Skip to main content

Establishing Clinical Protocols for BCI-Based Motor Rehabilitation in Individuals Post Stroke - The Impact of Feedback Type and Selected Outcome Measures: A Systematic Review

  • Conference paper
  • First Online:
HCI International 2022 - Late Breaking Papers. Multimodality in Advanced Interaction Environments (HCII 2022)

Abstract

Stroke is a major cause of disability resulting in multiple system impairments. Limited extended care resulted in prioritizing high level repetitions of task-specific activities to improve function. One such modality is BCI to drive motor rehabilitation. While several systematic reviews and meta-analyses highlight the benefits of utilizing BCIs to enhance motor recovery, it is still unclear how these interventions facilitate rehabilitation of motor function in individuals post-stroke. This systematic review analyzed outcome measures and type of feedback during BCI interventions to inform future protocol development. Included articles were held to rigorous criteria, and potential studies were assessed for methodological quality using the PEDro Scale. Only articles that scored six or greater were included for analysis, and nine randomized controlled trials were included. In brief, the randomized controlled trials demonstrated that BCI enhanced the motor function of the upper extremity as measured by the FMA UE, however no other consistent outcome measures of function or self-efficacy were reported. EEG and ERD of the affected sensorimotor cortices were significantly enhanced in the BCI groups (pā€‰<ā€‰0.05). For those studies that measured retention of function, long-lasting improvements were noted, and BCI coupled to FES elicited significant, clinically relevant motor recovery. Somatosensory/motor and visual feedback were the most common across reviewed studies. While each of the studies had a wide variety of methods, all the evidence suggested that subjects improved. These findings suggest that the most important concept in protocol development may have been the incorporation of principles of motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sacco, R.L., Kasner, S.E., Broderick, J.P., et al.: An Updated definition of stroke for the 21st century. AHA J. 44(7), 2064ā€“2089 (2013)

    Google ScholarĀ 

  2. Go, A.S., Mozaffarian, D., Roger, V.L., et al. Heart disease and stroke statisticsā€”2013 update: a report from the American Heart Association. PMC 127(1) (2013)

    Google ScholarĀ 

  3. Tsao, C.W., Aday, A.W., Almarzooq, Z.I., et al.: Heart disease and stroke statistics - 2022 update: a report from the American Heart Association. Circulation 145, e153ā€“e639 (2022)

    ArticleĀ  Google ScholarĀ 

  4. Girotra, T., Lekoubou, A., Bishu, K.G., et al.: A contemporary and comprehensive analysis of the costs of stroke in the United States. J. Neurol. Sci. 410, 116643 (2020)

    ArticleĀ  Google ScholarĀ 

  5. Stroke CDC, https://www.cdc.gov/stroke/facts.htm. Accessed 24 Oct 2018

  6. Benjamin, E.J., et al.: Heart disease and stroke statisticsā€”2017 update: a report from the American Heart Association. Circulation 135(10), e146ā€“e603 (2017)

    ArticleĀ  Google ScholarĀ 

  7. Cervera, M.A., et al.: Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neurol. 5, 651ā€“663 (2018)

    ArticleĀ  Google ScholarĀ 

  8. Zhang, X., et al.: Combining mental training and physical training with goal-oriented protocols in stroke rehabilitation: a feasibility case study. Front. Hum. Neurosci. 12, 125 (2018)

    ArticleĀ  Google ScholarĀ 

  9. Mrachacz-Kersting, N., Aliakbaryhosseinabadi, S.: Comparison of the efficacy of a real-time and offline associative brain-computer-interface. Front. Neurosci. 12, 455 (2018)

    ArticleĀ  Google ScholarĀ 

  10. Frolov, A.A., et al.: Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Front. Neurosci. 11 (2017)

    Google ScholarĀ 

  11. Irimia, D.C., et al.: Brainā€computer interfaces with multiā€sensory feedback for stroke rehabilitation: a case study. Artif. Org. 41, E178ā€“E184 (2017)

    Google ScholarĀ 

  12. Kim, T., Kim, S., Lee, B.: Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial. Occup. Ther. Int. 23(1), 39ā€“47 (2016)

    ArticleĀ  Google ScholarĀ 

  13. Pichiorri, F., et al.: Brainā€“computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77, 851ā€“865 (2015)

    ArticleĀ  Google ScholarĀ 

  14. Monge-Pereira, E., et al.: Use of electroencephalography brain-computer interface systems as a rehabilitative approach for upper limb function after a stroke: a systematic review. PMR 9(9), 918ā€“932 (2017)

    Google ScholarĀ 

  15. Cervera, M.A., Soekadar, S.R., Ushiba, J., MillĆ”n, J.d.R., et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neuro. 5, 651ā€“663 (2018)

    Google ScholarĀ 

  16. Carvalho, R., Dias, N., Cerqueira, J.J.: Brain-machine interface of upper limb recovery in stroke patients rehabilitation: a systematic review. Physiother. Res. Int. 24(2), e1764 (2019)

    ArticleĀ  Google ScholarĀ 

  17. Bai, Z., Fong, K.N.K., Zhang, J.J., Chan, J., Ting, K.H. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis. [Meta-Analysis Research Support, Non-U.S. Gov't Systematic Review]. J Neuroeng. Rehabil. 17(1) (2020)

    Google ScholarĀ 

  18. Kruse, A., Suica, Z., Taeymans, J., Schuster-Amft, C.: Effect of brain-computer interface training based on non-invasive electroencephalography using motor imagery on functional recovery after stroke - a systematic review and meta-analysis. BMC Neurol. 20(1) (2020)

    Google ScholarĀ 

  19. Baniqued, P.D.E., et al.: Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. J. Neuroeng. Rehabil. 18(1) (2021)

    Google ScholarĀ 

  20. Camargo-Vargas, D., Callejas-Cuervo, M., Mazzoleni, S.: Brain-computer interfaces systems for upper and lower limb rehabilitation: a systematic review. Sensors 21(13), 4312 (2021)

    ArticleĀ  Google ScholarĀ 

  21. Mansour, S., Ang, K.K., Nair, K.P.S., Phua, K.S., Arvaneh, M.: Efficacy of brain-computer interface and the impact of its design characteristics on poststroke upper-limb rehabilitation: a systematic review and meta-analysis of randomized controlled trials. Clin. EEG Neurosci. 53(1), 79ā€“90 (2022)

    ArticleĀ  Google ScholarĀ 

  22. Yang, W., Zhang, X., Li, Z., Zhang, Q., Xue, C., Huai, Y.: The effect of brain-computer interface training on rehabilitation of upper limb dysfunction after stroke: a meta-analysis of randomized controlled trials. Front. Neurosci. 15, 766ā€“879 (2022)

    ArticleĀ  Google ScholarĀ 

  23. Horowitz, A.J., Guger, C., Korostenskaja, M. What external variables affect sensorimotor rhythm brain-computer interface (SMR-BCI) performance? HCA Healthc. J. Med. 2(3) (2021)

    Google ScholarĀ 

  24. Clark, E., et al.: Brain-computer interface for motor rehabilitation. In: Stephanidis, C. (ed.) HCII 2019. CCIS, vol. 1032, pp. 243ā€“254. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23522-2_31

    ChapterĀ  Google ScholarĀ 

  25. Fugl-Meyer, A.R., Jaasko, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13ā€“31 (1975)

    Google ScholarĀ 

  26. Physiotherapy Evidence Database. https://pedro.org.au/english/summary-of-measurement-properties-of-the-pedro-scale/. Accessed 20 May 2022

  27. Cashin, A.G., et al.: Measurement properties of the PEDro scale (2020): clinimetrics: physiotherapy evidence database (PEDro) scale. J. Physiother. 66(1), 59 (2020)

    ArticleĀ  Google ScholarĀ 

  28. Maher, C.G., et al.: Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 83(8), 713ā€“721 (2003)

    ArticleĀ  Google ScholarĀ 

  29. Moseley, A.M., et al.: Agreement between the Cochrane risk of bias tool and physiotherapy evidence database (PEDro) scale: a meta-epidemiological study of randomized controlled trials of physical therapy interventions. PLoS ONE 14(9), e0222770 (2019)

    ArticleĀ  Google ScholarĀ 

  30. Biasiucci, A., Leeb, R., Iturrate, I., et al.: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9(1) (2018)

    Google ScholarĀ 

  31. Cantillo-Negrete, J., et al.: Brain-computer interface coupled to a robotic hand orthosis for stroke patientsā€™ neurorehabilitation: a crossover feasibility study. Front. Hum. Neurosci. 15, 656ā€“975 (2021)

    ArticleĀ  Google ScholarĀ 

  32. Chen, S., et al.: Longitudinal electroencephalography analysis in subacute stroke patients during intervention of brain-computer interface with exoskeleton feedback. Front. Neurosci.14 (2020)

    Google ScholarĀ 

  33. Chew, E., et al.: Using transcranial direct current stimulation to augment the effect of motor imagery-assisted brain-computer interface training in chronic stroke patients-cortical reorganization considerations. Front. Neurol. 11 (2020)

    Google ScholarĀ 

  34. Hu, Y.Q., et al.: Motor imagery-based brain-computer interface combined with multimodal feedback to promote upper limb motor function after stroke: a preliminary study. Evid. Based Complement. Alternat. Med. 3 (2021)

    Google ScholarĀ 

  35. Li, M., Liu, Y., Wu, Y., Liu, S., Jia, J., Zhang, L.: Neurophysiological substrates of stroke patients with motor imagery based brain-computer interface training. Int. J. Neurosci. 124, 403ā€“415 (2014)

    ArticleĀ  Google ScholarĀ 

  36. Li, X., et al.: Sensorimotor rhythm-brain computer interface with audio-cue, motor observation and multisensory feedback for upper-limb stroke rehabilitation: a controlled study. Front. Neurosci. 16 (2021)

    Google ScholarĀ 

  37. Ramos-Murguialday, A., Broetz, D., Rea, M., et al.: Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74(1), 100ā€“108 (2013)

    ArticleĀ  Google ScholarĀ 

  38. Furlan, L., Sterr, A.: The applicability of standard error of measurement and minimum detectable change to motor learning research - a behavior study. Front. Hum. Neurosci. 12 (2018)

    Google ScholarĀ 

  39. Portney, L.G., Watkins, M.P.: Foundations of Clinical Research: Applications to Practice, 3rd edn. Pearson/Prentice Hall, Upper Saddle River (2009)

    Google ScholarĀ 

  40. Moore, J.L., et al.: A core set of outcome measures for adults with neurologic conditions undergoing rehabilitation. A clinical practice guideline. J. Neurol. Phys. Therapy 42, 74ā€“220 (2018)

    Google ScholarĀ 

  41. Salter, K., Jutai, J.W., Teasell, R., Foley, N.C., Bitensky, J., Bayley, J.: Issues for selection of outcome measures in stroke rehabilitation: ICF activity. Disabil. Rehabil. 27(6), 315ā€“340 (2015)

    ArticleĀ  Google ScholarĀ 

  42. Pichiorri, F., Fallani, F.D.V., Cincotti, F., Babiloni, F., Molinari, M., et al.: Sensorimotor rhythm-based brainā€“computer interface training: the impact on motor cortical responsiveness. J. Neural. Eng. 8, 025020 (2011)

    ArticleĀ  Google ScholarĀ 

  43. Angulo-Sherman, I.N., Gutierrez, D.: A link between the increase in electroencephalographic coherence and performance improvement in operating a brain-computer interface. Comput. Intell. Neurosci. 2015, 824175 (2015)

    ArticleĀ  Google ScholarĀ 

  44. Darvishi, S., Gharabaghi, A., Boulay, C.B., Ridding, M.C., Abbott, D., Baumert, M.: Proprioceptive feedback facilitates motor imagery-related operant learning of sensorimotor beta-band modulation. Front. Neurosci. 11, 60 (2017)

    ArticleĀ  Google ScholarĀ 

  45. Vukelic, M., Gharabaghi, A.: Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. Neuroimage 111, 1ā€“11 (2015)

    ArticleĀ  Google ScholarĀ 

  46. McCreadie, K.A., Coyle, D.H., Prasad, G.: Learning to modulate sensorimotor rhythms with stereo auditory feedback for a brain-computer interface. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference 2012, pp. 6711ā€“6714 (2012)

    Google ScholarĀ 

  47. Kleim, J.A., Jones, T.A.: Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51, S225ā€“S239 (2008)

    Google ScholarĀ 

  48. Clark, E, et al.: Computer Interface for Motor Rehabilitation. In: Stephanidis, C. (eds) HCI International 2019 - Posters. HCII 2019. Communications in Computer and Information Science, vol. 1032. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23522-2_31

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Korostenskaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clark, E., Czaplewski, A., Nguyen, K., Pasciucco, P., Rios, M., Korostenskaja, M. (2022). Establishing Clinical Protocols for BCI-Based Motor Rehabilitation in Individuals Post Stroke - The Impact of Feedback Type and Selected Outcome Measures: A Systematic Review. In: Kurosu, M., et al. HCI International 2022 - Late Breaking Papers. Multimodality in Advanced Interaction Environments. HCII 2022. Lecture Notes in Computer Science, vol 13519. Springer, Cham. https://doi.org/10.1007/978-3-031-17618-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17618-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17617-3

  • Online ISBN: 978-3-031-17618-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics