Skip to main content

Evidential Clustering by Competitive Agglomeration

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13506))

Included in the following conference series:

  • 391 Accesses

Abstract

A new clustering method, named Evidential clustering by Competitive Agglomeration (ECA), is introduced by applying the framework of belief functions to a competitive strategy. It has two-fold advantages: Firstly, with the help of the credal partition, it has a good ability to deal with noise objects since it can mine the ambiguity and uncertainty of the data structure; secondly, through a competitive strategy, it can automatically gain the number of clusters under the rule of intra-class compactness and inter-class dispersion. Results demonstrate the effectiveness of the proposed method on synthetic and real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gong, C., Su, Z.G., Wang, P.H., Wang, Q.: An evidential clustering algorithm by finding belief-peaks and disjoint neighborhoods. Pattern Recogn. 113, 2 (2020)

    Google Scholar 

  2. Gong, C.Y., Su, Z.G., Wang, P.H., You, Y.: Distributed evidential clustering toward time series with big data issue. Expert Syst. Appl. 191, 116279 (2022)

    Google Scholar 

  3. Gong, C.Y., Wang, P.H., Su, Z.G.: An interactive nonparametric evidential regression algorithm with instance selection. Soft. Comput. 24(5), 3125–3140 (2020)

    Article  Google Scholar 

  4. Gong, C.Y., Su, Z.G., Wang, P.H., Wang, Q., You, Y.: Evidential instance selection for k-nearest neighbor classification of big data. Int. J. Approximate Reasoning 138, 123–144 (2021)

    Article  MathSciNet  Google Scholar 

  5. Gong, C., Su, Z.G., Wang, P.H., Wang, Q., You, Y.: A sparse reconstructive evidential-nearest neighbor classifier for high-dimensional data. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  6. Han, J., Kamber, M., Pei, J.: EnglishData mining: concepts and techniques (2012)

    Google Scholar 

  7. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Kluwer academic (1981)

    Google Scholar 

  8. Frigui, H., Krishnapuram, R.: Clustering by competitive agglomeration. Pattern Recogn. 30(7), 1109–1119 (1997)

    Article  Google Scholar 

  9. Grira, N., Crucianu, M., Boujemaa, N.: Semi-supervised fuzzy clustering with pairwise-constrained competitive agglomeration. In: Fuzzy Systems, 2005. FUZZ 2005. The 14th IEEE International Conference on (2005)

    Google Scholar 

  10. Grira, N., Crucianu, M., Boujemaa, N.: Active semi-supervised fuzzy clustering. Pattern Recogn. 41(5), 1834–1844 (2008)

    Article  Google Scholar 

  11. Gao, C.F., Wu, X.J.: A new semi-supervised clustering algorithm with pairwise constraints by competitive agglomeration. Appl. Soft Comput. J. 11(8), 5281–5291 (2011)

    Article  Google Scholar 

  12. Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  13. Shafer, G.: A Mathematical Theory of Evidence, vol. 1 (1976)

    Google Scholar 

  14. Masson, M.H., Denoeux, T.: ECM: an evidential version of the fuzzy c -means algorithm. Pattern Recogn. 41(4), 1384–1397 (2008)

    Article  Google Scholar 

  15. Su, Z.G., Zhou, H.Y., Wang, P.H., Zhao, G., Zhao, M.: E2cm: an evolutionary version of evidential c-means clustering algorithm. In: Destercke, S., Denoeux, T., Cuzzolin, F., Martin, A. (eds.) Belief Functions: Theory and Applications, pp. 234–242. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-642-29461-7

    Chapter  Google Scholar 

  16. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Article  Google Scholar 

  17. Su, Z.G., Denoeux, T.: BPEC: Belief-peaks evidential clustering. IEEE Trans. Fuzzy Syst. 27(1), 111–123 (2018)

    Article  Google Scholar 

  18. Gong, C.Y., Su, Z.G., Wang, P.H., Wang, Q.: Cumulative belief peaks evidential k-nearest neighbor clustering. Knowl.-Based Syst. 200, 105982 (2020)

    Article  Google Scholar 

  19. Bache, K., Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  20. Chang, H., Yeung, D.-Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-gang Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, L., Wang, Q., Wang, Ph., Su, Zg. (2022). Evidential Clustering by Competitive Agglomeration. In: Le Hégarat-Mascle, S., Bloch, I., Aldea, E. (eds) Belief Functions: Theory and Applications. BELIEF 2022. Lecture Notes in Computer Science(), vol 13506. Springer, Cham. https://doi.org/10.1007/978-3-031-17801-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17801-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17800-9

  • Online ISBN: 978-3-031-17801-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics