
ar
X

iv
:2

20
8.

10
12

1v
1

 [
cs

.G
T

]
 2

2
A

ug
 2

02
2

Reachability Games and Parity Games

Volker Diekert Manfred Kufleitner

University of Stuttgart, FMI, Germany

{diekert,kufleitner}fmi.uni-stuttgart.de

Abstract. Parity games are positionally determined. This is a fundamental and
classical result. In 2010, Calude et al. showed a breakthrough result for finite
parity games: the winning regions and their positional winning strategies can be
computed in quasi-polynomial time.

In the present paper we give a self-contained and detailed proofs for both results.
The results in this paper are not meant to be original. The positional determinacy
result is shown for possibly infinite parity games using the ideas of Zielonka which
he published in 1998. In order to show quasi-polynomial time, we follow Lehtinen’s
register games, which she introduced in 2018. Although the time complexity of
Lehtinen’s algorithm is not optimal, register games are conceptually simple and
interesting in their own right. Various of our proofs are either new or simplifications
of the original proofs. The topics in this paper include the definition and the
computation of optimal attractors for reachability games, too.

Contents

1 Introduction 2

2 Games on Graphs 3

3 Reachability Games and Attractors 6

4 Optimal Strategies for Reachability Games 7

5 Parity Games 10

6 Zielonka’s Algorithm for Parity Games 12

7 Lehtinen’s Algorithm for Parity Games 14

8 Conclusion 19

1

http://arxiv.org/abs/2208.10121v1
https://orcid.org/0000-0002-5994-3762
https://orcid.org/0000-0003-3869-416X

1 Introduction

A game on a graph is played by two players who move from one vertex to another. The
vertices are often called positions. Every move needs to follow an edge in the graph. Each
position belongs to one of the players and the owner of the position chooses the next move.
The resulting sequence of moves can be finite or infinite. Basically, there can be two reasons for
a game to be finite: the game ends in a sink (i.e., a vertex where no moves are possible) or one
of the players has won the game. The other situation is that the game continues indefinitely.
Infinite games also have a winner; the winner depends on the sequence of vertices visited during
the game or, alternatively, on the sequence of moves (i.e., edges) taken by the players. When
considering infinite duration games, then a typical approach in the literature is to avoid finite
games by disallowing both sinks and finite winning sequences. In this paper, we take a slightly
different approach. We allow game graphs to be infinite and to have sinks, and we consider
winning conditions which allow both finite and infinite games. This way, we are able to discuss
reachability games and parity games in a uniform way.

A strategy is a rule for choosing a player’s next move; the chosen move can depend on
the current position (i.e., the current vertex in the graph) and all previous moves. Players
follow a strategy if, whenever it is their turn, they always use the strategy’s suggestion as
their next move. A strategy is winning if, by following the strategy, the player wins against all
possible replies of the opponent. This depends on the starting position; there might be some
starting positions where the strategy is winning and others where it is not winning. A game is
determined if for every starting position exactly one of the players has a winning strategy. Not
all games are determined; the example by Gale and Stewart of a non-determined game relies
on the axiom of choice [6].

After introducing a general framework for games on graphs, we consider reachability games
and parity games in more depth. The objective for one of the players in a reachability game
is to eventually visit a position in a given target set R; the objective of the other player is
to never visit a position in R. In a parity game, there is a finite set of non-negative integers
and each vertex is colored with one of these integers; the colors are also called priorities. A
game which ends in a sink is losing for the owner of the sink (i.e., a player loses immediately
if they cannot move); all other games are infinite. In an infinite game, the largest color which
is seen infinitely often determines the winner. One player wins if this color is even and the
other player wins if it is odd. Among the numerous applications of parity games, we mention
the following two: parity games play an important role in model-checking modal µ-calculus
[7, Part V], and they can be used for proving the complementation lemma in Rabin’s Tree
Theorem [15]; see e.g. [16].

Martin’s Determinacy Theorem shows that if the winning condition in a game on graphs is a
Borel set, then the game is determined [11]. This includes both reachability games and parity
games. However, the winning strategies from the Borel Determinacy Theorem need to store
all the previous moves. Gurevich and Harrington proved that finite-memory strategies suffice
for parity games over finite game graphs [8]: at every starting position, exactly one of the
players has a winning strategy which only takes into account the current position and a fixed
number of bits of information about the past (and this fixed number of bits can be updated
move by move). Independently of one another, Emerson and Jutla [3] and Mostowski [13]
further improved this result by showing positional determinacy (or memoryless determinacy)
of finite parity games. In a positional strategy, the next move only depends on the current
position. Positional strategies are also known as memoryless. Positional determinacy means

2

that, for every starting position, exactly one of the players has a positional winning strategy.
Zielonka showed memoryless determinacy for infinite parity games in which every vertex has
only a finite number of successors [18], but he also observed that only some minor adjustments
are necessary to generalize this result to arbitrary infinite graphs. Therefore we consider parity
games over arbitrary graphs confirming his observation. The present proof is based on notes
of the first author when he attended a lecture by Zielonka held in Paris on January 19th, 1996.
As a tool for our proof, we show that reachability games are positionally determined. The
result is well-known and considered to be folklore. For the sake of completeness, we include
the proof.

Algorithmically solving a game usually means one of two things. Firstly, given a starting
position, one wants to know the winner of the game (i.e., the player with a winning strategy).
And secondly, we can solve a game by computing winning regions and winning strategies for
the two players. Since a solution to the first problem typically also involves the computation
of a winning strategy, the two problems are equivalent in practice. We only consider solutions
of games with finite game graphs. It is folklore that reachability games can be solved in time
O(n +m) for game graphs with n vertices and m edges; see e.g. [7, Exercise 2.6]. We give a
version of this algorithm which computes optimal strategies. There is a large and increasing
number of algorithms for solving parity games; we refer to the Oink project by van Dijk [17]
for an overview. Nowadays, Zielonka’s algorithm [18] is considered to be the most classical
one. It is relatively easy to describe and it is often fast in practice [5]. However, Friedmann
showed that there are instances where Zielonka’s algorithm uses an exponential number of
steps [4]. In the same paper, Friedmann gave an upper bound of O(nd) on the number of
recursive calls in Zielonka’s algorithms for parity games with n vertices and d colors. Since
every recursive call involves solving two reachability games, this yields a running time of
O(nd(n + m)) ⊆ O(nd+2). We give an analysis of Zielonka’s algorithm which shows that its
running time is in O(nd−1(n+m)) ⊆ O(nd+1).

Calude et al. [1] showed that parity games with n vertices can be solved in quasi-polynomial

time 2log
O(1)(n). This led to a series of quasi-polynomial algorithms; see e.g. [10, 14] for brief

overviews. We give a version of Lehtinen’s algorithm [9]. Her quasi-polynomial time algorithm
is conceptually simpler than the algorithm by Calude et al. but less efficient in the worst
case. Lehtinen’s algorithm uses Zielonka’s algorithm on a larger game graph but with 2 +
2 ⌈log2 n⌉ colors, only. The resulting running time is nO(logn)dO(log2 n) for a game with n

vertices and largest color d. This is not optimal. For instance, the recent modification of

Zielonka’s algorithm [10, Theorem 3.3] has a running time of O

(

n
6.9+2 log

(

1+ d

2 log n

))

.

As usual, we use random access machines to measure the time complexity of algorithms; see
e.g. [2, Chapter 2.2].

2 Games on Graphs

A game graph G = (V0, V1, E) is a directed graph such that the vertices V = V0 ∪ V1 are
partitioned into two sets V0 and V1 with V0 ∩ V1 = ∅. We allow V to be infinite. The set
of edges is E ⊆ V × V . Depending on the setting, the game graph might have additional
information such as labeled edges or a coloring of the vertices. A sink is a vertex v ∈ V

without outgoing edges. The set of all finite paths in the graph (V,E) is denoted by E∗; and
E∞ is the set of all finite of infinite paths. We consider E∞ to be a subset of V + ∪ V ω, i.e.,

3

a path α ∈ E∞ is either a non-empty finite sequence α = v1 · · · vk or an infinite sequence
α = v1v2 · · · of vertices vj such that any two consecutive vertices vj , vj+1 satisfying the edge
relation (vj , vj+1) ∈ E. Similarly, we have E∗ ⊆ V +. There are two players, player 0 and
player 1. The vertices in Vi belong to player i ∈ {0, 1}. A position is a vertex u ∈ V . At
position u, player i ∈ {0, 1} with u ∈ Vi chooses v ∈ V with (u, v) ∈ E. The next position is
v and the game continues at this position. This is called a move of player i. We use the term
position rather than vertex for an element v ∈ V to emphasize that v is part of a sequence of
moves; on the other hand, for graph properties such as paths we use the term vertex.

A set of games C is a subset of E∞ such that every path in E∞ has a unique prefix in C.
This prefix does not need to be proper. Note that no path in C has a proper prefix in C; i.e.,
either a game is infinite or the game immediately ends as soon as a finite sequence of moves
defines a path in C. A winning condition is a partition C = C0 ∪ C1. Here, Ci is the set of
games which player i wins, and we have C0∩C1 = ∅. The winning condition Ci of player i does
not depend on finite prefixes if for every pβ ∈ C, we have that β ∈ Ci implies pβ ∈ Ci. We note
that this property of Ci also depends on C1−i because we consider all games in C = C0 ∪ C1.
A game (G,u,C0, C1) consists of a game graph G, an initial position u ∈ V , and a winning
condition C0, C1. The latter gives the set of games as C = C0∪C1. If the winning condition is
clear from the context, then the game is denoted by (G,u); if G = (V0, V1, E), then we usually
do not distinguish between (G,u) and (V0, V1, E, u) in the sense that both describe the same
game. Remember that, by abuse of notation, a game is also a sequence in C. A game (in the
sense of a sequence in C) on (G,u) is created by moves of the players, starting at position u;
the game is either infinitely long, or it finishes immediately if the current sequence of positions
yields a path in C ∩ E∗. Note that every game has a unique winner i ∈ {0, 1} because if the
game reaches a sink (in particular, there was no previous point at which a player has won the
game), then the path leading to this sink needs to be in C.

Intuitively, a strategy for player i defines its next move; this move can depend on the current
position vk ∈ Vi as well as the sequence of the previous positions v1, . . . , vk−1. More formally, it
is a partial map σ : E∗ → V such that after the moves v1 · · · vk with vk ∈ Vi, the next move of
player i is vk+1 = σ(v1 · · · vk). In particular, the strategy is required to satisfy (vk, vk+1) ∈ E.
It does not have to be defined on all paths in V ∗Vi because some configurations might not be
reachable if player i always moves according to the strategy. Moreover, we sometimes do not
care for certain positions how player i moves. This is the case if all moves at this position
lead to winning games, or if all games at this position immediately end. In this paper, we are
mostly interested in strategies which do not take the previous moves into account and only
depend on the current position: A positional strategy for player i is a partial map σ : W →W

for W ⊆ V such that if σ(w) is defined, then w ∈W ∩ Vi and (w, σ(w)) ∈ E; i.e., the strategy
only suggests legal moves and only for player i. The set W is called the support of σ. A
path α = v1v2 · · · ∈ E∞ with v1 ∈ W follows a strategy σ : W → W for player i if for all
prefixes v1 · · · vjvj+1 of α such that σ(vj) is defined, we have vj+1 = σ(vj). In other words,
whenever possible, player i applies σ for choosing their next move. Remember that if σ(vj)
is defined, then vj ∈ W ∩ Vi. Note that we allow α to leave and re-enter W . A positional
strategy σ : W → W for player i is winning if all games α which start in W and follow σ are
in Ci. In this case, we say that σ is a i-strategy. If σ : W → W is an i-strategy and σ(w) is
not defined for w ∈ W ∩ Vi, then all games starting in W , following i, and visiting w at some
point are winning for player i. This means that the only reason for σ to be undefined at a
position w ∈W ∩ Vi is that the choice of the next move does not matter. For instance, this is
the case if player i wins as soon as the position w is reached. If σ0 : W0 → W0 is a 0-strategy

4

and σ1 : W1 → W1 is a 1-strategy, then W0 ∩W1 = ∅; otherwise, a game starting in W0 ∩W1

and following both strategies would be winning for both players.
We can identify a positional strategy σ : W → W with the subgraph (W,F) where the

set of edges is F = {(w, σ(w)) | σ(w) is defined}; note that F ⊆ E. Similarly, a posi-
tional strategy can be built-in into the game graph by replacing the edges E by E′ = F ∪
{(u, v) ∈ E | σ(u) is not defined}. We order i-strategies by (W ′, F ′) ≤ (W,F) if W ′ ⊆ W and
F ′ ⊆ F . By Zorn’s Lemma, there exist maximal i-strategies. Maximal i-strategies (W,F)
have the following property: Whenever, for a position w ∈ W ∩ Vi, the set of neighbors
{v ∈W | (w, v) ∈ E } in W is nonempty, then there exists an edge (w, v) ∈ F . Otherwise, all
possible (W,F)-following continuations (even those leaving W) from w would lead to winning
games for player i. By adding an edge (w, v) to F which stays inside W , the resulting strategy
would generate a subset of those continuations but with more edges, thereby contradicting the
maximality of (W,F). Therefore, maximal strategies always choose a move except if w ∈W∩Vi

is a sink or if all outgoing edges leave W .

Proposition 1 If the winning condition Ci does not depend on finite prefixes, then the support
of maximal i-strategies is unique. This means, if (W1, F1) is maximal and (W2, F2) is an
arbitrary i-strategy, then we have W2 ⊆W1.

Proof: Let (W1, F1) be maximal and (W2, F2) be an arbitrary i-strategy. Let W3 = W1 ∪W2

and F3 = F1 ∪ {(u, v) ∈ F2 | u ∈W2 \W1 }, i.e., at positions in W1 ∩W2, we give preference
to the strategy (W1, F1). Consider a game α which starts in W3 and follows (W3, F3). If α
never visits a position in W1, then α follows the i-strategy (W2, F2). Hence, α ∈ Ci in this
case. If α = pβ such that β starts at a position in W1, then β follows the i-strategy (W1, F1).
As before, we see that β ∈ Ci. Since the winning condition does not depend on finite prefixes,
we have α = pβ ∈ Ci. Thus, (W3, F3) is an i-strategy. By maximality of (W1, F1) and since
(W1, F1) ≤ (W3, F3), we have (W1, F1) = (W3, F3) and thus W2 ⊆W3 = W1. ✷

In the above situation, the support of a maximal i-strategy is called the winning region of
player i. A game is positionally determined if, for i ∈ {0, 1}, there exist i-strategies (Wi, Fi)
such that V = W0 ∪W1. Since W0 and W1 are the supports of winning strategies for different
players, we haveW0∩W1 = ∅. Positional determinacy is also known asmemoryless determinacy
in the literature. If a game G is positionally determined and player i has an arbitrary (not
necessarily positional) winning strategy for (G, v), then i also has a positional winning strategy
for (G, v): the opponent 1 − i cannot win (G, v) with a positional strategy against player i’s
arbitrary strategy. Since G is positionally determined, one of the players has a positional
winning strategy for (G, v); and this has to be player i because it is not player 1− i. By solving
a game (G, v), we mean deciding which player has a winning strategy (if it exists at all); if G
is positionally determined, then exactly one of the players has a positional winning strategy
(and the other player loses no matter which strategy they use).

Remark 1 Sometimes one needs to distinguish whether there is one winning strategy for all
starting positions in the winning region or whether for every starting position in the winning
region there exists an individual winning strategy. Proposition 1 shows that these two properties
are equivalent for positional strategies and winning conditions which do not depend on finite
prefixes. ✸

5

3 Reachability Games and Attractors

Let G = (V0, V1, E) be a game graph, and let V = V0 ∪ V1. Let M ⊆ E∞ be the paths which
cannot be extended to the right (the identifier M is for maximal paths). In other words, we
have α ∈ M if either α is infinite or α ends in a sink. In a reachability game, the objective
of one of the players is to reach a position in R ⊆ V . Suppose that player i wins at all
positions in R in which case we call R the target set of player i. More formally, the winning
condition for player i is Ci = (V \ R)∗R ∩ E∗, and the winning condition for player 1 − i is
C1−i = M ∩ (V \R)∞. The winning conditions does not depend on finite prefixes.

Theorem 1 Reachability games are positionally determined.

Proof: Let (Wi, Fi) be a maximal i-strategy. Note that R ⊆Wi. Let W1−i = V \Wi. It remains
to show that player 1−i has a positional winning strategy with support W1−i. If u ∈W1−i∩Vi,
then there exists no edge (u, v) ∈ E with v ∈Wi; otherwise (Wi ∪{u} , Fi ∪ {(u, v}) is a bigger
i-strategy than (Wi, Fi). Next, we consider u ∈ W1−i ∩ V1−i. If u is a sink, then all games
ending in u are winning for player 1− i since it is impossible to reach a position in R. If u is
not a sink, then there exists an edge (u, v) ∈ E with v ∈ W1−i; otherwise (Wi ∪ {v} , Fi) is a
bigger i-strategy than (Wi, Fi). We set σ(u) = v. This leads to a strategy σ : W1−i → W1−i

such that σ(u) is defined for all u ∈W1−i ∩ V1−i which are not a sink. Every game α starting
in W1−i and following σ never leaves W1−i. It follows that α cannot enter a position in R and,
hence, α ∈ C1−i. ✷

Example 1 We consider the following reachability game with vertices V0 = {a, c, e} and V1 =
{b, d, f }, edges E = {ad, da, be, eb, de, ed, bc, ef, fc} where xy denotes the pair (x, y), and target
set R = {c, f } of player 0. A graphical representation is

a b c

d e f

W1 W0

Round vertices belong to player 0 and square vertices belong to player 1. Double borders are
used for states in the target set. The winning regions are W0 = {b, c, e, f } and W1 = {a, d}
and the (in this case unique) positional strategies are (Wi, Fi) with F0 = {da} and F1 = {ef},
indicated by thicker arrows. ✸

The proof of Theorem 1 suggests that the winning regions of the two players can be defined
more explicitly. A set of vertices A ⊆ V is i-attracting if the following two conditions hold:

1. If u ∈ Vi and there exists an edge (u, v) ∈ E with v ∈ A, then u ∈ A.
2. If u ∈ V1−i is not a sink and all edges (u, v) ∈ E satisfy v ∈ A, then u ∈ A.

The i-attractor of R ⊆ V is the smallest set of vertices which is i-attracting and contains R. It
is well-defined because V is i-attracting, and the intersection of all sets which both contain R

and are i-attracting also satisfies both properties. The i-attractor of R in a game graph G is
denoted by attri(G,R).

6

Proposition 2 Let (W,F) be a maximal i-strategy for reaching the target set R within a game
graph G. Then we have W = attri(G,R).

Proof: Let A = attri(G,R) and B = V \A. Since (W,F) is maximal, the set W is i-attracting
and it contains R; see the proof of Theorem 1 for details. This shows A ⊆W . For the converse,
we show B ⊆ V \W by giving a (1 − i)-strategy σ : B → B. Consider a position u ∈ B. We
have u 6∈ R because R ⊆ A. In particular, if u is a sink, then reaching u is winning for player
1− i. Therefore, we can assume that u is not a sink. If u ∈ Vi, then there is no edge (u, v) ∈ E

with v ∈ A because A is i-attracting. Similarly, if u ∈ V1−i, then there exists an edge (u, v) ∈ E

with v 6∈ A and we can set σ(u) = v. Every game which starts in B and follows the strategy
σ stays in B. Therefore, player 1 − i wins at all positions in B since he can avoid reaching a
position in R. This shows B ⊆ V \W and, hence, W ⊆ A. ✷

A consequence of Theorem 1 and Proposition 2 is that player 1 − i wins at all positions in
V \ attri(G,R).

4 Optimal Strategies for Reachability Games

In this section, we consider reachability games where the set of positions V is finite. We still
assume that player i’s winning objective is to reach a position in R ⊆ V . Let (Wi, Fi) be
a maximal i-strategy. Then for all starting positions u ∈ Wi, there is a maximal number of
moves which are necessary for games which follows (Wi, Fi) to reach a position in R. We
are interested in a strategy for player i which minimizes this number. We do not aim at
optimizing maximal (1− i)-strategies (W1−i, F1−i) because usually games starting in W1−i and
following (W1−i, F1−i) are infinite; the only other case is that the game ends in a sink and if
we would want to optimize the number of moves when targeting a sink, we could apply the
same algorithms as below for player 1− i reaching this set of sinks.

The winning distance is a function d : V → N ∪ {∞} defined by:

• d(u) = 0 for u ∈ R,
• d(u) = min {1 + d(v) | (u, v) ∈ E } for u ∈ Vi \R,
• d(u) = max {1 + d(v) | (u, v) ∈ E } for u ∈ V1−i \R.

Here, we let min ∅ = max ∅ = ∞ and 1 +∞ = ∞. A similar concept as the winning distance
is the rank of a position which is only defined for elements of the attractor [18, p.146]. Since d
occurs on both sides of the definition, we need to show that the winning distance is well-defined.

Lemma 1 The winning distance is unique and well-defined. Moreover, we have d(u) < ∞ if
and only if u ∈Wi.

Proof: A straightforward induction on n ∈ N shows that if d(u) ≤ n, then u ∈ Wi. Next, we
show that u ∈ Wi implies d(u) < ∞. Since V is finite, the i-attractor of R can be computed
by starting with R and successively adding positions which contradict the current set to be
i-attracting; this is repeated until the set does not change anymore. By using this naive
algorithm, every time we add a position u, we can define d(u) < ∞ (and possibly update
previously defined values d(v); these updates only affects positions v satisfying d(v) > d(u)
before and after the update). Since Wi = attri(G,R), we have d(u) < ∞ for all u ∈ Wi. This
concludes the second part of the lemma. Moreover, we have shown that there exists at least
one winning distance.

7

Suppose that d and d′ are two different winning distances. Then there exists u ∈ V with
d(u) 6= d′(u). At least one of d(u) and d′(u) is in N; therefore, we have u ∈ Wi which shows
that both d(u) and d′(u) are in N. Among all u ∈ V with d(u) 6= d′(u), let n be minimal
such that either d(u) > n = d′(u) or d′(u) > n = d(u). Without loss of generality, suppose
that d′(u) > n = d(u). We have u 6∈ R because d′(u) > 0. If u ∈ Vi \ R, then there exists an
edge (u, v) ∈ E with n − 1 = d(v) = d′(v); the latter equality holds by minimality of n. This
edge yields d′(u) ≤ n, a contradiction. Let now u ∈ V1−i, then all edges (u, v) ∈ E satisfy
d(v) ≤ n− 1 and hence d(v) = d′(v), again by minimality of n. Note that there exists at least
one such edge since max ∅ =∞ but d(u) <∞. As before, this shows d′(u) ≤ n, a contradiction.
Therefore d(u) 6= d′(u) is not possible. ✷

The following example shows that the second claim of Lemma 1 does not directly hold for
infinite graphs. For finite game graphs, attractors are often defined as

⋃

k≥0 {v ∈ V | d(v) ≤ k };
see e.g. [18, p.145]. The example also shows that this approach does not work directly for
graphs where positions can have infinitely many successors. Depending on the purpose, ordinal
numbers might be used for a generalization of the winning distance towards infinite graphs.

Example 2 Let V = V1 = N ∪ {a, b}, i.e., all positions belong to player 1. Let R = {0} ⊆ N

be the target set of player 0. The edges are
{

(i+ 1, i) ∈ N2
∣

∣ i ≥ 0
}

∪ {(b, i) | i ∈ N} ∪ {(a, b)}.

a b

0 1 2 3 · · ·

· · ·

All positions in V are winning for player 0: all paths eventually end in 0 because N is well-
ordered. The winning distance of the vertex n ∈ N is d(n) = n; in particular, the winning
distances of the successors of b are unbounded. Therefore, the winning distance of b cannot be
a natural number. Also note that the winning distance of a would need to be greater than d(b).

✸

Lemma 2 Let (Wi, Fi) be a maximal i-strategy for a reachability game in a finite game graph
and let d : V → N ∪ {∞} be the winning distance. For every u ∈ Wi, there exists a game α

starting in u and following (Wi, Fi) which uses at least d(u) moves.

Proof: This is trivial if d(u) = 0. Let now d(u) > 0; in particular u 6∈ R. First, consider the
case u ∈ Vi. Let (u, v) ∈ Fi. Then 1 + d(v) ≥ d(u) and, by induction, there exists a game β

starting at v and following (Wi, Fi) such that β uses at least d(v) moves. Then α = uβ is a
game which starts at u and which follows (Wi, Fi) and uses at least 1 + d(v) ≥ d(u) moves.

Next, let u ∈ V1−i. Then there exists at least one edge (u, v) ∈ E because u ∈ Wi \ R.
Among the neighbors of u, we choose v with d(u) = 1+d(v); the position v exists by definition
of d(u). By induction, there exists a game β starting at v and following (Wi, Fi) such that β
uses at least d(v) moves; as before, α = uβ is the desired game. ✷

When trying to optimize the worst-case number of moves necessary to reach R, then Lemma 2
shows that one cannot be better than the winning distance. A maximal i-strategy σ : Wi → Wi

actually achieves this bound if and only if for all u ∈ Wi ∩ Vi we have that σ(u) = v implies
d(u) = 1+d(v). In this case, we say that σ is optimal. For player 1− i, every maximal winning
strategy is optimal.

8

Proposition 3 Consider a reachability game with n vertices and m edges. Then we can
compute optimal positional winning strategies for both players in time O(n+m). In particular,
this computation yields attractors.

Proof: We basically use an adaption of the breadth-first search algorithm (and if all positions
belong to player i, then it actually is the usual breadth-first search algorithm; see e.g. [2,
Chapter 20.2]). Our algorithm uses the following data structures:

• A set P which is initialized as P =
{(

{u ∈ V | (u, v) ∈ E } , v
)
∣

∣ v ∈ V
}

. For every v ∈ V ,
the set P gives access to its predecessors. We assume that for a given v ∈ V , we have
access to the pair

(

U, v
)

∈ P in constant time. We will successively remove edges in
P such that the remaining edges define strategies for the respective players. If we say
that we remove an edge (u, v) from P, then what we actually do is replacing the pair
(U, v) ∈ P by (U \ u, v).

• A function n : V1−i → N which gives the number of neighbors (i.e., successors, not
predecessors) of a vertex in V1−i in the graph defined by P. Initially, we let n(u) be the
out-degree of u.

• A function D : V → N ∪ {∞} which is the current estimate of the winning distance d.
Initially, we have D(u) = 0 for u ∈ R and D(u) = ∞ for u 6∈ R. For each vertex u, the
value D(u) is assigned a new value at most once; if such an assignment occurs, then before
this assignment, we have D(u) =∞ and after this assignment we have D(u) = d(u) <∞.
If at some point we have D(u) <∞ for u ∈ V1−i \R, then n(u) = 0.

• A FIFO queue Q of vertices in V . Initially, Q contains the vertices in R in some arbitrary
order. The queue Q contains the vertices which still need to propagate their distance
D to their predecessors. An invariant of Q will be that it only contains vertices v with
D(v) = d(v) <∞ and that vertices with smaller winning distance are closer to the front
of the queue than vertices with larger winning distance.

After this initialization, the algorithm proceeds as follows. While Q 6= ∅ do:

1. v ← delete-first(Q) and let (U, v) ∈ P.
2. For all u ∈ U do

• If u ∈ Vi, then

a) If D(u) =∞, then D(u)← 1 +D(v) and append u to Q;
b) else we remove the edge (u, v) from P.

• If u ∈ V1−i, then

c) We remove the edge (u, v) from P and set n(u)← n(u)− 1.
d) If n(u) = 0, then D(u)← 1 +D(v) and append u to Q.

For u ∈ Vi, we set D(u) = 1 +D(v) when considering the first edge (u, v); and for u ∈ V1−i,
we set D(u) = 1 + D(v) when considering the last remaining edge (u, v). In both cases, the
invariant on the order of the elements in Q ensures that D(u) = d(u). In step 2d, if n(u) = 0,
we could remember the move (u, v) since, even though it is losing for player 1 − i, always
choosing these moves achieves a maximal winning distance for player i (it might be a natural
desire of player 1− i to delay the defeat for as long as possible).

Every vertex v ∈ V is added at most once to the queue Q. In the sum of all iterations of
the loop in step 2, we consider every edge of the graph at most once. Since the initialization
is also possible in linear time, the running time of the above algorithm is O(n+m).

9

After running the algorithm, D = d is the winning distance and thus the winning positions
are Wi = {u ∈ V |D(u) <∞} and W1−i = {u ∈ V |D(u) =∞}. The winning strategy σi :
Wi → Wi for player i at a position u ∈ (Wi ∩ Vi) \R is given by σi(u) = v with (u, v) ∈ E and
D(u) = 1 + D(v); note that in this case, after the algorithm stops, there exists exactly one
pair (U, v) ∈ P such that D(v) <∞ and u ∈ U . The winning strategy σ1−i : W1−i →W1−i for
player 1− i at a non-sink position u ∈W1−i∩V1−i is given by σ1−i(u) = v with (u, v) ∈ E such
that v ∈ W1−i; note that if u is not a sink, then there exists at least one such edge because
n(u) > 0. Moreover, after the algorithm terminates, every such edge is represented by a pair
(U, v) ∈ P with u ∈ U . In other words, winning strategies for both player i and 1− i are given
by the edges in P; however, for player i, we need to exclude the edges leading to positions
outside Wi. ✷

5 Parity Games

The game graph G = (V0, V1, E, χ) of a parity game is equipped with a vertex coloring χ :
V → {1, . . . , d} for an integer d ≥ 1. The coloring χ helps to formulate the winning conditions
of the players. Sometimes, if we prefer the smallest color to be even, the coloring has the
form χ : V → {0, . . . , d− 1}. The identifier d is for dimension. In the literature, the colors
are called priorities, too. The subgraph of G induced by a set of vertices W ⊆ V is G[W] =
(V0 ∩ W,V1 ∩ W,E′, χ′) with E′ = {(u, v) ∈ E | u, v ∈W } and χ′ : W → {1, . . . , d} is the
restriction of χ. Similarly, G −W is the subgraph of G induced by V \W . In a parity game,
player 0 is called Even and player 1 is called Odd. The set of games C contains all infinite
paths and all finite paths ending in a sink. Even wins all finite games which end in a sink in V1

and infinite games where the largest color which is seen infinitely often is even. Symmetrically,
Odd wins all finite games which end in a sink in V0 and all infinite games where the largest
color which is seen infinitely often is odd. The winning condition regarding sinks means that
if players cannot move, they lose immediately.

Whenever there are two colors q and q + 2 such that there is no position with color q + 1,
then we can identify q and q + 2 (for instance, by using the color q for all vertices with color
q + 2). In particular, we can assume that the dimension d is the number of different colors in
the game graph.

Remark 2 In Section 7, we consider edge colorings for parity games. In this setting, a game
graph has the form G = (V0, V1, E, χ) with χ : E → {1, . . . , d}. As before, if the owner of a
position cannot move, the owner loses immediately. Otherwise, in an infinite game player i

wins if the largest number q, which is seen infinitely often on the edges, satisfies q ≡ i mod 2.
A parity game with vertex coloring χ can be transformed into a game with edge coloring χ′

simply by defining χ′(e) by χ(u) if u is the source of e. For the other direction we introduce
a smallest color 0, and we subdivide every edge e = (u, v) into a path u → ve → v for a new
vertex ve. The old vertices are colored with 0 and the color of ve is the color of e. ✸

Remark 3 Reachability games can be encoded as parity games with two colors. Let G =
(V0, V1, E) be the game graph of a reachability game where (w.l.o.g.) it is player 0’s objective
to reach R ⊆ V . For all v ∈ R, we remove all outgoing edges. Then for all sinks v (which
now includes all positions in R), we introduce a self-loop (v, v). After these two modifications,
the resulting edge set is called E′. We let χ(v) = 2 if v ∈ R; otherwise, we set χ(v) = 1. The

10

parity game G′ = (V0, V1, E
′, χ) now has the following property: player 0 wins the reachability

game (G, v) with target set R if and only if player 0 wins the parity game (G′, v). ✸

As noticed in Remark 3, we can eliminate all sinks in a parity game by introducing self-loops:
let G = (V0, V1, E, χ) be a parity game with vertex coloring χ : V → {1, . . . , d}. Let Si ⊆ Vi

be the sinks belonging to player i. For every position v ∈ S0 ∪ S1, we introduce a self-loop
(v, v). The resulting edge set is called E′. Let χ′ : V → {1, . . . ,max {2, d}} be a re-coloring of
the vertices with

χ′(v) =

{

i+ 1 if v ∈ Si for i ∈ {0, 1} ,

χ(v) otherwise.

Then (G, v) and (G′, v) for G′ = (V0, V1, E
′, χ′) have the same winner. The advantage is that

the game graph G′ is without sinks. However, this construction introduces new edges and for
d = 1 it increases the number of colors, in general.

A long sequence of results culminated in the following theorem [8, 3, 13, 12, 18].

Theorem 2 Parity games are positionally determined.

Proof: Let G = (V0, V1, E, χ) be the game graph of a parity game with coloring χ : V →
{1, . . . , d}. We proceed by induction on d. If d = 1, then Even wins at all positions in
attr0(G,S1) where S1 are the sinks in V1; all other positions are winning for Odd. Let now
d > 1 and suppose that d ≡ i mod 2 for i ∈ {0, 1}. Let W1−i be the support of a maximal
(1 − i)-strategy and let Wi = V \W1−i. We need to show that there exists an i-strategy with
support Wi. The sinks in Vi are all in W1−i. On positions in attr1−i(G,W1−i) \W1−i, player
1 − i can force the game to visit a position in W1−i (see Proposition 2) and from there on,
player 1−i can follow the (1−i)-strategy with supportW1−i. Therefore, attr1−i(G,W1−i) is the
support of a winning strategy and, by maximality of W1−i, we have W1−i = attr1−i(G,W1−i).
It follows that all outgoing edges of positions in Wi ∩ V1−i lead to positions in Wi, and every
position in Wi ∩ Vi has at least one outgoing edge to a position in Wi.

Let H be the subgraph of G induced by Wi, let Ud = {v ∈Wi |χ(v) = d }, let A =
attri(H,Ud) and let G′ be the subgraph of H induced by Wi \A.

A
Ud

Wi \ A

Wi W1−i

H

G′

G

A (1− i)-strategy with nonempty support W ′
1−i on the game graph G′ yields a (1− i)-strategy

with support W1−i ∪W ′
1−i on G. Therefore, there is no nonempty (1 − i)-strategy on G′. By

induction on the number of colors, there exists a maximal i-strategy σ′ on G′ with support
Wi \ A. This leads to the following strategy for player i on positions in Wi within the game
graph G:

• At positions in Ud ∩ Vi, player i moves to a position in Wi.

11

• At positions in (A \ Ud) ∩ Vi, player i moves according to the positional strategy for
reaching Ud; see Proposition 2.

• At positions in (Wi \A) ∩ Vi, player i moves according to σ′.

The rules above define a positional strategy σ for player i with support Wi. To see that it is
winning, consider any game α starting at a position in Wi which follows σ. Since player i never
makes a move to W1−i and since player 1− i can never make a move to W1−i, all positions of
α are in Wi. If α is finite, then it ends in a sink in V1−i because there are no sinks in Vi ∩Wi;
in particular, α is winning for player i in this case. We can therefore assume that α is infinite.
If α enters A infinitely often, then α infinitely often visits a position in Ud. Therefore, the
maximal color d is seen infinitely often; therefore, α is winning for player i. If, after some finite
prefix, α stays in G′, then α is winning for player i by choice of σ′. This shows that σ is an
i-strategy. ✷

Example 3 We consider the following parity game. Round vertices belong to Even, square
vertices belong to Odd. The label x:n means that the name of the vertex is x and its color is n.

a:2 b:4 c:5 d:1

e:2 f :3 g:2 h:1

W1W0

Even’s winning region is W0 = {a, b, c, e, f, g, h} and Odd’s winning region is W1 = {d}. The
respective winning strategies are indicated using thicker edges. We note that Even’s winning
strategy is not unique since the strategy’s move (a, b) could be replaced by (a, e). ✸

Let the maximal color satisfy d ≡ i mod 2 for i ∈ {0, 1}. The proof of Theorem 2 shows that
as soon as we know the winning positions of player 1 − i, we can easily compute a winning
strategy for player i. However, the proof implicitly also gives an algorithm for computing the
winning positions W1−i of player 1− i. Let X ⊆ V be minimal such that

• X contains all sinks in Vi,
• X = attr1−i(G,X), and
• (using the subgraph G′ from the proof of Theorem 2) if W ′

1−i are the winning positions
of player 1− i in the game G′, then W ′

1−i ⊆ X.

The support W1−i of a maximal (1 − i)-strategy satisfies the above properties; therefore we
have X ⊆ W1−i. On the other hand, the proof of Theorem 2 gives a winning strategy for
player i for all positions in V \X. This yields X = W1. In the next section, we consider this
approach for solving finite parity games.

6 Zielonka’s Algorithm for Parity Games

Let the number of positions V in G be finite and suppose that the largest color d satisfies
d ≡ i mod 2 for i ∈ {0, 1}. We can assume that there is at least one vertex with color d;

12

otherwise, we decrease the dimension d. We initialize W1−i = attr1−i(G,Si) where Si are the
sinks belonging to player i. Then we iterate the following steps until W1−i does not increase
anymore (i.e., until W ′

1−i = ∅ or W1−i = V):

1. Wi ← V \W1−i and H ← G[Wi]
2. Ud ← {v ∈Wi |χ(v) = d }
3. A← attri(H,Ud)
4. G′ ← G[Wi \A]
5. Let W ′

1−i be the winning positions of Odd in G′.
6. W1−i ←W1−i ∪W ′

1−i

7. W1−i ← attr1−i(G,W1−i)

Note that Step 5 consists of a recursive call for a game graph with fewer vertices (since there
is at least one vertex v ∈ V with χ(v) = d) and colors {1, . . . , d− 1}. There is no recursive
call if G′ is empty.

After the algorithm terminates, the winning regions of the two players areWi and W1−i; note
that the correctness of the algorithm was proven in the previous section. The above algorithm
can also compute a (1 − i)-strategy with support W1−i: Initially, the strategy with support
W1−i is the strategy for winning a reachability game. If W1−i is increased in Step 6, then we
unite the two winning strategies (the strategy for W1−i before the assignment and the strategy
for W ′

1−i). If W1−i is increased in Step 7, then on the new positions we play according to the
strategy for reaching the positions in W1−i before this assignment.

The i-strategy with support Wi can be computed as follows: During the last iteration of the
loop, we have W ′

1−i = ∅; moreover, we can assume that the recursive call in Step 5 also returns
an i-strategy σ′ with support Wi \ A. As in the proof of Theorem 2, a winning strategy for
player i is as follows: at position in Ud, player i makes some arbitrary move to a position in Wi;
at positions in A \Ud, player i moves according to the positional strategy for reaching Ud; and
at positions in W0\A, player i moves according to σ′. Without any significant additional effort,
we can therefore assume that the above algorithm also computes the corresponding winning
strategies. This approach for computing maximal positional winning strategies is known as
Zielonka’s algorithm.

Theorem 3 Let G be a parity game with n vertices, m edges, and d colors. Then Zielonka’s
algorithm computes maximal winning strategies for both players in time O

(

nd−1(n+m)
)

and,
thus, in time O

(

nd+1
)

.

Proof: Let c ≥ 1 be a constant such that the initialization and one iteration of the loop when
omitting the time for the recursive call in Step 5 takes time at most c·(n+m); see Proposition 3.
Let f(n, d) ·c ·(n+m) be the running time of the algorithm. It suffices to show that f(n, 1) ≤ 1
and f(n, d) ≤ 2nd−1 for d ≥ 2. This is true for d = 1 because there is no recursive call. Let
now d ≥ 2. The game graph G′ is always smaller than G. Since the size of H decreases with
every iteration, there are at most n iterations of the loop. Every recursive call in Step 5 uses
at most n− 1 positions and d− 1 colors. Hence, the worst-case running time satisfies

f(n, d) · c · (n+m) ≤ n ·
(

f(n− 1, d− 1) · c · (n +m) + c · (n+m)
)

Dividing by c · (n+m) yields

f(n, d) ≤ n ·
(

f(n− 1, d− 1) + 1
)

(1)

13

For d = 2, we obtain f(n, 2) ≤ n
(

f(n − 1, 1) + 1
)

≤ 2n = 2nd−1 because f(n− 1, 1) ≤ 1. Let
now d > 2. Using Equation (1), we see that

f(n, d) ≤ n ·
(

2(n − 1)d−2 + 1
)

by induction hypothesis

≤ n ·
(

2(n − 1)nd−3 + 1
)

since d ≥ 3

= n ·
(

2nd−2 − 2nd−3 + 1
)

≤ 2nd−1 since −2nd−3 + 1 < 0

The second part of the statement follows since O(n+m) ⊆ O(n2). ✷

Example 4 Consider the following parity game with 2n vertices and 2 colors. Even’s posi-
tions are V0 = {a1, . . . , an} and Odd’s positions are V1 = {b1, . . . , bn}. All vertices in V0 have
the color 1 and all vertices in V1 have the color 2. We have loops (ai, ai) and edges (bi, ai) for
all i as well as edges (ai, bj) for all i < j. All positions are winning for Odd. The game graph
for n = 4 is:

b1:2 a1:1 b2:2 a2:1 b3:2 a3:1 b4:2 a4:1

Initially, we have W1 = ∅. In the first iteration of Zielonka’s algorithm, we compute the 0-
attractor of U2 = V1 which is V \{an}. This computation uses a quadratic number of steps; see
Proposition 3. Then the recursive call returns W ′

1 = {an}, after which we have W1 = {an, bn}
by computing the 1-attractor. The next iteration is similar, but with n decreased by 1. Since
we have n iterations, this yields a cubic running time of Zielonka’s algorithm. For d = 2, this
shows that the bound of O(n3) on the running time of Zielonka’s algorithm is tight. ✸

7 Lehtinen’s Algorithm for Parity Games

The idea of Lehtinen’s algorithm is to translate a given parity game into another parity game
such that solutions of the new game yield solutions of the original game. Moreover, applying

Zielonka’s algorithm to the new parity game yields a quasi-polynomial running time 2log
O(1) n.

We need the following notions for graphs. A nonempty set of vertices U ⊆ V is strongly
connected if for all u, v ∈ U there exists a path from u to v. Every singleton subset {v} ⊆ V is
strongly connected. A strongly connected component is a maximal strongly connected subset;
i.e., U is a strongly connected component if there is no strongly connected subset U ′ with
U (U ′ ⊆ V . Every graph can be partitioned into strongly connected components; if U and
U ′ are different strongly connected components, then there cannot exist paths both from U to
U ′ and from U ′ to U . Therefore, by successively moving from one strongly connected compo-
nent to another strongly connected component, one cannot visit the same strongly connected
component twice. In particular, in a finite graph, there exist strongly connected components
U such that one cannot reach any other strongly connected; in this case U is called terminal.

Let G = (V0, V1, E, χ) be the game graph of a parity game with vertices V = V0 ∪ V1 and
vertex coloring χ : V → {1, . . . , d}. The r-register graph Rr(G) of G is again a game graph,

14

but with an edge coloring, see Remark 2. To avoid confusion, the vertices of Rr(G) are called
states. The states are the elements (v, x, p) ∈ V × Nr × {s, t} where x = x1 · · · xr satisfies
x1 ≤ · · · ≤ xr. States with p = s are called reset states; states with p = t are called transition
states. All reset states belong to Even, every transition state (v, x, t) belongs to the owner
of v. For every register j ∈ {1, . . . , r} and every reset state (v, x, s), there is an outgoing
edge with label reset(j). The target state is (v, y, t) with y = (0, x1, . . . , xj−1, xj+1, . . . , xr).
Formally, the label of the edge is not important it helps with reasoning about the game. If
there is an outgoing edge at a transition state (v, x, t), then its target is a reset state (w, y, s)
with (v,w) ∈ E and yj = max(χ(w), xj). The first kind of edges are called resets and the
second kind of edges are called transitions. All paths alternate between resets and transitions.
The color of all transitions is 0; the color of an edge with label reset(j) is 2j if the value xj of
register j before the reset is even and 2j + 1 if xj is odd. The r-register game Rr(G, v, x) is
the parity game with initial state (v, x, s); its game graph is the subgraph of Rr(G) induced
by the states reachable from (v, x, s). For every game α in Rr(G) starting at a state (u, x, p)
there exists a corresponding game αG in G starting at u. The game αG is the sequence of first
components at the transition states of α. Note that register games are not symmetric for the
two players: Firstly, all reset states belong to Even. And secondly, resets of register j can
have even and odd colors, but the odd color 2j +1 is larger than the corresponding even color
2j. It is this second property which leads to the following lemma.

Lemma 3 Let r ≥ 1, let α be a game in Rr(G) and let αG be the corresponding game in G.
If αG is winning for Odd, then so is α.

Proof: Let αG be winning for Odd. The game α ends in the sink (v, x, t) if and only if αG ends
in the sink v. In particular, both sinks (v, x, t) and v then belong to the same player. Also
note that reset states cannot be sinks. Since αG is winning for Odd, we can assume that α

is infinite (otherwise, α would end in a sink belonging to Even and therefore be winning for
Odd, as desired).

Let q be the largest color which is seen infinitely often during the game αG, and let j be
the largest register such that Even infinitely often plays reset(j) in the game α. There is a
point in αG after which no color larger than q occurs. At the corresponding point in α, we
can wait for j resets of register j. From then onwards, the value xj of register j is at most q.
In particular, whenever we then see the color q in αG, the contents of register j is q, and it
stays q at least until the next reset of register j. Therefore, there are infinitely many resets of
register j when its value is q. Since αG is winning for Odd, the number q is odd. We therefore
infinitely often see the number 2j + 1 in the colors of α. Since all larger registers are reset
only finitely often, 2j + 1 is the largest color of α which is seen infinitely often. Therefore, α
is winning for Odd. ✷

Lemma 4 If Odd wins (G, v), then Odd wins Rr(G, v, x) for all r ≥ 1 and all x ∈ Nr.

Proof: If Odd wins (G, v), then there exists a positional strategy (V, F) such that Odd wins
(G, v) by following this strategy. We adapt this strategy to Rr(G): at a state (u, y, t) with
u ∈ V1, Odd moves to (u′, y′, s) with (u, u′) ∈ F . It remains to show that this strategy is
winning for Odd in the register game Rr(G, v, x). Let α be a game starting at (v, x, s) and
following the above strategy. The corresponding game αG in G starts at v and follows the
strategy (V, F). Therefore αG is winning for Odd. By Lemma 3, Odd wins the game α. ✷

15

Remark 4 Positional determinacy of parity games (Theorem 2) leads to the following con-
sequence of Lemma 4: if Even wins Rr(G, v, x) for some r ≥ 1 and x ∈ Nr, then Even

wins (G, v). When following an analogous approach as above, then a direct proof for this con-
sequence would need to translate a winning strategy for the register game Rr(G, v, x) into a
winning strategy for (G, v). However, even if Even’s winning strategy for Rr(G, v, x) is posi-
tional, the resulting strategy for (G, v) might not be positional because some different contents
of the registers could lead to different moves at a given position in G. ✸

For a weak converse of Lemma 4, we will use induction on the number of vertices. During
this induction, smaller register games occur. Here, “smaller” either refers to the size of the
corresponding game graph G or the number of registers. If G′ is a subgraph of G, then Rr(G′)
is a subgraph of Rr(G). If q ≤ r, then every positional strategy on Rq(G) for Even defines a
strategy on Rr(G) in which Even never plays reset(j) for j > q.

During the proof of the following proposition, we will use a slightly different notion of a
positional strategy. Instead of just the support, we assume that a positional strategy σ : V → V

for player i is defined for all v ∈ Vi which are not sinks (i.e., σ is also defined for the positions
outside the support). Moreover, the proof will use defensive strategies. A strategy for Even

in Rr(G) is defensive if reset(r) is never played when the contents of register r is odd.

Proposition 4 If Even wins (G, v) and |V | < 2r, then Even wins Rr(G, v, x) for all x ∈ Nr.

Proof: We assume without restriction that all vertices in G are reachable from v. We proceed
by induction on |V |. First, suppose that V = {v}. If v is a sink, then it belongs to Odd

because Even wins; in this case, after playing reset(1) at state (v, x, s), the game in Rr(G)
also ends in a sink belonging to Odd. If v is not a sink, then there is a self-loop and the color
χ(v) is even (again because Even is wins). Even again always plays reset(1) and after the
first reset (in which case the color depends on x), the color of all resets is 2. Since all other
colors are 0, Even wins the register game. If r = 1, then |V | = 1 and this case was already
considered. In the remainder of the proof, we can therefore assume that r > 1 and |V | > 1.

We fix a positional winning strategy for Even for (G, v). At transition states in the register
game, Even always moves according to her strategy for G. We can remove all edges starting
at Even’s positions in G which are not part of the winning strategy. Since now, all reachable
positions belonging to Even have exactly one outgoing edge, we can transfer ownership of
these positions to Odd. In particular, now all transition states of Rr(G, v, x) belong to Odd

and the game alternates between Even’s resets and Odd’s transitions.
We show that Even can win Rr(G, v, x) against every positional strategy of Odd. Let T

be the transitions defining Odd’s strategy. Consider is a strongly connected subgraph G′ of G
and let w be a vertex of G′ such that (w, y, s) is a state of Rr(G, v, x). Then Rr(G′, w, y) is a
subgraph of Rr(G, v, x). We say that a positional strategy of Even for Rr(G′, w, y) is leaving
this subgraph if, starting at (w, y, s) in Rr(G, v, x), alternating between Even’s strategy for
resets and Odd’s strategy T for transitions eventually leads to a state outside Rr(G′, w, y).

As before for the graph G and Even’s strategy, we can remove all transitions from the register
game except for those in Odd’s strategy T . We cannot transfer ownership because there might
be sinks owned by Odd. However, there is never any choice to be made by Odd. Even,
starting from (v, x, s), moves to some terminal strongly connected component H of Rr(G, v, x);
this means that there is no other strongly connected component which is reachable from H.
In general, Even’s strategy for reaching H is not defensive. The underlying positions (i.e.,

16

first components) of states in H form a strongly connected subgraph G′ of G. If G′ consists
of a single sink, then this sink belongs to Odd (and, thus, Even also wins the corresponding
register game). We can therefore assume that G′ is not a sink. Since every position in G′

lies on some non-trivial loop, the largest color d of G′ is even. Since H is a terminal strongly
connected component, all registers have only values which appear in G′ (otherwise, Even could
move to another strongly connected component by playing reset(r)). Next, Even goes to one
of the vertices (w, y, s) such that χ(w) = d. We now have y = (d, . . . , d); therefore, we can
apply the following claim which then completes the proof of the proposition because H cannot
be left.

Claim: Let G′ be a strongly connected subgraph of G which is not a single sink. Let d be
the largest color of the vertices of G′. Let w be a vertex of G′. Let y = (y1, . . . , yr) be such
that yr ≥ d and yr is even, and yj ≤ d for all j < r. Then Even has a defensive strategy for
Rr(G′, w, y) which is either winning or which is leaving Rr(G′, w, y).

Proof of the claim: The color d is even because Even wins (G, v). The proof is by induction
on the number of vertices in G′. If G′ contains a single vertex, then Even always plays reset(1)
with color 2. This either yields an infinite game with the maximal infinite color being 2, or
it ends in a sink belonging to Odd, or it leaves Rr(G′, w, y). In either case, the claim is true.
Let now G′ have at least two vertices. Let Ud consist of all vertices of G′ with color d. Let
G1, . . . , Gk be the strongly connected components of G′ − Ud. Some of the components might
be sinks – even if G′ does not have any sinks. If Gj has less than 2r−1 vertices, then the
induction hypothesis in the proof of the proposition yields a winning strategy for the (r − 1)-
register game on Gj . Since G has less than 2r vertices, at most one component has ≥ 2r−1

vertices. Let this component be G1; (it might be that there is no such component, in which
case we can simply assume that G1 is never visited). It remains to give winning strategies for
Even for register games on G1 and on Ud. Suppose that we have such strategies, then Even

always plays these winning strategies until Odd’s strategy T forces her to move to

• a register game on another strongly component G1, . . . , Gk,
• a register game on Ud, or
• to leave Rr(G′, v, x).

In the first two cases, Even again applies the winning strategy of the corresponding register
game. If the last case occurs, then the claim is true. Note that every path in G′ from Gj to
Gℓ and back to Gj with j 6= ℓ visits Ud at some point before re-entering Gj .

Next, we describe the winning strategies for the register games on G1 and on Ud. We will
maintain the following invariants: Firstly, whenever we are leaving G1, the contents of register
r will either be even or less than d. And secondly, whenever we are leaving Ud, the contents of
register r will be d. All other registers always have values ≤ d. The components G2, . . . , Gk

do not affect these invariants because the colors are ≤ d and the strategies never play reset(r).
At reset states (u, y, s) with u ∈ Ud, Even plays reset(r) and moves to a transition state

(u, y′, t). When entering (u, y, s), the invariants ensure that the contents yr of register r is an
even number ≥ d and yj = d for all j < r. Therefore, the color of this reset edge is 2r and the
value y′r of register r after the reset is yr−1 = d because r ≥ 2.

It remains to consider the component G1. Even plays reset(r − 1) until all registers except
for register r have a value which occurs in G1 or until we are leaving G1, whichever happens
first. If we are leaving G1, then all colors of the resets are ≤ 2r − 1. Otherwise, the induction
hypothesis in the proof of the claim yields a defensive winning strategy for the register game

17

on G1, and Even continues by following this strategy. Note that all resets in following a
defensive strategy have colors ≤ 2r. Odd’s strategy T might force us to leave G1 with a
register configuration where the top register is smaller than d (and this value could even be
over-written by another number smaller than d in one of the other components G2, . . . , Gk)
but it will again be d when re-entering G1 since we need to visit Ud before re-entering.

A game which follows Even’s strategy and which does not leave G′ can fall into one of two
categories. The first category is that it infinitely often visits states (u, y, s) with u ∈ Ud. Then
we have infinitely many resets with color 2r and all other resets have colors ≤ 2r. Therefore,
this game is winning for Even. The second category is that after some time, the game stays in
one of the components Gj (i.e., all states (u, y, p) after some finite prefix have first components
u in Gj). In this case, the game is winning because (after some finite prefix) it follows a
strategy for Gj which is winning for Even. This completes the proof of the claim and, hence,
the proof of the proposition. ✷

Theorem 4 (Lehtinen [9]) Let G be a parity game with n vertices and let r ≥ 1 such that
n < 2r. Then for every position v and every x ∈ Nr, the games (G, v) and Rr(G, v, x) have
the same winner.

Proof: If Odd wins (G, v), then Odd wins Rr(G, v, x) by Lemma 4. If Even wins (G, v), then
Even wins Rr(G, v, x) by Proposition 4. The claim follows by Theorem 2. ✷

Remark 5 Lehtinen shows that there are parity games with n vertices such that Even wins
at every vertex but she needs Ω(log n) registers to win the corresponding register game [9,
Lemma 4.4]. We revisit Lehtinen’s example in terms of vertex colorings: We inductively con-
struct a game graph Gr with 2r+1 − 2 vertices all belonging to Odd, with largest color 2r, and
such that there is exactly one position with color 2r and one with color 2r − 1. Even wins
(Gr, v) at all starting positions v but no register game Rr(Gr, v, x). Moreover, Even wins
Rr+1(Gr, v, x) for all v ∈ V and all x ∈ Nr+1. We let R1 be the following game graph with
colors {1, 2}:

1 2

The graph Gr for r > 1 is constructed from two copies of Gr−1 and two new vertices with colors
2r − 1 and 2r, respectively:

2(r − 1)

2r − 1

2r

2(r − 1)

Gr−1 Gr−1

Gr

We briefly describe Odd’s winning strategy for the r-register game in terms of the underlying
graph. As long as Even only resets registers ≤ r − 1, Odd always stays within one of graphs
Gr−1. After Even resets register r at least r times, Odd changes to the other copy of Gr−1

via one of the vertices with color 2r − 1 or 2r. Even wins the (r + 1)-register game, basically
by resetting register j + 1 at positions with color 2j and register 1 at all other positions. ✸

18

Theorem 5 (Calude, Jain, Khoussainov, Li, and Stephan [1]) If G is a parity game

with n vertices, then we can decide the winner of (G, v) in quasi-polynomial time 2log
O(1)(n).

Proof: Let the vertex coloring be χ : V → {1, . . . , d}. Let r ≥ 1 be minimal such that
n < 2r. Then r ∈ O(log n). By Theorem 4, it suffices to solve Rr(G, v,0) for 0 = (0, . . . , 0)
in quasi-polynomial time to decide the winner of (G, v). The positions of Rr(G, v,0) are
all in V × {0, . . . , d}r × {s, t}. In particular, there are at most 2n(d + 1)r positions in the
register game with colors {0} ∪ {2, . . . , 2r + 1}. We can solve this game using Zielonka’s

algorithm in time nO(r)dO(r2), see Remark 2. This yields a running time of nO(logn)dO(log2 n)

since r ∈ O(log n). We can assume that d ≤ n + 1 which yields a quasi-polynomial running

time nO(log2 n) = 2O(log3(n)). ✷

8 Conclusion

In this survey paper, we revisit Lehtinen’s quasi-polynomial algorithm for solving parity games [9],
and we provide all necessary preliminary results with full proofs. This includes the following
topics:

• attractors and positional determinacy of reachability games,
• the computation of optimal winning strategies for reachability games,
• positional determinacy of parity games,
• an analysis of Zielonka’s algorithm for solving parity games,
• and Lehtinen’s register games.

Both determinacy results are proven for arbitrary game graphs; in particular, the graphs are
allowed to be infinite. While reachability games can end after finitely many moves if the target
set is reached, typical parity games have an infinite duration (except if they end in a sink). For
a uniform treatment, we use a framework which includes both finite and infinite durations.

It would be interesting to have a tighter analysis of Zielonka’s algorithm. Friedmann gives
a game with a linear number of vertices and colors such that the running time of Zielonka’s
algorithm on this game takes time at least Fn for the n-th Fibonacci number [4]. There is still
a significant gap between this lower bound and the upper bound in Section 6. Whether finite
parity games can be solved in polynomial time is still the main open problem is this area.

References

[1] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in quasipoly-
nomial time. In H. Hatami, P. McKenzie, and V. King, editors, STOC 2017, Proceedings, pages
252–263. ACM, 2017.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT
Press, 4 edition, 2022. First edition 1990.

[3] E. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In FoCS 1991, Proceedings,
pages 368–377. IEEE Computer Society, 1991.

[4] O. Friedmann. Recursive algorithm for parity games requires exponential time. RAIRO - Theoret-
ical Informatics and Applications, 45(4):449–457, 2011.

19

[5] O. Friedmann and M. Lange. Solving parity games in practice. In Z. Liu and A. P. Ravn, editors,
ATVA 2009, Proceedings, volume 5799 of LNCS, pages 182–196. Springer, 2009.

[6] D. Gale and F. M. Stewart. Infinite games with perfect information. In Contributions to the theory
of games, vol. 2, Annals of Mathematics Studies, no. 28, pages 245–266. Princeton University Press,
Princeton, N.J., 1953.

[7] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A Guide to
Current Research, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

[8] Y. Gurevich and L. Harrington. Trees, automata, and games. In H. R. Lewis, B. B. Simons, W. A.
Burkhard, and L. H. Landweber, editors, STOC 1982, Proceedings, pages 60–65. ACM, 1982.

[9] K. Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial time. In A. Dawar
and E. Grädel, editors, LICS 2018, Proceedings, pages 639–648. ACM, 2018.

[10] K. Lehtinen, P. Parys, S. Schewe, and D. Wojtczak. A recursive approach to solving Parity Games
in quasipolynomial time. Logical Methods in Computer Science, 18, 2022.

[11] D. A. Martin. Borel determinacy. Ann. of Math. (2), 102(2):363–371, 1975.

[12] R. McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65(2):149–184,
1993.

[13] A. W. Mostowski. Games with forbidden positions. Technical Report 78, University of Gdansk,
1991.

[14] P. Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In P. Rossmanith, P. Heg-
gernes, and J. Katoen, editors, MFCS 2019, Proceedings, volume 138 of LIPIcs, pages 10:1–10:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[15] M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions
of the American Mathematical Society, 141:1–35, 1969.

[16] W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, editors, Handbook
of Formal Languages, volume 3, Beyond Words, pages 389–455. Springer, Berlin, 1997.

[17] T. van Dijk. Oink: An implementation and evaluation of modern parity game solvers. In D. Beyer
and M. Huisman, editors, TACAS 2018, Proceedings, volume 10805 of LNCS, pages 291–308.
Springer, 2018.

[18] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science, 200:135–183, 1998.

20

	1 Introduction
	2 Games on Graphs
	3 Reachability Games and Attractors
	4 Optimal Strategies for Reachability Games
	5 Parity Games
	6 Zielonka's Algorithm for Parity Games
	7 Lehtinen's Algorithm for Parity Games
	8 Conclusion

