Skip to main content

A Distributed Architecture for Privacy-Preserving Optimization Using Genetic Algorithms and Multi-party Computation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13591))

Abstract

In many industries, competitors are required to cooperate in order to conduct optimizations, e.g., to solve an assignment problem. For example, in air traffic flow management (ATFM), flight prioritization in case of temporarily reduced capacity of the air traffic network is an instance of the assignment problem. Participants, however, are typically reluctant to share sensitive information regarding their preferences for the optimization, which renders conventional approaches to optimization inadequate. This paper proposes a method for combining genetic algorithms with multi-party computation (MPC) as the basis for building a platform for optimizing the assignment of resources to different agents under the assumption of an honest-but-curious platform provider; the method is illustrated on the ATFM use case. In the proposed method a genetic algorithm iteratively generates a population of candidate solutions to the assignment problem while a Privacy Engine component evaluates the population in each iteration step. The participants’ private inputs are kept from competitors and not even the platform provider knows those inputs, receiving only encrypted input which is processed by MPC nodes in a way that preserves the secrecy of the inputs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://slotmachine.frequentis.com/.

  2. 2.

    https://github.com/lschoe/mpyc.

  3. 3.

    https://jenetics.io/.

  4. 4.

    https://github.com/data61/MP-SPDZ.

References

  1. Castelli, L., Pesenti, R., Ranieri, A.: The design of a market mechanism to allocate air traffic flow management slots. Transp. Res. Part C Emerg. Technol. 19(5), 931–943 (2011). https://doi.org/10.1016/j.trc.2010.06.003

    Article  Google Scholar 

  2. Cramer, R., Damgård, I.B., Nielsen, J.B.: Secure Multiparty Computation. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  3. Doerner, J., Evans, D., Shelat, A.: Secure stable matching at scale. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM Conference on Computer and Communications Security, pp. 1602–1613 (2016)

    Google Scholar 

  4. Franklin, M., Gondree, M., Mohassel, P.: Improved efficiency for private stable matching. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 163–177. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668_11

    Chapter  Google Scholar 

  5. Funke, D., Kerschbaum, F.: Privacy-preserving multi-objective evolutionary algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 41–50. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15871-1_5

    Chapter  Google Scholar 

  6. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 120(5), 386–391 (2013)

    Article  MathSciNet  Google Scholar 

  7. Golle, P.: A private stable matching algorithm. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 65–80. Springer, Heidelberg (2006). https://doi.org/10.1007/11889663_5

    Chapter  Google Scholar 

  8. Keller, M.: MP-SPDZ: a versatile framework for multi-party computation. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (2020). https://doi.org/10.1145/3372297.3417872

  9. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  10. Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications, and lower bounds. Cryptology ePrint Archive, Report 2016/612 (2016)

    Google Scholar 

  11. Lorünser, T., Wohner, F., Krenn, S.: A verifiable multiparty computation solver for the assignment problem and applications to air traffic management (2022). https://doi.org/10.48550/ARXIV.2205.03048

  12. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, New York (1997). https://doi.org/10.1201/9780429466335

    Book  MATH  Google Scholar 

  13. Pilon, N., Guichard, L., Bazso, Z., Murgese, G., Carré, M.: User-driven prioritisation process (UDPP) from advanced experimental to pre-operational validation environment. J. Air Transp. Manag. 97, 102124 (2021). https://doi.org/10.1016/j.jairtraman.2021.102124

    Article  Google Scholar 

  14. Sadegh Riazi, M., Songhori, E.M., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Toward practical secure stable matching. In: Proceedings on Privacy Enhancing Technologies Symposium (PoPETs), pp. 62–78 (2017)

    Google Scholar 

  15. Schuetz, C.G., Gringinger, E., Pilon, N., Lorünser, T.: A privacy-preserving marketplace for air traffic flow management slot configuration. In: 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), pp. 1–9 (2021). https://doi.org/10.1109/DASC52595.2021.9594401

  16. Schuetz, C.G., et al.: A distributed architecture for secrecy-preserving optimization using genetic algorithms and multi-party computation - Appendix. http://files.dke.uni-linz.ac.at/publications/schu22c/appendix.pdf

  17. Simon, D.: Evolutionary Optimization Algorithms. Wiley, New York (2013)

    Google Scholar 

  18. Wilhelmstötter, F.: Jenetics library user’s manual 7.1 (2022). https://jenetics.io/manual/manual-7.1.0.pdf

  19. Wüller, S., Vu, M., Meyer, U., Wetzel, S.: Using secure graph algorithms for the privacy-preserving identification of optimal bartering opportunities. In: Proceedings of the 2017 Workshop on Privacy in the Electronic Society, pp. 123–132 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was conducted as part of the SlotMachine project. This project received funding from the SESAR Joint Undertaking under grant agreement No 890456 under the European Union’s Horizon 2020 research and innovation program. The views expressed in this paper are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph G. Schuetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schuetz, C.G. et al. (2022). A Distributed Architecture for Privacy-Preserving Optimization Using Genetic Algorithms and Multi-party Computation. In: Sellami, M., Ceravolo, P., Reijers, H.A., Gaaloul, W., Panetto, H. (eds) Cooperative Information Systems. CoopIS 2022. Lecture Notes in Computer Science, vol 13591. Springer, Cham. https://doi.org/10.1007/978-3-031-17834-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17834-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17833-7

  • Online ISBN: 978-3-031-17834-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics