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Abstract. This paper introduces and studies a new model of com-
putation called an Alternating Automatic Register Machine (AARM).
An AARM possesses the basic features of a conventional register ma-
chine and an alternating Turing machine, but can carry out computa-
tions using bounded automatic relations in a single step. One finding
is that an AARM can recognise some NP-complete problems, including
CNF-SAT (using a particular coding), in log∗ n + O(1) steps. On the
other hand, if all problems in P can be solved by an AARM in O(log∗ n)
rounds, then P ⊂ PSPACE.
Furthermore, we study an even more computationally powerful machine,
called a Polynomial-Size Padded Alternating Automatic Register Ma-
chine (PAARM), which allows the input to be padded with a polynomial-
size string. It is shown that the polynomial hierarchy can be characterised
as the languages that are recognised by a PAARM in log∗ n+O(1) steps.
These results illustrate the power of alternation when combined with
computations involving automatic relations, and uncover a finer grada-
tion between known complexity classes.

Keywords: Theory of Computation · Computational Complexity · Au-
tomatic Relation · Register Machine · Nondeterministic Complexity ·
Alternating Complexity · Measures of Computation Time

1 Introduction

Automatic structures generalise the notion of regularity for languages to other
mathematical objects such as functions, relations and groups, and were discov-
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ered independently by Hodgson [14,15], Khoussainov and Nerode [18] as well as
Blumensath and Grädel [2,3]. One of the original motivations for studying auto-
maticity in general structures came from computable structure theory, in partic-
ular the problem of classifying the isomorphism types of computable structures
and identifying isomorphism invariants. In computer science, automatic struc-
tures arise in the area of infinite state model checking; for example, Regular
Model Checking, a symbolic framework for modelling and verifying infinite-state
systems, can be expressed in Existential Second-Order Logic over automatic
structures [23]. Although finite-state transducers are a somewhat more popu-
lar extension of ordinary finite-state automata for defining relations between
sets of strings, there are several advantages of working with automatic relations,
including the following: (1) in general, automatic relations enjoy better decid-
ability properties than finite-state transducers; for example, equivalence between
ordinary automata is decidable while this is not so for finite-state transducers;
(2) automatic relations are closed under first-order definability [15,17,18] while
finite-state transducers are not closed under certain simple operations such as
intersection and complementation.

In this paper, we introduce a new model of computation, called an Alternat-
ing Automatic Register Machine (AARM), that is analogous to an alternating
Turing machine but may incorporate bounded automatic relations4 into each
computation step. The main motivation is to try to discover new interesting
complexity classes defined via machines where automatic relations are taken as
primitive steps, and use them to understand relationships between fundamental
complexity classes such as P, PSPACE and NP. More powerful computational
models are often obtained by giving the computing device more workspace or
by allowing non-deterministic or alternating computations, where alternation is
a well-known generalisation of non-determinism. We take up both approaches in
this work, extending the notion of alternation to automatic relation computa-
tions. An AARM is similar to a conventional register machine in that it consists
of a register R containing a string over a fixed alphabet at any point in time, and
the contents of R may be updated in response to instructions. One novel feature
of an AARM is that the contents of the register can be non-deterministically
updated using an automatic relation. Specifically, an instruction J is an auto-
matic relation. Executing the instruction, when the content of the register R is
r, means that the contents of R is updated to any x in {x : (x, r) ∈ J}; if there
is no such x, then the program halts. Each AARM contains two finite classes,
denoted here as A and B, of instructions; during a computation, instructions are
selected alternately from A and B and executed.

To further explain how a computation of an AARM is carried out, we first
recall the notion of an alternating Turing machine as formulated by Chandra,
Kozen and Stockmeyer [8]. As mentioned earlier, alternation is a generalisation

4 Here an update relation is bounded if there is a constant such that each possible
output is at most that constant longer than the longest input parameter; see Section
2. Since we mainly consider bounded automatic relations in this paper, such relations
will occasionally be called “automatic relations”.
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of non-determinism, and it is useful for understanding the relationships between
various complexity classes such as those in the polynomial hierarchy (PH). The
computation of an alternating Turing machine can be viewed as a game in which
two players – Anke and Boris – make moves (not necessarily strictly alternat-
ing) beginning in the start configuration of the machine with a given input
w [11]. Anke moves from existential configurations (configurations with an ex-
istential state), and Boris from universal configurations (configurations with a
universal state) to successor configurations according to the machine’s transition
function. Anke wins if, after a finite number of moves, an accepting configura-
tion is reached. The input w is then accepted by the machine iff Anke has a
winning strategy. Our definition of an AARM computation is inspired by this
game-theoretic interpretation of alternating Turing machines. Given an input w,
which is the string in R at the start of the computation, Anke and Boris move
in alternating turns, with Anke moving first. During Anke’s turn, she carries out
any single instruction in the predefined set A, possibly changing the contents of
the register. Boris moves similarly during his turn, except that he carries out
an instruction in B. Anke wins if a configuration is reached such that Boris is
no longer able to carry out any instructions in B, and w is accepted iff Anke
has a winning strategy. We also introduce and study Polynomial-Size Padded
Bounded Alternating Automatic Register Machines (PAARMs), which allow a
polynomial-size padding to the input of an AARM.

The idea of defining computing devices capable of performing single-step
operations that are more sophisticated than the basic operations of Turing ma-
chines is not new. For example, Floyd and Knuth [10] studied addition machines,
which are finite register machines that can carry out addition, subtraction and
comparison as primitive steps. Unlimited register machines, introduced by Shep-
herdson and Sturgis [24], can copy the number in a register to any register
in a single step. Bordihn, Fernau, Holzer, Manca and Martín-Vide [4] investi-
gated another kind of language generating device called an iterated sequential
transducer, whose complexity is usually measured by its number of states (or
state complexity). More recently, Kutrib, Malcher, Mereghetti and Palano [19]
proposed a variant of an iterated sequential transducer that performs length-
preserving transductions on left-to-right sweeps. Automatic relations are more
expressive than arithmetic operations such as addition or subtraction, and yet
they are not too complex in that even one-tape linear-time Turing machines are
computationally more powerful; for instance, the function that erases all leading
0’s in any given binary word can be computed by a one-tape Turing machine
in linear time but it is not automatic [26]. Despite the computational limits
of automatic relations, we show in Theorem 11 below that the NP-complete
Boolean satisfiability problem can be recognised by an AARM in log∗ n+O(1)
steps, where n is the length of the formula. The results not only show a proof-
of-concept for the use of automatic relations in models of computation, but also
shed new light on the relationships between known complexity classes.
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2 Preliminaries

Let Σ denote a finite alphabet. We consider set operations including union (∪),
concatenation (·), Kleene star (∗), intersection (∩) and complement (¬). Let Σ∗

denote the set of all strings over Σ. A language is a set of strings. Let the empty
string be denoted by ε. For a string w ∈ Σ∗, let |w| denote the length of w
and w = w1w2...w|w| where wi ∈ Σ denotes the i-th symbol of w. Fix a special
symbol # not in Σ. Let x, y ∈ Σ∗ such that x = x1x2 . . . xm and y = y1y2 . . . yn.
Let x′ = x′

1x
′
2 . . . x

′
r and y′ = y′1y

′
2 . . . y

′
r where r = max(m,n), x′

i = xi if i ≤ m
else #, and y′i = yi if i ≤ n else #. Then, the convolution of x and y is a string
over (Σ ∪ {#})× (Σ ∪ {#}), defined as conv(x, y) = (x′

1, y
′
1)(x

′
2, y

′
2) . . . (x

′
r, y

′
r).

A relation J ⊆ X × Y is automatic if the set {conv(x, y) : (x, y) ∈ J} is regular,
where the alphabet is (Σ ∪ {#})× (Σ ∪ {#}). Likewise, a function f : X → Y
is automatic if the relation {(x, y) : x ∈ domain(f) ∧ y = f(x)} is automatic
[27]. An automatic relation J is bounded if ∃ constant c such that ∀(x, y) ∈
J, abs(|y|−|x|) ≤ c. On the other hand, an unbounded automatic relation has no
such restriction. The problem of determining satisfiability of any given Boolean
formula in conjunctive normal form will be denoted by CNF-SAT. Automatic
functions and relations have a particularly nice feature as shown in the following
theorem.

Theorem 1 ([15,18]). Every function or relation which is first-order definable
from a finite number of automatic functions and relations is automatic, and the
corresponding automaton can be effectively computed from the given automata.

3 Alternating Automatic Register Machines

An Alternating Automatic Register Machine (AARM) consists of a register R and
two finite sets A and B of instructions. A and B are not necessarily disjoint. For-
mally, we denote an AARM by M and represent it as a quadruple (Γ,Σ,A,B).
(An equivalent model may allow for multiple registers.) At any point in time,
the register contains a string, possibly empty, over a fixed alphabet Γ called the
register alphabet. The current string in R is denoted by r. Initially, R contains
an input string over Σ, an input alphabet with Σ ⊆ Γ . Strings over Σ will some-
times be called words. The contents of the register may be changed in response
to an instruction. An instruction J ⊆ Γ ∗ × Γ ∗ is a bounded automatic relation;
this changes the contents of R to some x such that (r, x) ∈ J (if such an x
exists). The instructions in A and B are labelled I1, I2, . . . , (in no particular
order and not necessarily distinct). A configuration is a triple (ℓ, r, w), where
Iℓ is the current instruction’s label and r, w ∈ Γ ∗. Instructions are generally
nondeterministic, that is, there may be more than one way in which the string
in R is changed from a given configuration in response to an instruction. A com-
putation history of an AARM with input w for any w ∈ Σ∗ is a finite or infinite
sequence c1, c2, c3, . . . of configurations such that the following conditions hold.
Let ci = (ℓi, ri, wi) for all i.



Alternating Automatic Register Machines 5

– r1 = w. We call c1 the initial configuration of the computation history.

– For all i, (ri, wi) ∈ Iℓi . This means that Iℓi can be carried out using the
current register contents, changing the contents of R to wi.

– Instructions executed at odd terms of the sequence belong to A, while those
executed at even terms belong to B:

Iℓi ∈
{

A if i is odd;
B if i is even.

– If ci+1 is defined, then ri+1 = wi. In other words, the contents of R are (non-
deterministically) updated according to the instruction and register contents
of the previous configuration.

– Suppose i is odd (resp. even) and ci = (Iℓi , ri, wi) is defined. If there is some
Iℓ ∈ B (resp. Iℓ ∈ A) with {x : (wi, x) ∈ Iℓ} nonempty, then ci+1 is defined.
In other words, the computation continues so long as it is possible to execute
an instruction from the appropriate set, either A or B, at the current term.

We interpret a computation history of an AARM as a sequential game between
two players, Anke and Boris, where Anke moves during odd turns and Boris
moves during even turns. During Anke’s turn, she must pick some instruction J
from A such that {x : (r, x) ∈ J} is nonempty and select some w ∈ {x : (r, x) ∈
J}; if no such instruction exists, then the game terminates. The contents of R
are then changed to w at the start of the next turn. The moving rules for Boris
are defined analogously, except that he must pick instructions only from B. Anke
wins if the game terminates after a finite number of turns and she is the last
player to execute an instruction; in other words, Boris is no longer able to carry
out an instruction in B and the length of the game (or computation history),
measured by the total number of turns up to and including the last turn, is odd.
The condition for Boris to win is defined symmetrically. A draw game is one such
that no player wins in finitely many turns, that is, the game runs forever. The
AARM accepts a word w if Anke can move in such a way that she will always
win a game with an initial configuration (ℓ, w, v) for some Iℓ ∈ A and v ∈ Γ ∗,
regardless of how Boris moves. To state this acceptance condition more formally,
one could define Anke’s and Boris’ strategies to be functions A and B respectively
with A : (N×Γ ∗×Γ ∗)∗×Γ ∗ 7→ A×Γ ∗ and B : (N×Γ ∗×Γ ∗)∗×Γ ∗ 7→ B×Γ ∗,
which map each segment of a computation history together with the current
contents of R to a pair specifying an instruction as well as the new contents of
R at the start of the next round according to the moving rules given earlier.
The AARM accepts w if there is an A such that for every B, there is a finite
computation history 〈c1, . . . , c2n+1〉 where

– ci = (ℓi, ri, wi) for each i,

– r1 = w,

– A((〈ci : i < 2j + 1〉, r2j+1)) = (Iℓ2j+1
, w2j+1) for each j ∈ {0, . . . , n},

– B((〈ci : i < 2k〉, r2k)) = (Iℓ2k , w2k) for each k ∈ {1, . . . , n};
– there is no move for B in c2n+1, that is no instruction in B contains a pair

of the form (w2n+1, ·).
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Here 〈ci : i < k〉 denotes the sequence 〈c1, . . . , ck−1〉, which is empty if k ≤ 1.
Such an A is called a winning strategy for Anke with respect to (M,w). Given
a winning strategy A for Anke with respect to (M,w) and any strategy B, the
corresponding computation history of M with input w is unique and will be
denoted by H(A,B,M,w). In most subsequent proofs, A and B will generally
not be defined so formally. Set

L(M) := {w ∈ Σ∗ : M accepts w};

one says that M recognises L(M). Note that even though we have given the
description of AARM via alternation of moves by Anke and Boris, it is possible
to define games where strict alternation is not needed. Furthermore, a constant
amount of extra state information can be stored in the register.

Definition 2 (Alternating Automatic Register Machine Complexity).
Let M = (Γ,Σ,A,B) be an AARM and let t ∈ N0. For each w ∈ Σ∗, M accepts
w in time t if Anke has a winning strategy A with respect to (M,w) such that
for any strategy B played by Boris, the length of H(A,B,M,w) is not more than
t. (As defined earlier, H(A,B,M,w) is the computation history of M with input
w when A and B are applied.)

An AARM decides a language L in f(n) steps for a function f depending
on the length n of the input if for all x ∈ {0, 1}n, both players can enforce that
the game terminates within f(n) steps by playing optimally and one player has
a winning strategy needing at most f(n) moves and x ∈ L if Anke is the player
with the winning strategy. AAL[f(n)] denotes the family of languages decided by
AARMs that decide in time f(n).

We begin with several examples to illustrate AARMs and how they carry out
computations.

Example 3. 1. If A and B are both empty, then every computation history of
the corresponding AARM is empty; thus the AARM does not accept any
input.

2. Suppose Γ = {0, 1}. Let A consist of the single instruction I1 which consists
of all pairs (y, x) ∈ Γ ∗ × Γ ∗ with x = y, and suppose B is empty. It is easy
to see that I1 is an automatic relation. Since {x : (v, x) ∈ I1} is nonempty
for any v and B is empty, it follows that every computation history with any
input w always ends at the initial configuration (1, w, w). The corresponding
AARM thus accepts any binary word.

3. Suppose Γ = {0, 1,
•
0,

•
1,�,⋆}.

•
i is a “marked” version of i for i ∈ {0, 1};

� is a special symbol indicating a rejection of the input, while ⋆ indicates
an acceptance of the input. Let A consist of the instructions I1 and I2.

I1 ⊆ {0, 1,
•
0,

•
1}∗ × {0, 1,

•
0,

•
1}∗ is the relation containing all pairs (y, x) such

that y ∈ {0,
•
0}∗ ·{1,

•
1}∗ and x is the string obtained from y by marking every

alternate unmarked 0 starting with the first unmarked 0 as well as every
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alternate unmarked 1 starting with the first unmarked 1, while leaving other

symbols unchanged. For example, (00011,
•
00

•
0
•
11) ∈ I1, (

•
00

•
0
•
11×

•
00

•
0
•
1
•
1) /∈ I1.

I2 ⊆ {
•
0,

•
1,⋆}∗ × Γ ∗ contains all pairs (y, x) such that y does not have any

unmarked 0’s or 1’s and x = y ·⋆.

Let B consist of the instruction I3, where I3 ⊆ {0, 1,
•
0,

•
1}∗×Γ ∗ is the relation

containing all pairs (y, x) such that x = y ·� if the total number of unmarked
0’s and 1’s in y is odd and x = y otherwise. One can show as before that
I1, I2 and I3 are automatic. Let w ∈ {0, 1}∗ be any given input. If 0 occurs
to the right of some 1 in w, then each computation history with input w
is empty, so the AARM does not accept w. If w is of the shape 0n1m with
n 6= m, then, after an odd number of turns, the total number of unmarked
0’s or 1’s will be odd, and executing I3 from B during the next turn will
result in R containing a string with the symbol �. No instructions in A can
subsequently be carried out. If w is of the shape 0n1n, then eventually all
the symbols in w will be marked and I2 can be carried out, resulting in R
containing a string with the symbol ⋆. No instructions in B can then be
executed. The corresponding AARM thus accepts the language of all binary
words of the shape 0n1n.

We first establish the closure of AAL[O(f(n))] under the usual set-theoretic
Boolean operations as well as the regular operations.

Theorem 4. Let ⋆ denote any one of the operations union, intersection and
concatenation. For each L1 ∈ AAL[O(f(n))] and each L2 ∈ AAL[g(n)], L1⋆L2 ∈
AAL[max{f(n), g(n)}] and L∗

1 ∈ AAL[O(f(n))]. In particular, the languages in
AAL[O(f(n))] are closed under union, intersection, concatenation and Kleene
star.

Proof. Suppose L1 ∈ AAL[f(n)] and L2 ∈ AAL[g(n)]. Let M1 = (Γ,Σ,A,B)
and M2 = (Γ ′, Σ,A′, B′) be AARMs such that L1 = L(M1), L2 = L(M2) and
M1 and M2 recognise in times f(n) and g(n) respectively. We provide the formal
details for constructing an AARM M3 = (Γ ′′, Σ,A′′, B′′) recognising L1 ∪L2 in
time max{f(n), g(n)}, and give informal descriptions of the AARMs for the other
operations.

– The components of M3 are defined as follows. Suppose ⊞ /∈ Γ ∪ Γ ′ and
♦ /∈ Γ ∪ Γ ′.

(i) Γ ′′ = Γ ∪ Γ ′ ∪ {⊞,♦}.
(ii) Let J (resp. J ′) be the relation consisting of all pairs (x,⊞x) (resp. (x,

♦x)) with x ∈ Σ∗ and put J (resp. J ′) into A′′.

(iii) Let K (resp. K ′) be the relation consisting of all pairs (x,⊞x, ) (resp. (x,
♦x)) with x ∈ ⊞ ·Σ∗ (resp. x ∈ ♦ ·Σ∗) and put K (resp. K ′) into B′′.

(iv) For every instruction L in A (resp. B), let L′ be the relation such that
(⊞ ⊞ y,⊞⊞ x) ∈ L′ ⇔ (y, x) ∈ L, and put L′ into A′′ (resp. B′′).
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(v) For every instruction L in A′ (resp. B′), let L′ be the relation such that
(♦♦y,♦♦x) ∈ L′ ⇔ (y, x) ∈ L, and put L′ into A′′ (resp. B′′).

Given any w ∈ L1∪L2, a winning strategy for Anke with respect to (M3, w) is
as follows. At the start of the game, Anke determines whether w ∈ L1 or w ∈
L2 (if w ∈ L1∩L2, then Anke can just follow the subsequent steps for the case
w ∈ L1). Assume w ∈ L1. The first move of Anke is to change the contents
of R from w to ⊞w using one of the instructions defined in (ii). During
the second turn, the only move Boris can make is to change the current
contents of R by prepending it with ⊞, using one of the instructions defined
in (iii). The third turn starts with ⊞⊞w in R. Anke then adapts a winning
strategy with respect to (M1, w), using the instructions defined in (iv); the
only difference between the current strategy and that for (M1, w) is that the
current one applies to the register’s contents prepended with ⊞⊞. From the
third turn onwards, Anke and Boris can only apply instructions defined in
(iv) and so the game would proceed as in a computation history of M1 with
input w (except that the register’s contents are prepended with ⊞⊞). In the
case that w ∈ L2, Anke proceeds similarly, except that the third turn starts
with ♦♦w in R and she would adapt a winning strategy with respect to
(M2, w). In either case, the length of the game is O(max{f(|w|), g(|w|)}) +
2 = O(max{f(|w|), g(|w|)}).
Suppose w /∈ L1∪L2. If R contains ⊞⊞w (resp. ♦♦w) at the start of the third
turn, then the game would proceed in a way similar to that of a computation
history of M1(resp. M2) with input w, that is, either it terminates with Boris
making the last move or it never terminates. Therefore L(M3) = L1 ∪ L2

and M3 recognises in time O(max{f(n), g(n)}).
– For L1 ∩ L2, a technique similar to that in (i) can be applied. A′′ will have

an instruction allowing Anke to skip the first turn and B′′ will have an
instruction allowing Boris in the second turn to “pick” L1 or L2 (say by
prepending the input with a special symbol). If Boris picks L1, then the
remainder of the game would proceed as in a computation history of M1

with input w; otherwise, it proceeds as in a computation history of M2 with
input w.

– For L1 ·L2, Anke would first mark a splitting point in the input, then Boris
will pick which side he wants to verify.

– For L∗
1, Anke would first mark all splitting points, then Boris will pick a

single string he wants to verify.

We now show that the family of all languages recognised by some AARM coin-
cides with the family of all recursively enumerable (r.e.) languages. First, it is
shown that any conventional register machine can be simulated with an AARM.
We use a slight variant of Shepherdson and Sturgis’ [24] unlimited register ma-
chine.
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Proposition 5. Consider any register machine M ′ with n registers R1, . . . , Rn

and a program consisting of a sequence I1, . . . , Ik of instructions, each taking
one of the following forms:

– R+ → I ′, which adds 1 to the contents of register R and jumps to instruction
I ′;

– R− → I ′, I ′′, which subtracts 1 from the contents of register R and jumps to
instruction I ′ if the current number in R is positive, else jumps to instruction
I ′′;

– HALT, which stops any further instructions from being carried out.

The contents of the registers at any point in time are binary strings, each repre-
senting a natural number. Then there is an AARM M such that for each binary
word w, M accepts w iff M ′ halts when R1 initially contains w and Ri initially
contains 0 for each i > 1.

Proof. For any natural number k, let string(k) denote the binary representation
of k. Let M be an AARM with register R and instruction sets A and B. Let
Γ = {0, 1,#,⋆}. R will simulate the current instruction being read by M ′ as
well as the current contents of R1, . . . , Rn; each of these simulated items will be
separated with the symbol #. Suppose R1 initially contains w and Ri initially
contains 0 for each i > 1. We may assume without loss of generality that w 6= ε
and R initially contains the string

string(1)#w#0# . . .#0,

which contains n occurrences of #. For each Ii, A will contain a corresponding
instruction I ′i defined according to the following case distinction:

Ii := R+
j → Ik: Let I ′i be the relation consisting of all pairs (y, x) such that y

is of the form string(i)#string(i1)#string(i2)# . . .#string(in) and x equals
string(k)#string(i1)# . . . #string(ij + 1)# . . .#string(in). This instruction
simulates, when running M ′, the addition of 1 to Rj and the jump from Ii
to Ik.

Ii := R−
j → Ik, Iℓ: Let I ′i be the relation consisting of all pairs (y, x) such that

y is of the form string(i)#string(i1)#string(i2)# . . .#string(in); if y is of
this form, then ij = 0 implies x equals string(ℓ)#string(i1)# . . .#string(in),
that is, only the first segment is changed and it becomes string(ℓ), and ij > 0
implies x equals string(k)#string(i1)# . . . string(ij − 1)# . . .#string(in),
that is, the first segment is changed to string(k) and the (j + 1)-st segment
is changed to string(ij −1). If Rj currently contains a positive number, then
I ′i simulates the subtraction of 1 from the number currently in Rj and the
jump from Ii to Ik; otherwise, I ′i simulates the jump from Ii to Iℓ.

Ii := HALT: Let I ′i be the relation consisting of all pairs (y, x) such that y
is of the form string(i)#string(i1)#string(i2)# . . .#string(in) and x equals
⋆|y|. I ′i changes the contents of R to a nonempty string over {⋆}, signalling
that M ′ has halted.
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B consists of the single instruction R′ ∈ {x : (R′, x) ∈ N}, where N ⊆
(Γ \ {⋆})∗ × Γ ∗ is the relation consisting of all pairs (y, x) such that x = y.
Suppose M ′ eventually halts when R1 initially contains w and Ri contains 0 for
each i > 1. Anke carries out instruction I ′i whenever Ii applies to M ′, starting
with i = 1. Boris can only carry out one instruction, which leaves the contents
of R′ unchanged. M ′ halts only when some Ii := HALT is applied; Anke then
applies I ′i , which changes the contents of R′ to a nonempty string over {⋆}.
Since Boris cannot execute any instruction when R′ contains a string with an
occurrence of ⋆, the game will always end with Anke. On the other hand, if M ′

never halts, then the contents of R′ will never change to a string containing ⋆

and so Boris can always keep the game going. Thus M accepts w iff M ′ halts.

It remains to show that an AARM recognises only r.e. languages. The proof of
this fact relies on the boundedness assumption for automatic relations used in
register updates of an AARM.

Proposition 6. For each AARM M , L(M) is r.e.

Proof. Suppose w is given as an input to M . The family of all computation
histories of M with input w may be viewed as a tree τ consisting of a root node
(0, ε, ε) and all possible configurations (each represented as a node) of such a
computation history. Each maximal path in τ starting with the root node is a
concatenation of the root node and a computation history of M with input w.
Owing to the boundedness of all automatic relations used in the instructions of
M , τ is finitely branching. Suppose Anke has a winning strategy with respect
to (M,w). Consider the subtree τ ′ of all computation histories prepended with
the root node (0, ε, ε) such that Anke always moves according to a fixed winning
strategy. If τ ′ were infinite, then by König’s lemma, τ ′ would have an infinite
branch and Boris would win the game represented by this branch, contradicting
the assumption that Anke is applying a winning strategy. Thus there is some d
such that all computation histories when Anke is applying a winning strategy
have length at most d. An algorithm can guess the value of d and, by Theorem
1, determine recursively that Boris can no longer make a valid move when the
length of the game has reached d no matter how he plays, and accept w. On
the other hand, if Anke does not have a winning strategy, then no such d exists
and so the algorithm would never accept w. Such an algorithm would therefore
recognise the set of all words for which Anke has a winning strategy.

Propositions 5 and 6 together imply the desired result.

Theorem 7. The family of languages recognised by AARMs is precisely the fam-
ily of r.e. languages.

We recall that an alternating Turing machine that decides in O(f(n)) time can be
simulated by a deterministic Turing machine using O(f(n)) space. The following
theorem gives a similar connection between the time complexity of AARMs and
the space complexity of deterministic Turing machines.
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Theorem 8. For any f such that f(n) ≥ n, AAL[O(f(n))] ⊆ DSPACE[O((n+
f(n))f(n))] = DSPACE[O(f(n)2)].

Proof. Given an AARM M , there is a constant c such that each register update
by an automatic relation used to define an instruction of M increases the length
of the register’s contents by at most c. Thus, after O(f(n)) steps, the length
of the register’s contents is O(n + f(n)). As implied by [7, Theorem 2.4], each
computation of an automatic relation with an input of length O(n + f(n)) can
be simulated by a nondeterministic Turing machine in O(n + f(n)) steps; this
machine can then be converted to a deterministic space O(n + f(n)) Turing
machine. If M accepts an input w, then there are O(f(n)) register updates by
automatic relations when Anke applies a winning strategy, and so there is a
deterministic Turing machine simulating M ’s computation with input w using
space O((n+ f(n))f(n)).

As a consequence, one obtains the following analogue of the equality between
AP (classes of languages that are decided by alternating polynomial time) and
PSPACE.

Corollary 9.
⋃

k AAL[O(nk)] = PSPACE.

Proof. The containment relation AAL[O(f(n))] ⊆ DSPACE[O((n+ f(n))f(n))]
in Theorem 8 holds whether or not the condition f(n) ≥ n holds. Furthermore,
the computation of an alternating Turing machine can be simulated using an
AARM, where the transitions from existential (respectively, universal) states cor-
respond to the instructions for Anke (respectively, Boris), and each computation
step of the alternating Turing machine corresponds to a move by either player.
Therefore PSPACE, which is equal to AP, is contained in

⋃

k AAL[nk].

We come next to a somewhat surprising result: an AARM-program can recognise
3SAT using just log∗ n+O(1) steps. To prove the theorem, we give the following
lemma, which illustrates most of the power of AARMs.

Lemma 10 (Log-Star Lemma). Let u, v ∈ Σ∗. Let #, $ 6∈ Σ. Then both
languages {u′$v′ : u′ ∈ #∗u#∗, v′ ∈ #∗v#∗ and u = v} and {u′$v′ : u′ ∈
#∗u#∗, v′ ∈ #∗v#∗ and u 6= v} are in AAL[log∗ n+O(1)].

The Log-Star Lemma essentially states that a comparison of two substrings
can be done by an AARM in log∗ n + O(1) time. This is done by ignoring the
unnecessary symbols in the register by replacing them with #’s and adding a
separator ($) between the two strings.

Proof. We now prove the Log-Star Lemma. The algorithm below recursively
reduces the problem to smaller sizes of u, v in constant number of steps (the
maximum of the length of u, v is reduced logarithmically in constant number of
steps). For the base case, if size of u or v is bounded by a constant, then clearly
both languages can be recognized in one step.
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For larger size u, v, the algorithm/protocol works as follows. For ease of
explanation, suppose Anke is trying to show that u = v (case of Anke showing
u 6= v will be similar). Given input s = u′$v′, player Anke will try to give each
symbol except $’s a mark ∈ {0, 1, 2, 3} as follows:

1. For each # in u′ and v′, the mark of 3 will be given.
2. For the contiguous symbols of u, starting from the first symbol, the following

infinite marking will be given (whitespaces are for the ease of readability and
not part of marking):

20 21 200 201 210 211 2000 2001 2010 2011 2100 2101 2110 2111 20000 · · ·

Namely, a series of blocks of string in ascending length-lexicographical order.
Let T be the so defined infinite sequence. Given a string s = u′$v′, where u′ ∈
#∗u#∗ and v′ ∈ #∗v#∗ for some u, v ∈ Σ∗, each contiguous subsequence of
u (resp. v) whose sequence of positions is equal to the sequence of positions
of T of some string in 2{0, 1}∗ such that the next symbol in T is 2 will be
called a block. Each block starts with 2 followed by a binary string. Let k
(≥ 2) be the maximum size of a block. Summing the lengths of the blocks
of u gives that (k − 2) · 2k−1 + k ≤ n, and thus k ≤ logn.

3. For the contiguous symbols of v, the marking will be similar.

The marking is considered valid if all above rules are satisfied. This is an example
of a valid marking of S = “#foobar##$foobar##”:

s # f o o b a r # # $ f o o b a r # #
Mark 3 2 0 2 1 2 0 3 3 $ 2 0 2 1 2 0 3 3

If u = v and the marking is valid, player Anke will guarantee that each symbol
of u and v will be marked with exactly the same marking. However if u 6= v
and the marking is valid, either the length of u and v are different or there will
be at least a single block which differs on at least one symbol between u and v.
Therefore, player Boris can have the following choices of challenges:

1. Challenge that player Anke did not make a valid marking, or
2. |u| 6= |v|, or
3. the string in a specified block differs on at least one symbol between u and

v.

Notice that u = v if and only if player Boris could not successfully challenge
player Anke. The first challenge will ensure that player Anke gave a valid mark-
ing. There are three possible cases of invalid marking:

(a) There is a # in u′ or v′ which is not given by a mark of 3. In this case, player
Boris may point out its exact position. Here, player Boris needs 1 step.

(b) For u and v, the first block is not marked with "20". This can also be easily
pointed out by player Boris. Here, player Boris needs 1 step.
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(c) For u and v, a block is not followed by its successor. This can be pointed out
by player Boris by checking two things: the length of the ‘successor’ block
should be less than or equal to the length of the ‘predecessor’ block plus one,
and the ‘successor’ block indeed should be the successor of the ‘predecessor’
block. Also, we note that the last block may be incomplete.
(i) The length case can be checked by looking at how many symbols there

are between the pair of 2’s bordering each block. Let p and q be the
length of ‘predecessor’ block and the ‘successor’ block respectively. In
the case that the ‘successor’ block is not the last block (not incomplete),
player Boris may challenge if p 6= q and p+ 1 6= q. This can be done by
marking both blocks with 1 separated by $ and the rest with dummy
symbols # and then doing the protocol for equality of the modified u
and v recursively. As player Boris may try to find the ‘short’ challenge,
player Boris will find the earliest block which has the issue and thus
make sure that p is at most logarithmic in the maximum of the lengths
of u and v. As q may be much larger than p, player Boris may limit the
second block by taking at most p+ 2 symbols.

(ii) The successor case can be checked by the following observation. A suc-
cessor of a binary string can be calculated by finding the last 0 symbol
and flipping all digits from that position to the end while maintaining
the previous digits. As an illustration, the successor of "101100111" will
be "101101000" where the symbols are separated in 3 parts: the prefix
which is the same, the last 0 digit, which is underlined, becoming 1; and
all 1 digits on suffix becoming 0. Player Boris then may challenge the
first part not to be equal or the last part not to be the same length or not
all 1’s by providing the position of the last 0 on the ‘predecessor’ block
(or the last 1 on the ‘successor’ block, if any). Checking the equality of
two strings can be done recursively, also similarly applied for checking
the length. Notice a corner case of all 1’s which has the successor con-
sisting of 1 followed by 0’s with the same length, which can be handled
separately. Also notice that the ‘successor’ block may be incomplete if
it is the last block, which can also be handled in a similar manner as
above.

For the second challenge, player Boris can (assuming the marking is valid) check
whether the last two blocks of u and v are equal. Again, player Boris may limit
it for a ‘short’ challenge so the checking size is decreasing to its log. For the third
challenge, player Boris will specify the two blocks on u and v (same block on
both) which differ on at least one symbol between u and v. Again, same protocol
will apply and the size is decreasing to its log. Furthermore, both the marking
and selection of blocks are done in a single turn.

Thus, the above algorithm using one alternation of each of the players reduces
the problem to logarithmic in the size of the maximum of the lengths of u and
v. In particular, when the size of u and v are small enough, the checking will be
done in constant number of steps. Thus, the complexity of the problem satisfies:
T (mk+1) ≤ T (logmk), where mi denotes the maximum of the sizes of u and v
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at step i. As the lengths of u, v at each step are bounded by the length of the
whole input string, the lemma follows. Note that either player can enforce that
the algorithm runs in log∗ n +O(1) steps. The player makes the own markings
always correct and challenges incorrect markings of the opponent at the first error
so that the logarithmic size descent is guaranteed. Challenged correct markings
always cause the size to go down once in a logarithmic scale.

Theorem 11. There is an NP-complete problem in AAL[log∗ n+O(1)].

Proof. Consider any encoding of a SAT formula in conjunctive normal form such
that after each variable occurrence there is a space for a symbol indicating the
truth value of that variable. For example, literals may be represented as + or
− followed by a variable name and then a space for the variable’s truth value,
clauses may be separated by semicolons, literals may be separated by commas
and a dot represents the end of the formula. Anke sets a truth value for each
variable occurrence in the formula and a dfa then checks whether or not between
any two semicolons, before the first semicolon and after the last semicolon there
is a true literal; if so, Boris can challenge that two identical variables received
different truth values. It is now player Anke’s job to prove that the two variables
picked by Boris are different. By the Log-Star Lemma, this verification needs
log∗ n+O(1) steps. Hence, CNF-SAT ∈ AAL[log∗ n+O(1)].

The Log-Star Lemma can also be applied, using a technique similar to that in
the proof of Theorem 11, to show that for any k ≥ 3, the NP-complete problem
k-COLOUR of deciding whether any given graph G is colourable with k colours
belongs to AAL[log∗ n + O(1)]. Using a suitable encoding of nodes, edges and
colours as strings, Anke first nondeterministically assigns any one of k colours to
each node and ensures that no two adjacent nodes are assigned the same colour;
Boris then challenges Anke on whether there are two substrings of the current
input that encode the same node but encode different colours.

The next theorem shows that the class AAL[log∗ n+O(1)] contains
NLOGSPACE.

Theorem 12. NLOGSPACE ⊆ AAL[log∗ n+O(1)].

Proof. Consider an NLOGSPACE computation that takes time nc. One splits
the input into

√
n equal-sized blocks, each of which represents the sequence of

configurations of the Turing Machine during an interval of s√
n

steps, where s

is the total number of steps on the input, and Anke guesses for each block the
following information:

– The overall number of steps needed, s;
– The block number;
– The rounded number of steps done in this block (approximately s√

n
steps);

– The total number of steps done until this block;
– The starting configuration at this block;
– The ending configuration at this block.
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Furthermore, the number of variables needed is 2c plus a constant.
Boris can now challenge that some configuration is too long or that the

number of digits is wrong or that the information at the end of one block does
not coincide with the information at the start of another block or that initial and
final configurations are not starting and ending configurations or select a block
whose computation has to be checked in the next round, again by distributing
the steps covered in this interval evenly onto

√
n blocks in the next variable.

By O(c) iterations, the distance of steps between two neighbouring config-
urations becomes 1. Now Boris can select two pieces of information copied to
check whether they are right or whether the LOGSPACE computation in the
last step read the symbol correctly out of the input word and so on. These checks
can all be done in log∗ n+O(1) steps.

As yet, we have no characterisation of those problems in NP which are in
AAL[O(log∗ n)] and we think that for each such problem it might depend heavily
on the way the problem is formatted. The reason is that it may be difficult to
even prove whether or not P is contained in AAL[O(log∗ n)], due to the following
proposition. We will later show that the class PAAL[log∗ n + O(1)] which is
obtained from AAL[log∗ n + O(1)] by starting with one additional step which
generates a variable of polynomially sized length coincides with PH.

Proposition 13. If P ⊆ AAL[O(log∗ n)], then P ⊂ PSPACE.

Proof. By Theorem 8 (the condition f(n) ≥ n is not necessary for the first
containment relation to hold), AAL[O(log∗ n)] ⊆ DSPACE[O((n + log∗(n)) ·
log∗(n))]. Moreover, by the space hierarchy theorem [25, Corollary 9.4], one has
DSPACE[O((n + log∗(n)) · log∗(n))] ⊂ DSPACE[O(n2)]. Thus if P ⊆
AAL[O(log∗ n)], then P ⊂ DSPACE[O(n2)] ⊂ PSPACE.

4 Polynomial-Size Padded Alternating Automatic

Register Machine

An AARM is constrained by the use of bounded automatic relations during each
computation step. As we will prove later in Theorem 26, this is a real limitation,
for the use of unbounded automatic relations allows an AARM to recognise the
class of elementary recursive functions. In this section, we study the effect of
allowing a polynomial-size padding to the input of an Alternating Automatic
Register Machine on its time complexity; this new model of computation will be
called a Polynomial-Size Padded Bounded Alternating Automatic Register Ma-
chine (PAARM). The additional feature of a polynomial-size padding will some-
times be referred to informally as a “booster” step of the PAARM. Intuitively,
padding the input before the start of a computation allows a larger amount
of information to be packed into the register’s contents during a computation
history. We show two contrasting results: on the one hand, even a booster step
does not allow an PAARM with time complexity O(1) to recognise non-regular
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languages; on the other hand, the class of languages recognised by PAARMs in
time log∗ n+O(1) coincides with the polynomial hierarchy.

Formally, a Polynomial-Size Padded Bounded Alternating Automatic Regis-
ter Machine (PAARM) M is represented as a quintuple (Γ,Σ,A,B, p), where Γ
is the register alphabet, Σ the input alphabet, A and B are two finite sets of
instructions and p is a polynomial. As with an AARM, the register R initially
contains an input string over Σ, and R’s contents may be changed in response
to an instruction, J ⊆ Γ ∗ × Γ ∗ which is a bounded automatic relation. A com-
putation history of a PAARM with input w for any w ∈ Σ∗ is defined in the
same way that was done for an AARM, except that the initial configuration is
(ℓ, wv, x) for some Iℓ ∈ A, some x, v ∈ Γ ∗, (wv, x) ∈ Iℓ, where v = @k for a
special symbol @ ∈ Γ −Σ and k ≥ p(|w|). Think of @k as padding of the input.
Anke’s and Boris’ strategies, denoted by A and B respectively, are defined as
before. For any u ∈ Γ ∗, a winning strategy for Anke with respect to (M,u) is
also defined as before. Given any w ∈ Σ∗, M accepts w if for every v ∈ @∗, with
|v| ≥ p(|w|), Anke has a winning strategy with respect to (M,wv). Similarly, M
rejects w if for every v ∈ @∗, with |v| ≥ p(|w|), Boris has a winning strategy with
respect to (M,wv). Note that the winning strategies need to be there for every
long enough padding. If Anke and Boris do not satisfy the above properties, then
(A,B) is not a valid pair.

Definition 14 (Polynomial-Size Padded Bounded Alternating Auto-
matic Register Machine Complexity).

Let M = (Γ,Σ,A,B, p) be a PAARM and let t ∈ N0. For each w ∈ Σ∗, M
accepts w in time t if for every v = @k, where k ≥ p(|w|) and @ ∈ Γ −Σ, Anke
has a winning strategy A with respect to (M,wv) and for any strategy B played
by Boris, the length of H(A,B,M,wv) is not more than t.

A PAARM decides a language L in f(n) steps for a function f depending
on the length n of the input if for all x ∈ {0, 1}n, both players can enforce that
the game terminates within f(n) steps by playing optimally and one player has
a winning strategy needing at most f(n) moves and x ∈ L if Anke is the player
with the winning strategy. PAAL[f(n)] denotes the family of languages decided
by PAARMs that decide in time f(n).

Remark 15. Note that a PAARM-program can trivially simulate an AARM-
program by ignoring the generated padding; thus AAL[O(f(n))] ⊆ PAAL[O(
f(n))]. On the other hand, to simulate a booster step, an AARM-program needs
O(p(n)) steps as each bounded automatic relation step can only increase the
length by a constant.

As with AAL[O(f(n))], the class PAAL[O(f(n))] is closed under the usual set-
theoretic Boolean operations as well as regular operations.

Theorem 16. Let ⋆ denote any one of the operations union, intersection and
concatenation. For each L1 ∈ PAAL[f(n)] and each L2 ∈ PAAL[g(n)], L1 ⋆L2 ∈
PAAL[max{f(n), g(n)}] and L∗

1 ∈ PAAL[f(n)]. In particular, the languages in
PAAL[f(n)] are closed under union, intersection, concatenation and Kleene star.
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One also has that any language recognised by a PAARM in constant time must
be regular; the converse assertion, that any regular language is recognised by
some PAARM in constant time, follows from an argument similar to that for
the case of AARMs.

Theorem 17. For any constant c, all languages recognised by a PAARM pro-
gram in c steps are regular.

Proof. Let L be any regular language. Then clearly, {x@∗ : x ∈ L} is also regular.
Now suppose that for some polynomial p, B = {x@k : k ≥ p(|x|), x ∈ A} is
regular. Then, A = {x : (∃j)(∀k ≥ j)[x@k ∈ B]}. As B is regular, A is regular
as regular sets are closed under first order quantification.

Corollary 18. PAAL[1] = REG.

Our main result concerning PAARMs is a characterisation of the polynomial
hierarchy (PH) as the class PAAL[log∗ n+O(1)].

Theorem 19. PH = PAAL[log∗ n+O(1)].

To help with the proof, we first extend the Log-Star Lemma as follows. Recall
that a configuration (or instantaneous description) of a Turing Machine is rep-
resented by a string xqw, where q is the current state of the machine and x and
w are strings over the tape alphabet, such that the current tape contents is xw
and the current head location is the first symbol of w [16].

Lemma 20. Checking the validity of a Turing Machine step, i.e., whether a
configuration of Turing Machine follows another configuration (given as input,
separated by a special separator symbol) can be done in AAL[log∗ n+O(1)], where
n is the length of the shorter of the two configurations.

Proof. Let the input be the two configurations of the Turing Machine, where
the second configuration is supposedly the successive step of the first one and
separated by a separator symbol. Now there are two things that need to be
checked: (1) The configuration is "copied" correctly from the previous step.
Note that a valid Turing Machine transition will change only the cell on the
tape head and/or both of its neighbour; thus "copied" here means the rest of
the tape content should be the same; (2) The local Turing step is correct.
For the first checking, the player who wants to verify, e.g. Anke, will give the
infinite valid marking as used in the Log-Star Lemma. In addition, Anke also
marks the position of the old tape head on the second configuration. Boris can
then challenge the following: (a) The Log-Star Lemma marking is not valid; (b)
The old tape head position is not marked correctly (in the intended position) on
the second configuration; (c) The string in a specified block differs, but not the
symbols around the tape head; (d) The length difference of the configuration is
not bounded by a constant.
Challenge (a) can be done in log∗ n + O(1) steps; this follows from the Log-
Star Lemma. Challenge (b) can also be done in log∗ n+O(1) steps where both
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players reduce the block to focus on that position, and finally check whether it
is on the same position or not. Challenge (c) can also be done in log∗ n +O(1)
steps; this follows again from the Log-Star Lemma. Note that if Boris falsely
challenges that the different symbol is around the tape head, Anke can counter-
challenge by pointing out that at least one of its neighbours is a tape head. For
challenge (d), note that a valid Turing Machine transition will only increase the
length by at most one. Thus, Boris can pinpoint the last character of the shorter
configuration and also its pair on another configuration, then check whether the
longer one is only increased by up to one in length. This again can be done in
log∗ n+O(1) steps.

For the second checking about the correctness of the Turing step, it can
be done in a constant number of checks as a finite automaton can check the
computation and determine whether the Turing steps are locally correct, that
is, each state is the successor state of the previous steps head position and the
symbol to the left or right of the new head position is the symbol following
from the transition to replace the old symbol and so on. Therefore, all-in-all the
validity of a Turing Machine step can be checked in AAL[log∗ n+O(1)] steps.

Proof of Theorem 19. We first prove that PAAL[log∗ n+O(1)] ⊆ PH. Define a
binary function Tower recursively as follows:

Tower(0, c) = 1

Tower(d+ 1, c) = 2c·Tower(d,c).

We prove by induction that for each c ≥ 1, there is a c′ such that for all d,
Tower(d+c′, 1) > Tower(d, c). When c = 1, Tower(d, c) gives the usual definition
of the tower function. In particular, when c = 1, one has Tower(d + 1, c) >
Tower(d, c) for all d, so the induction statement holds for all c = 1 and all d.
Suppose that c > 1. Then there is some c′ large enough so that Tower(c′, 1) >
c2 = c2 · Tower(0, c), and so the induction statement holds for d = 0. Assume
by induction that c > 1 and that Tower(c′′ + d, 1) > c2 · Tower(d, c). Then

2Tower(c′′+d,1) > 2c
2·Tower(d,c) ≥ (2c·Tower(d,c))c > c2 · 2c·Tower(d,c), and therefore

Tower(c′′ + d+ 1, 1) > c2 · Tower(d+ 1, c). This completes the induction step.
Say that Anke (resp. Boris) wins within k steps iff for some n ≤ k, Boris

(resp. Anke) starts the (n+1)-st turn of the game and he (resp. she) cannot make
a move (it is assumed that both players aim to win and they play optimally).
Suppose that c is the number of states of the automaton M corresponding to
the update function for the configuration of an AAL algorithm. Then there is a
dfa of size at most Tower(k + 2, c) that recognises whether or not a player wins
within k steps. We prove this claim by induction on k, showing that there is a
dfa of size Tower(k + 1, c) such that for any string x, the dfa accepts x iff Anke
wins within k steps on input x when she (resp. Boris) starts the game. We can
similarly show that there is a dfa of size Tower(k+1, c) such that for any string
x, the dfa accepts x iff Boris wins within k steps when he (resp. Anke) starts,
so the union of the languages accepted by the two dfa’s is recognised by a dfa of
size at most Tower(k + 2, c).
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By the earlier definition of “winning within k steps”, Anke cannot win in zero
steps if she starts the game. If Boris starts, then Anke wins in zero steps on
input x iff there is no y such that M accepts (x, y). The latter condition can
be checked with a dfa of size 2c = Tower(1, c): one first constructs from M an
nfa M ′ that has the same set of c states as M and for any x ∈ Γ , M ′ on input
x goes from state p to state q iff there is some y ∈ Γ such that M on input
conv(x, y) goes from state p to state q; M ′ is then converted into another nfa
M ′′ with the same number of states as M ′ that accepts the complement of the
language accepted by M ′, after which M ′′ can be converted into a dfa of size 2c.
This verifies the statement for the base case.

Assume inductively that for all k′ ≤ k, there is a dfa of size Tower(k′ + 1, c)
that accepts x iff Anke wins within k′ steps on input x when she (resp. Boris)
starts. Suppose it is Anke’s turn and we need to check if she wins within k + 1
steps. Let Mk be a dfa of size Tower(k+1, c) that accepts x iff Anke wins within
k steps on input x when Boris starts the game. Define an nfa N as follows. For
each state p of M , make Tower(k+1, c) states (p, q1), . . . , (p, qTower(k+1,c)), where
q1, . . . , qTower(k+1,c) are the states of Mk. Then each state (p, q) on input x ∈ Γ
goes to each state (p′, q′) such that for some y ∈ Γ , M on input conv(x, y) goes
from state p to state p′ and Mk on input y goes from state q to state q′. The
start state of N is (p1, q1), where p1 and q1 are the start states of M and Mk

respectively, and the final states of N are states (pf , qf ) such that pf and qf are
final states of M and Mk respectively. Then N accepts x iff there is a string y
such that M accepts (x, y) and Anke wins within k steps on input y when Boris
starts; in other words, N accepts x iff Anke wins within k + 1 steps when she
starts with input x. The nfa N , which is of size c · Tower(k + 1, c), can then be
converted into a dfa M ′ of size 2c·Tower(k+1,c) = Tower(k + 2, c), as required.

Suppose now that it is Boris’ turn and we need to check if Anke wins within
k+1 steps. By the induction hypothesis, there is a dfa M ′

k of size Tower(k+1, c)
that accepts x iff Anke wins within k steps on input x when she starts. Let M ′′

k

be a dfa with the same number of states as M ′
k that accepts the complement of

the language accepted by M ′
k, that is, M ′′

k accepts x iff Anke does not win within
k steps on input x when she starts. We build an nfa N ′ with c · Tower(k + 1, c)
states following a construction similar to that of N in the previous case but
replacing Mk by M ′′

k . Then N ′ accepts x iff there is a string y such that M
accepts conv(x, y) and Anke does not win within k steps on input y when she
starts; in other words, N ′ accepts x iff Anke does not win within k+1 steps when
Boris starts. The nfa N ′ can be converted into an nfa N ′′ with the same number
of states as N ′ that accepts the complement of the language accepted by N ′ –
that is, N ′′ accepts x iff Anke wins within k+1 steps when Boris starts. The nfa
N ′′ can in turn be converted into a dfa of size 2c·Tower(k+1,c) = Tower(k + 2, c).
This completes the induction step.

By the preceding result on the function Tower, Tower(k + 2, c) is bounded
by Tower(k + c′, 1) for some c′. Thus any language in PAAL[log∗ n + O(1)] is
recognised in a constant number of alternating steps plus a predicate that can
be computed by a dfa of size Tower(log∗ n− 3, 1). This dfa can be computed in
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LOGSPACE since log∗ n can be computed in logarithmic space. Then one con-
structs the dfa by determinizing out the last step until it reaches size log logn.
This happens only when only constantly many steps are missing by the above
tower result. These constantly many steps can be left as a formula with alternat-
ing quantifiers followed by a dfa computed in logarithmic space of size log logn.
Thus the formula whether Anke wins is in PH. Similarly for the formula whether
Boris wins and so the overall decision procedure is in PH.

For the proof that PH ⊆ PAAL[log∗ n+O(1)], we first note that PH can be
defined with alternating Turing machines [9]. We define ΣP

k to be the class of
languages recognised by alternating Turing Machine in polynomial time where
the machine alternates between existential and universal states k times starting
with existential state. We also define ΠP

k similarly but starting with universal
state. PH is then defined as the union of all ΣP

k and ΠP
k for all k ≥ 0. We

now show ΣP
k ∪ΠP

k ⊆ PAAL[log∗ n+O(1)] for any fixed constant k. As the al-
ternating Turing Machine runs in polynomial time on each alternation, the full
computation (i.e., sequence of configurations) in one single alternation can be
captured non-deterministically in p(m) Turing Machine steps, for some polyno-
mial p (which we assume to be bigger than linear), where m is the length of the
configuration at the start of the alternation. In a PAARM-program, Anke first
invokes a booster step to have a string of length at least pk(n). After that, Boris
and Anke will alternately guess the full computation of the algorithm of length
p(pi(n)), i = 0, 1, . . ., in their respective alternation: Boris guesses the first p(n)
computations (the first alternation), Anke then guesses the next p(p(n)) com-
putations on top of it (the second alternation), etc. In addition, they also mark
the position of the read head and symbol it looks upon in each step. Ideally,
the PAARM-program will take k alternating steps to complete the overall algo-
rithm. Note that a PAARM can keep multiple variables in the register by using
convolution, as long as the number of variables is a constant. Thus, we could
store the k computations in k variables: v1, v2, · · · , vk. Now each player can have
the following choices of challenges to what the other player did: (1) Copied some
symbol wrongly from the input i.e. in v1; (2) Two successive Turing Machine
steps in the computation are not valid (at some vi); (3) The last Turing Ma-
chine step on some computation (at some vi) does not follow-up with the first
Turing Machine step on the next computation (at vi+1).
All the above challenges can be done in log∗ n+ O(1) steps by a slight modifi-
cation of Lemma 20. In particular, the third challenge needs one to compare the
first Turing Machine configuration of vi+1 and the last Turing Machine configu-
ration vi, which can be done in a way similar to the proof of Lemma 20. Thus,
ΣP

k ∪ ΠP
k ⊆ PAAL[log∗ n + O(1)] for every fixed constant k, therefore PH ⊆

PAAL[log∗ n+O(1)]. Corollary 9 implies PAAL[log∗ n+O(1)] ⊆ PSPACE.

Remark 21. As PAAL[log∗ n + O(1)] = PH, PAAL[log∗ n + O(1)] is closed
under Turing reducibility. Similarly one can show that PAAL[O(log∗ n)] is closed
under Turing reducibility. After Anke invokes the booster step, Boris will guess
the accepting computation together with all of the oracle answers. Anke then can
challenge Boris on either the validity of the computation (without challenging
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the oracle) or challenge one of the oracle answers. Both challenges can be done
in the same fashion as in Theorem 19 but the latter needs one additional step to
initiate the challenge of the oracle algorithm.

In addition, we also get the following corollary about polynomial-time Turing
reducibility. We recall that a polynomial-time Turing reduction from problem A
to problem B is an algorithm to solve A in a polynomial number of steps by
making a polynomial number of calls to an oracle solving B.

Corollary 22. PAAL[O(log∗ n)] is closed under polynomial-time Turing reduci-
bility.

Proof. After Anke invokes the booster step, Boris will guess the accepting com-
putation together with all of the oracle answers. Anke then can challenge Boris
on either the validity of the computation (without challenging the oracle) or
challenge one of the oracle answers. Both challenges can be done in the same
fashion as in Theorem 19 but the latter needs one additional step to initiate the
challenge of the oracle algorithm.

In order to obtain the next corollary, we use the fact that the problem of deciding
TQBFf – the class of true quantified Boolean formulas with log∗ n+f(n)+O(1)
alternations – does not belong to any fixed level of the polynomial hierarchy (PH)
when PH does not collapse.

Corollary 23. If PH does not collapse and f is a logspace computable increasing
and unbounded function, then AAL[log∗ n+ f(n) +O(1)] 6⊆ PH.

Proof. Suppose PH does not collapse. Let TQBFf be the problem {φ : φ is a
true fully quantified Boolean formula with log∗ |φ|+ f(|φ|) +O(1) alternations
of quantifiers}, and consider any Boolean formula. The computation with choice
of variables is placed in f(n) rounds of Anke and Boris moves followed by
log∗ n + O(1) moves to evaluate the formula. Furthermore, if the formula has
more than f(n) alternations (and is thus invalid), any of the two players can
challenge this in the first round and then it takes log∗ n+O(1) rounds to do the
logspace computation of f(n) and to verify that the formula does not belong to
TQBFf .

Finally, we observe that if PH = PSPACE, then (i) by Theorem 19, PH =
PAAL[O(log∗ n)] = PSPACE; (ii) by Proposition 13, P 6⊆ AAL[O(log∗ n)]; thus
AAL[O(log∗ n)] would be properly contained in PAAL[O(log∗ n)].

Proposition 24. If PH = PSPACE, then AAL[O(log∗ n)] ⊂ PAAL[O(log∗ n)].

Theorem 25. If f is monotonically increasing and unbounded, then AAL[log∗ n
− f(n)] = REG.

Proof. Assume that there is an AARM such that for each word w there is either
for Anke or for Boris a winning strategy of log∗ n−f(n) steps. Then by the tower
lemma, the resulting size of the dfa is O(log logn) for almost all n and input
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words of length n. Thus the combined two dfas have at most size poly(log logn)
and there is no word w on which not exactly one accepts in the given time.
Now assume that for a given dfa of sufficient large n, there is a word w where
neither player succeeds in log∗ n− f(n) rounds, where the n is fixed. Due to the
pumping lemma, on words of arbitary length with this property, one can pump
down these words until they have size below n. However, such short words with
this property do not exist by assumption. Thus for this fixed n, all words of
arbitrary length are accepted by computations of length log∗ n− f(n). Thus the
language is actually in AAL[O(1)] and in REG.

5 Variants of AARMs and PAARMs

We conclude by discussing the computational power of several variants of
AARMs and PAARMs. The first variant, which was alluded to earlier, is the
use of unbounded automatic relations as update instructions. More precisely,
this means that for the update automaton, there is no constant c such that
for any given input parameter, the difference between the length of each pos-
sible output and that of the input parameter is at most c. In contrast to The-
orem 7, one can show that if an AARM is allowed to use unbounded auto-
matic relations as update instructions, then the class of languages recognised
in time log∗ n + O(1) is precisely the class E3SETS – the class DTIME(2n) ∪
DTIME

(

22
n) ∪ DTIME

(

22
2n
)

∪ . . . of all sets computed by an elementary re-

cursive function.

Theorem 26. Let UAAL[f(n)] denote the class of languages recognised in time
f(n) by an AARM that uses unbounded automatic relations as update instruc-
tions. Then E3SETS = UAAL[log∗ n+O(1)].

Proof. We first show that E3SETS ⊆ UAAL[log∗ n + O(1)]. The main idea
of the proof is based on Lemma 20. As shown in the lemma, an AARM can
verify the validity of a transition between two Turing machine configurations in
log∗ n+O(1) steps, where n is the length of the shorter configuration. Suppose
that the running time of a Turing machine M is at most 2n for any given input
of length n. The set of all pairs (x, y) such that y represents a (possibly partial)
computation history of M is an automatic relation, and so it can be used to
update the (unbounded) AARM register. For any given input, Anke guesses the
full computation history of the Turing machine; this can be represented by a
string of length O(2n). An argument similar to that in the proof of Lemma 20
then shows that an AARM can verify in log∗ (O(2n)) + O(1) ≤ log∗

(

22
n)

+
O(1) = log∗ n + 2 + O(1) = log∗ n + O(1) steps whether or not the guessed
computation history is valid. A similar argument applies if the running time of
the Turing machine is 22

2...

for any given number of exponentiations. One can
clock the steps done with a computation of log∗ n for input size n (taking log∗ n
steps) and then run a constant number of additional steps, ending with either
Anke winning or Boris winning if the timebound is not kept.
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Next, we show that UAAL[log∗ n + O(1)] ⊆ E3SETS. Given any language
recognised by an unbounded AARM with time complexity log∗ n + O(1), as
shown in the proof of Theorem 19, if c is the number of states of the update
automaton, then a dfa of size at most Tower(log∗ n+O(1), c) recognises whether
or not a given player wins within log∗ n+O(1) steps. This dfa can be computed in
Tower(log∗ n+O(1), c) time, and so the given language belongs to E3SETS.

Remark 27. Suppose that f is LOGSPACE computable, increasing and un-
bounded; an example of such a function is log(log∗ n). Then AAL[log∗ n+f(n)+
O(1)] contains the class NSPACE[logn · f(n)] and UAAL[log∗ n+ f(n)+ 1] con-
tains a language not in E3SETS. The first result shows that under the assump-
tion PH = LOGSPACE, the class AAL[log∗ n+f(n)+O(1)] contains a language
outside PH and but still in PSPACE.

One might be interested in PAARM-programs for which the number of alterna-
tions is constant but a player can do more than one automatic function step in a
single turn. In particular, we can show that if, after the booster step the number
of alternation is just two, then every language in NLOGSPACE, which is closed
under complementation, can be recognised in O(log logn) steps. After padding
the input, Boris will run the nondeterministic logspace computation where he
uses location number for the input cell read in a step. Boris can code this compu-
tation in the padded space, where each configuration step is of logarithmic size.
Now Anke verifies the computation, which can be done in O(log logn) determin-
istic steps. The idea is to guess the two symbols from two successive logspace
computation steps which contradict a Turing machine computation (that is,
there are errors in the Turing machine computation). After that, Anke verifies
that the positions of the error symbols are indeed correct by marking off every
other symbol in each logspace sized protocol. The marking off of steps is repeated
until all symbols except the errors in the logspace sized protocols are marked
off, while maintaining the same parities of the errors’ positions. It is easy to see
that Anke needs O(log logn) marking off steps in total, and one more step to
confirm the error.

Another possible variant of an AARM uses transducers as basic operations in-
stead of bounded automatic relations. We define an Alternating Transducer
Register Machine (ATRM) and a Polynomial-Size Padded Alternating Trans-
ducer Register Machine (PATRM) similarly to an AARM and a PAARM re-
spectively. When using bounded automatic relations, the “bottleneck” of the
computational power, as shown in this paper, lies in the string comparison,
which needs O(log∗ n) steps by the Log-Star Lemma and its extension. This,
however, does not apply when transducers are used as the string comparison can
be done in constantly many transducer steps. Thus, we can show that not only
an NP-complete problem is recognised by ATRM in constantly many steps but
also PH is contained in PATRM in constantly many steps. In fact, denoting the
class of languages recognised by an ATRM in time t(n) by UATL[t(n)], one can
show the following.
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Theorem 28. UATL[O(1)] is the union of the classes in the arithmetical hier-
archy.

Proof. We first note that the class R.E. of recursively enumerable languages
coincides with the class of languages obtained by applying constantly many
transducer steps with existential guessing [20, Lemma 3.1]. The alternating clo-
sure then gives that UATL[O(1)] is equal to the whole class of languages in the
arithmetical hierarchy.

Note that the arithmetical hierarchy consists of undecidable sets (except for the
lowest level). Thus, owing to Theorem 28, we believe that transducers are too
powerful to be used as basic operations and that the use of bounded automatic
relations as basic operations gives a more appropriate model of computation.

The main results on complexity classes defined by AARMs are summed up in
Figure 1 while those on complexity classes defined by PAARMs are summed up in
Figure 2. For any function f , AAL[f(n)] denotes the class of languages recognised
by an AARM in f(n) time. Arrows are labelled with references to the correspond-
ing results or definitions; well-known inclusions can be found in standard text-
books [16,25] or the Complexity Zoo (https://complexityzoo.net/Complexity_Zoo).
Table 1 also summarises the main results.

AAL[o(log∗ n)]

REG

AAL[log∗ n+O(1)]CNF-SAT∈

Thm 11

NLOGSPACE

⋃
k
AAL[O(nk)]

PSPACE

DSPACE[O(n · log∗ n)]

Thm 25, Thm 11
Thm 8

Thm 12

Thm 25 Cor 9

Defn 2

Fig. 1: Relationships between complexity classes/CNF-SAT. A solid arrow from
X to Y means that X is a proper subset of Y . A double-headed solid arrow
between X and Y means that X is equal to Y . If X is a subset of Y but it is
not known whether they are equal sets, then the arrow is dashed.

https://complexityzoo.net/Complexity_Zoo
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PH

AAL[log∗ n+O(1)]

PAAL[log∗ n+O(1)]

AAL[o(log∗ n)]

PAAL[o(log∗ n)] PSPACE

REG

(assuming

PH =

LOGSPACE)

Prop 24 (assuming

PH = PSPACE)

Thm 19 Thm 19

Thm 11

Cor 18

Thm 25

Fig. 2: Relationships between complexity classes.

Step Numbers
Criterion

AAL PAAL UAAL

O(1), o(log∗ n) = REG = REG = REG

log∗ n+O(1) ⊇ LOGSPACE = PH = E3SETS

poly(n) = PSPACE = PSPACE
E3SETS

⊂ UAAL ⊂

E4SETS

Table 1: Summary of results. E3SETS denotes the class of all sets computed by
an elementary function and E4SETS denotes the class of all sets computed by
functions on level 4 of the Grzegorczyk Hierarchy.
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