, k-consistent reliable broadcast
(k-CRB) and describe its implementation. Finally, we discuss related work in Section 6, and we
draw our conclusions in Section 7.

1 A process is live in a given execution if at least one of its quorums consists of correct processes only. Intuitively,
we may not be able to guarantee liveness to the processes that, though correct, do not “trust the right guys”.
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2 System Model

2.1 Processes
A system is composed of a set of processes Π = {p1, ..., pn}. Every process is assigned an algorithm
(we also say protocol), an automaton defined as a set of possible states (including the initial state),
a set of events it can produce and a transition function that maps each state to a corresponding
new state. An event is either an input (a call operation from the application or a message received
from another process) or an output (a response to an application call or a message sent to another
process); send and receive denote events involving communication between processes.

2.2 Executions and failures
A configuration C is the collection of states of all processes. In addition, C0 is used to denote a
special configuration where processes are in their initial states. An execution (or a run) Σ is a
sequence of events, where every event is associated with a distinct process and every receive(m) event
has a preceding matching send(m) event. A process misbehaves in a run (we also call it Byzantine)
if it produces an event that is not prescribed by the assigned protocol, given the preceding sequence
of events, starting from the initial configuration C0. If a process does not misbehave, we call it
benign. In an infinite run, a process crashes if it prematurely stops producing events required by
the protocol; if a process is benign and never crashes we call it correct, and it is faulty otherwise.
Let part(Σ) denote the set of processes that produce events in an execution Σ.

2.3 Channels and digital signatures
Every pair of processes communicate over a reliable channel: in every infinite run, if a correct
process p sends a message m to a correct process q, m eventually arrives, and q receives a message
from p only if p sent it. We impose no synchrony assumptions. In particular, we assume no bounds
on the time required to convey a message from one correct process to another. In the following,
we assume that all messages sent with a protocol execution are signed, and the signatures can be
verified by a third party. In particular, each time a process p receives a protocol message m from
process q, p only accepts m if it is properly signed by q. We assume a computationally bound
adversary: no process can forge the signature of a benign process.

2.4 Decentralized trust
We now formally define our decentralized trust assumptions. A quorum map Q : Π→ 22Π provides
every process with a set of process subsets: for every process p, Q(p) is the set of quorums of p.
We assume that p includes itself in each of its quorums: ∀Q ∈ Q(p) : p ∈ Q. Intuitively, Q(p)
describes what process p expects from the system. We implicitly assume that, from p’s perspective,
for every quorum Q ∈ Q(p), there is an execution in which Q is precisely the set of correct processes.
However, these expectations may be violated by the environment. We therefore introduce a fault
model F ⊆ 2Π (sometimes also called an adversary structure) stipulating which process subsets can
be faulty. In this paper, we assume inclusion-closed fault models that do not force processes to fail:
∀F ∈ F , F ′ ⊆ F : F ′ ∈ F . An execution Σ complies with F if the set of faulty processes in Σ is in
F .

Given a faulty set F ∈ F , a process p is called live in F if it has a live quorum in F , i.e.,
∃Q ∈ Q(p) : Q ∩ F = ∅. Intuitively, if p is live in every F ∈ F , such that p /∈ F , then its trust
assumptions are justified by the environment.

For example, let the uniform f -resilient fault model: F = {F ⊆ Π : |F | ≤ f}. If Q(p) includes
all sets of n− f processes, then p is guaranteed to have at least one live quorum in every execution.
On the other hand, if Q(p) expects that a selected process q is always correct (q ∈ ∩Q∈Q(p)Q), then
p is not live in any execution with a faulty set such that q ∈ F . In the rest of the paper, we assume
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that the model is provided with trust assumptions (Q,F), where Q is a quorum map and F is a
fault model.

3 The Broadcast Primitive

The broadcast abstraction exports input events broadcast(m) and output events deliver(m), for
value m in a value set M. Without loss of generality, we assume that each broadcast instance has
a dedicated source, i.e., the process invoking the broadcast operation.2 Below we recall the classical
abstractions of consistent and reliable broadcast [5]. The consistent broadcast abstraction satisfies:

(Validity) If the source is correct and broadcasts m, then every correct process eventually delivers
m.
(Consistency) If correct processes p and q deliver m and m′ respectively, then m = m′.
(Integrity) Every correct process delivers at most one value and, if the source p is correct, only
if p previously broadcast it.

A reliable broadcast protocol satisfies the properties above, plus:

(Totality) If a correct process delivers a value, then all correct processes eventually deliver a
value.

For our lower bound, we introduce a relaxed version of consistent broadcast. A k-consistent
broadcast protocol (k-CB) ensures that in every execution Σ (where F ∈ F is its faulty set), the
following properties are satisfied:

(Validity) If the source is correct and broadcasts m, then every live correct process eventually
delivers m.
(k-Consistency) Let M be the set of values delivered by the correct processes, then |M | ≤ k.
(Integrity) A correct process delivers at most one value and, if the source p is correct, only if p
previously broadcast it.

In this paper, we restrict our attention on quorum-based protocols [21]. Intuitively, in a
quorum-based protocol, every process p is expected to make progress if the members of one of its
quorums Q ∈ Q(p) appear correct to p. This should hold even if the actual set of correct processes
in this execution is different from Q. The property has been originally introduced in the context
of consensus protocols [21]. Here we extend it to broadcast. Formally, we introduce the following
property that completes the specification of k-CB:

(Local Progress) For all p ∈ Π and Q ∈ Q(p), there is an execution in which only the source
and processes in Q take steps, p is correct, and p delivers a value.

The key differences of a k-CB over a classical consistent broadcast lies in the Validity and the
k-Consistency properties. Our Validity property only ensures progress to live correct processes
(based on their local quorums). Also, since some processes may trust the "wrong guys", it might
happen that a faulty source convinces the correct processes to deliver distinct values. However,
given a fault model F , the k-Consistency property establishes an upper bound k in values that can
be delivered. In the classical consistent broadcast, no conflict is allowed in values delivered for a
given F , the bound k on such primitive is then equal to 1 (which clearly also holds for reliable
broadcast).

2 One can easily turn this (one-shot) abstraction into a long-lived one, in which every process can broadcast
arbitrarily many distinct values by equipping each broadcast value with a source identifier and a unique sequence
number and its signature.
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Figure 1 Graph structures of Example 1: GF,S1 and GF,S2 respectively.

4 Bounds for k-consistent broadcast protocol

4.1 A Graph Representation of Executions
We use our trust assumptions (Q,F) to build a graph representation of the execution, in order to
investigate the cases in which disagreement may occur in the network, that is, when two or more
correct processes deliver distinct values. Let S : Π→ 2Π be a map providing each process with one
of its quorums, that is, S(p) ∈ Q(p). Let S be the family of all possible such maps S.

Given F ∈ F and S ∈ S, we build an undirected graph GF,S as follows: the nodes in GF,S

are correct processes (Π− F ) and the edges are drawn between a pair of nodes if their quorums
intersect in at least one correct process. Formally, GF,S is a pair (ΠF , EF,S) in which:

ΠF = Π− F
(p, q) ∈ EF,S ⇔ S(p) ∩ S(q) 6⊆ F

I Example 1. Let us consider the system where Π = {p1, p2, p3, p4}, given the faulty set F = {p3}
and the quorum system for each process:

Q(p1) = {{p1, p2, p3}, {p1, p3, p4}} Q(p2) = {{p1, p2, p3}, {p2, p3, p4}}

Q(p3) = {{p1, p2, p4}, {p2, p3, p4}} Q(p4) = {{p1, p3, p4}, {p2, p4}, {p3, p4}}

If we consider only the correct processes (p1, p2 and p4), there are 12 different combinations
of quorums S ∈ S for these trust assumptions. Now let S1 ∈ S with: S1(p1) = {p1, p2, p3},
S1(p2) = {p2, p3, p4} and S1(p4) = {p2, p4}. And let S2 ∈ S with: S2(p1) = {p1, p2, p3},
S2(p2) = {p2, p3, p4} and S2(p4) = {p3, p4}. Figure 1 shows the graphs GF,S1 and GF,S2 , observe
that every pair of quorums used to generate GF,S1 intersects in a correct process, thus resulting in a
fully connected graph. On the other hand, since S2(p1) ∩ S2(p4) ⊆ F , GF,S2 is not fully connected.

Before proceeding with the analysis, we recall the following classical definitions:

I Definition 2 (Independent Set). A set of nodes I is an independent set of a graph GF,S if no
pair of nodes in I is adjacent, i.e., ∀p, q ∈ I : (p, q) /∈ EF,S.

I Definition 3 (Independence Number). The independence number of a graph GF,S is the size of
its largest independent set.

Within an independent set of GF,S , the quorums of each pair of nodes do not intersect in
a correct process. The independence number of GF,S helps us in understanding the level of
disagreement that might occur in an execution, as we show in the following:

I Theorem 4. Let GF,S be the graph generated over a fixed F ∈ F and S ∈ S. Let GF,S have an
independent set of size k. Then there exists an execution in which up to k distinct values can be
delivered by correct processes.
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Proof. Let r be the source. If I = {p1, ..., pk} is an independent set of GF,S of size k, then
∀pi, pj ∈ I : S(pi) ∩ S(pj) ⊆ F . By the definition of Local Progress, it exists an execution Σi

such that part(Σi) = {r} ∪ S(pi) and pi delivers a value mi. It then suffices for r and other faulty
processes in S(pi) to behave exactly as they do within Σi in order to produce the same result. Since
the system is asynchronous, it is possible that pi delivers a value before any correct process in
part(Σi) receives a message from any p′ /∈ part(Σi). In other words, the network behaves as if it
was temporarily partitioned. Now for each pi ∈ I, let Σi be an execution as described above, we
can build Σ such that all executions Σi are subsequences of Σ, in which no correct process receives
any information of conflicting values before p1, ..., pk deliver m1, ...,mk, respectively. J

I Example 5. Coming back to Example 1, we see that the nodes in GF,S1 are fully connected
(form a clique), thus resulting in GF,S1 having independence number 1. On the other hand, the
biggest independent set in GF,S2 is {p1, p4}, which means GF,S2 has independence number 2. In an
execution where F is the faulty set and processes first hear from quorums in S2 to deliver a value,
then there is an unavoidable possibility that p1 and p4 deliver distinct values if p3 is the source.

4.2 Lower bound on k
Given the pair (Q,F), we define the family of graphs GQ,F that includes all possible GF,S , where
F ∈ F and S ∈ S. Recall that every such S ∈ S associates each process to one of its quorums.

IDefinition 6 (Inconsistency Number). Let µ : GQ,F → N map each GF,S ∈ GQ,F to its independence
number. The inconsistency number of (Q,F) is then kmax = max({µ(GF,S)|GF,S ∈ GQ,F}).

I Theorem 7. No algorithm can implement k-CB with k < kmax.

Proof. For a particular GF,S ∈ GQ,F , Theorem 4 implies that within an independent set I : |I| = k,
up to k distinct values can be delivered by the correct processes. As the independence number is the
size of the maximum independent set(s) of a graph, by taking the highest independence number in
GQ,F we get the worst case scenario. It is always possible to build an execution where kmax processes
deliver kmax distinct values before any correct process is able to identify the misbehavior. J

I Example 8. Coming back to Example 1 again, if we take S3 such that S3(p1) = S3(p2) =
{p1, p2, p3} and S3(p4) = {p3, p4}, we have both (p1, p4) 6∈ EF,S3 and (p2, p4) 6∈ EF,S3 , while
(p1, p2) ∈ EF,S3 . The independence number of GF,S3 is 2, which means that despite GF,S2 having
more edges then GF,S3 , the same number of distinct values can be delivered by correct processes.
For F = {{p3}}, since the quorums of p1 and p2 always intersect on a correct process, none of the
graphs has independence number higher then GF,S3 , thus, considering Q from Example 1 and F ,
the optimal k for an algorithm implementing k-CB would be 2.

5 Accountable Algorithm for Relaxed Broadcast

In the specification of k-CB, we inherently assume the possibility of correct processes disagreeing in
the delivered value in the presence of a faulty source, but the maximal number of distinct delivered
values is determined by (Q,F).

In practice, one may need some form of Totality, as in reliable broadcast. We might want the
(live) correct processes to reach some form of agreement on the set of values they deliver.

In our setting, we have to define the Totality property, taking into account the possibility of
them delivering different values, in case the source is misbehaving. Therefore we strengthen the
protocol by adding an accountability feature: once a correct process detects misbehavior of the
source, i.e., it finds out that the source signed two different values, it can use the two signatures as
a proof of misbehavior. The proof can be then independently verified by a third party. We model
the accusation as an additional output accuse(mb), where mb is a proof that the source misbehaved.
When a process p produces accuse(mb), we say that p accuses the source (of misbehavior with
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proof mb). Now, in addition to the properties of k-CB, the k-consistent reliable broadcast (k-CRB)
abstraction satisfies:

(Weak Totality) If a correct process delivers a value, then every live correct process eventually
delivers a value or accuses the source.
(Accuracy) A correct process p accuses the source only if the source is faulty.
(Certitude) If a correct process accuses the source, every correct process eventually does so.

We present our k-CRB implementation in Algorithm 1. Each process maintains local variables
sentecho, delivered, accused and echoes. Boolean variables sentecho, delivered and accused indicate
whether pi has already sent ECHO, delivered a value and accused the source, resp., in the broadcast
instance. Array echoes keeps track of ECHO messages received from other processes.

The source broadcasts m by sending a SEND message to every process in the system. If a
process pi receives either a [SEND,m] or a [ECHO,m] for the first time, pi sends an ECHO message
to every other processes. If a received ECHO message contains a value m2 that conflicts with a
previously received value m1, pi sends the ACC message to every process with the tuple (m1,m2) as
a proof of misbehavior. Once pi receives echoes with m from at least one of its quorum, it delivers
m. Once pi receives an ACC message containing a proof of misbehavior, even though pi has already
delivered a value, it also sends ACC to every process before accusing the source. Notice that a
correct process only sends ECHO for a single value, and delivers a value or accuses the source once.

Process pi delivers a value m after receiving ECHO from every process in Qi ∈ Q(pi), we say
that pi uses Qi. In our correctness arguments, we fix an execution of Algorithm 1 with a faulty set
F ∈ F , and assume that the processes use quorums defined by a fixed map S ∈ S.

I Lemma 9. Let GF,S be the graph generated over F and S with (p, q) ∈ EF,S, if p delivers m1
and q delivers m2, then m1 = m2.

Proof. Since p delivers m1 using S(p), all processes in S(p) sent ECHO with m1 to p. Similarly,
all processes in S(q) sent ECHO with m2 to q. Assume that m1 6= m2, since (p, q) ∈ EF,S ⇔
S(p) ∩ S(q) 6⊆ F , some correct process sent ECHO with m1 and m2, which is not allowed by the
protocol. J

As an immediate consequence of Lemma 9, correct processes p and q might deliver distinct
values only if (p, q) /∈ EF,S .

I Theorem 10. Let k be the independence number of GF,S, then k is an upper bound in the number
of distinct values that can be delivered by correct processes.

Proof. Lemma 9 states that if the quorums of correct processes intersect in a correct process, they
cannot deliver conflicting values using those quorums. Let I be an independent set in GF,S of size k
and assume that more than k distinct values are delivered, then for some q /∈ I, ∃p ∈ I : (p, q) ∈ EF,S ,
in which p and q deliver distinct values, a contradiction. J

I Theorem 11. Consider a distributed system with trust assumptions (Q,F). Let kmax be the
inconsistency number of (Q,F). Then Algorithm 1 implements kmax-consistent reliable broadcast.

Proof. (Integrity) Immediate from the algorithm: a process only delivers a value once, and if the
source is correct and broadcasts m, no process can deliver a value different from m.

(Accuracy) A correct process accuses the source after receiving echoes with distinct values or
an accusation from another process. In both cases, the signature of the source is verified. Correct
processes do not broadcast distinct values, and since a faulty process cannot forge signatures of a
correct one, it follows that distinct values can only come from a faulty source.

(Certitude) In both situations in which a correct process accuses misbehavior, it previously
sends an ACC message to every process in the network containing a pair of distinct values. The
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Algorithm 1: 1-Phase Broadcast Algorithm: code for process pi

Local Variables:
sentecho ← FALSE; \\Indicate if pi has sent ECHO
delivered ← FALSE; \\Indicate if pi has delivered a value
accused ← FALSE; \\Indicate if pi has accused the source
echoes ← [⊥]N ; \\Array of received ECHO messages from others processes

upon invoking broadcast(m): { If pi is the source }
send message [SEND,m] to all pj ∈ Π;

upon receiving a message [SEND,m] from pj:
if(¬sentecho):

sentecho ← TRUE;
send message [ECHO,m] to all pj ∈ Π;

upon receiving a message [ECHO,m] from pj:
echoes[j] ← m;
if(there exists echoes[k] 6=⊥ such that echoes[k] 6= echoes[j]):

m1 ← echoes[j];
m2 ← echoes[k];
send message [ACC,(m1,m2)] to all pj ∈ Π;
accuse (m1,m2);

if(¬sentecho):
sentecho ← TRUE;
send message [ECHO,m] to all pj ∈ Π;

upon receiving a message [ACC,(m1,m2)] from pj:
if(¬accused)
accused ← TRUE;
send message [ACC,(m1,m2)] to all pj ∈ Π;
accuse (m1,m2);

upon receiving ECHO for m from every q ∈ Qi, Qi ∈ Q(pi):
if(¬delivered)
delivered ← TRUE;
deliver m;
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message is then eventually received by every correct process in the network, which accuses the
source as well.

(Validity) When a correct process broadcasts m, it sends [SEND,m] to every process in the
network. Every correct process eventually receives the message and echoes it to every process. If a
correct process has a live quorum Q, it will eventually receive ECHO with m from all the processes
in Q and deliver the value.

(Weak Totality) A correct process p sends an ECHO message to every process after receiving
it if p has not previously echoed a value. Consequently, if some correct process receives an ECHO
message, every correct process eventually does so. If p delivers a value, it must have received at
least one ECHO message, in which case, every correct process eventually receives and echoes a
value. If a correct process q has a live quorum Q, it eventually receives ECHO from all processes in
Q. Two cases are then possible. If all of the ECHO messages received by q contains the same value,
then q delivers it. Otherwise, q accuses misbehavior.

(kmax-Consistency) LetG′
F,S be the graph whose independence number is kmax. By Theorem 10,

the number of distinct values that can be delivered by correct processes in a given execution is
bounded by kmax. As, by definition, kmax is the higher independence number of graphs in GQ,F ,
kmax-consistency is ensured. J

An algorithm implementing k-CRB satisfies the required properties of k-CB, thus, it also
implements k-CB. From Theorem 7, no algorithm can implement k-CB with k < kmax, therefore,
Theorem 11 implies that Algorithm 1 implements k-CB, and consequently k-CRB, with optimal k.
Computing inconsistency parameters. A straightforward approach to find the inconsistency
number of (Q,F) consists in computing the independence number of all graphs GF,S ∈ GQ,F . The
problem of finding the largest independent set in a graph (called maximum independent set), and
consequently its independence number, is the maximum independent set problem [28], known to be
NP-complete [25]. Also, the number of graphs in GQ,F may exponentially grow with the number of
processes. However, as the graphs might have similar structures (for example, the same quorums
for some processes may appear in multiple graphs), in many practical scenarios, we should be able
to avoid redundant calculations and reduce the overall computational costs.

6 Related Work

Assuming synchronous communication, Damgård et al. [11] described protocols implementing
broadcast, verifiable secret sharing and multiparty computation in the decentralized trust setting.
They introduce the notion of aggregate adversary structure A: each node is assigned a collection of
subsets of nodes that the adversary might corrupt at once.

Ripple [27] is arguably the first practical partially synchronous system based on decentralized
trust assumptions. In the Ripple protocol, each participant express its trust assumptions in the
form of an unique node list (UNL), a subset of nodes of the network. In order to accept transactions,
a node needs to "hear" from at least 80% of its UNL, and according to the original white paper [27],
assuming that up to 20% of the nodes in an UNL might be Byzantine, the overlap between every
pair of UNL’s needed to prevent forks was believed to be ≥ 20%. The original protocol description
appeared to be sketchy and informal, and later works detailed the functioning of the protocol and
helped to clarify under which conditions its safety and liveness properties hold [2, 8, 23, 1]. In
particular, it has been spotted [2] that its safety properties can be violated (a fork can happen)
with as little as 20% of UNLs overlap, even if there are no Byzantine nodes. It then establishes an
overlap bound of > 40% to guarantee consistency without Byzantine faults. In a further analysis,
assuming that at most 20% of nodes in the UNLs are Byzantine, [8] suggests an overlap of > 90% in
order to prevent forks, but also provide an example in which the liveness of the protocol is violated
even with 99% of overlap. Recently, a formalization of the algorithm was presented in [1], and a
better analysis of the correctness of the protocol in the light of an atomic broadcast abstraction was
given by Amores-Cesar et al. [1].
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The Stellar consensus protocol [24] introduces the Federated Byzantine Quorum System (FBQS).
A quorum Q in the FQBS is a set that includes a quorum slice (a trusted subset of nodes) for
every node in Q. Correctness of Stellar depends on the individual trust assumptions and are only
guaranteed for nodes in the so called intact set, which is, informally, a set of nodes trusting the "right
guys". García-Pérez and Gotsman [13] formally argue about Stellar consensus, by relating it to
Bracha’s Broadcast Protocol [3], build on top of a FBQS. The analysis has been later extended [14]
to a variant of state-machine replication protocol that allows forks, where disjoint intact sets may
maintain different copies of the system state.

Cachin and Tackmann [6] defined the notion of Asymmetric Quorum Systems, based on
individual adversary structures. They introduced a variant of broadcast whose correctness is
restricted to a guild, a subset of nodes that, similarly to the intact nodes in the Stellar protocol, have
the "right" trust assumptions. Executions with a guild also ensure consistency (correct processes do
not deliver distinct values). In our approach, we relax the consistency property, allowing for more
flexible trust assumptions, while using accountability to ensure correctness for every live correct
process.

In the similar vein, Losa et al. [21], define the quorum system used by Stellar using the notion
of a Personal Byzantine Quorum System (PBQS), where every process chooses its quorums with the
restriction that if Q is a quorum for a process p, then Q includes a quorum for every process q′ ∈ Q.
They show that for any quorum-based algorithm (close to what we call an algorithm satisfying
the Local Progress property), consensus is not achievable in partially synchronous systems where
two processes have quorums not intersecting on a correct process. The paper also determines the
conditions under which a subset of processes can locally maintain safety and liveness, even though
the system might not be globally consistent. We use a similar approach in the context of broadcast,
and in addition to a relaxed consistency guarantee, we also parameterize the level of disagreement
in the network using the individual trust assumptions.

In the context of distributed systems, accountability has been proposed as a mechanism to detect
“observable” deviations of system nodes from the algorithms they are assigned with [17, 16, 18].
Recent proposals [9, 12] focus on application-specific accountability that only heads for detecting
misbehavior that affects correctness of the problem to be solved, e.g., consensus [9] or lattice
agreement [12]. Our k-CRB algorithm generally follows this approach, except that it implements a
relaxed form of broadcast, but detects violations that affect correctness of the stronger, conventional
reliable broadcast [5].

7 Concluding Remarks

In this paper, we address a realistic scenario in which correct processes choose their trust assumptions
in a purely decentralized way. The resulting structure of their trust relations may cause inevitable
violations of consistency properties of conventional broadcast definitions. Our goal is to precisely
quantify this inconsistency by considering relaxed broadcast definitions: k-consistent broadcast and
k-consistent reliable broadcast.

In case the broadcast source is Byzantine, the abstractions allow correct processes to deliver
up to k different values. We show that k, the optimal “measure of inconsistency”, is the highest
independence number over all graphs GF,S in a family GQ,F determined by the given trust assump-
tions (Q,F). We show that this optimal k can be achieved by a k-consistent reliable broadcast
protocol that, in addition to k-consistency also provides a form of accountability: if a correct process
delivers a value, then every live correct process either delivers some value or detects the source to
be Byzantine.

A natural question for the future work is to quantify inconsistency in higher-level abstractions,
such as distributed storage or asset-transfer systems [15, 10] that can be built atop the relaxed
broadcast abstractions. Another interesting direction would be in self-reconfigurable systems [12]:
since we expect the system to admit disagreement, once a Byzantine process is detected, other
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participants may want to update their trust assumptions. It is also extremely appealing to generalize
the very notion of a quorum system to weighted quorums, where the contribution of a quorum
member is proportional to its stake in an asset transfer system [19]. This opens a way towards
permissionless asset transfer systems with relaxed guarantees.
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