Skip to main content

Augmenting Magnetic Resonance Imaging with Tabular Features for Enhanced and Interpretable Medial Temporal Lobe Atrophy Prediction

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2022)

Abstract

Medial temporal lobe atrophy (MTA) score is a key feature for Alzheimer’s disease (AD) diagnosis. Diagnosis of MTA from images acquired using magnetic resonance imaging (MRI) technology suffers from high inter- and intra-observer discrepancies. The recently-developed Vision Transformer (ViT) can be trained on MRI images to classify MTA scores, but is a “black-box” model whose internal working is unknown. Further, a fully-trained classifier is also susceptible to inconsistent predictions by nature of its labels used for training. Augmenting imaging data with tabular features could potentially rectify this issue, but ViTs are designed to process imaging data as its name suggests. This work aims to develop an accurate and explainable MTA classifier. We introduce a multi-modality training scheme to simultaneously handle tabular and image data. Our proposed method processes multi-modality data consisting of T1-weighted brain MRI and tabular data encompassing brain region volumes, cortical thickness, and radiomics features. Our method outperforms various baselines considered, and its attention map on input images and feature importance scores on tabular data explains its reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arık, S.O., Pfister, T.: Tabnet: attentive interpretable tabular learning. In: AAAI, vol. 35, pp. 6679–6687 (2021)

    Google Scholar 

  2. Caliendo, M., Kopeinig, S.: Some practical guidance for the implementation of propensity score matching. J. Econ.Surv. 22(1), 31–72 (2008)

    Article  Google Scholar 

  3. Chefer, H., Gur, S., Wolf, L.: Transformer interpretability beyond attention visualization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 782–791 (2021)

    Google Scholar 

  4. Cheng, D., Liu, M.: Cnns based multi-modality classification for ad diagnosis. In: 2017 10th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI), pp. 1–5. IEEE (2017)

    Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  6. Duara, R., et al.: Medial temporal lobe atrophy on mri scans and the diagnosis of Alzheimer disease. Neurology 71(24), 1986–1992 (2008)

    Article  Google Scholar 

  7. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  8. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)

  9. Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015)

    Article  Google Scholar 

  10. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  11. Mårtensson, G., et al.: Avra: automatic visual ratings of atrophy from mri images using recurrent convolutional neural networks. NeuroImage Clin. 23, 101872 (2019)

    Article  Google Scholar 

  12. Martins, A., Astudillo, R.: From softmax to sparsemax: a sparse model of attention and multi-label classification. In: International Conference on Machine Learning, pp. 1614–1623. PMLR (2016)

    Google Scholar 

  13. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. 115(13), E2970–E2979 (2018)

    Article  Google Scholar 

  14. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  15. Park, H.Y., Park, C.R., Suh, C.H., Shim, W.H., Kim, S.J.: Diagnostic performance of the medial temporal lobe atrophy scale in patients with Alzheimer’s disease: a systematic review and meta-analysis. Eur. Radiol. 31(12), 9060–9072 (2021)

    Article  Google Scholar 

  16. Park, Y.W., et al.: Radiomics features of hippocampal regions in magnetic resonance imaging can differentiate medial temporal lobe epilepsy patients from healthy controls. Sci. Rep. 10(1), 1–8 (2020)

    Google Scholar 

  17. Pölsterl, S., Sarasua, I., Gutiérrez-Becker, B., Wachinger, C.: A wide and deep neural network for survival analysis from anatomical shape and tabular clinical data. In: Cellier, P., Driessens, K. (eds.) ECML PKDD 2019. CCIS, vol. 1167, pp. 453–464. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43823-4_37

    Chapter  Google Scholar 

  18. Pölsterl, S., Wolf, T.N., Wachinger, C.: Combining 3D image and tabular data via the dynamic affine feature map transform. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 688–698. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_66

    Chapter  Google Scholar 

  19. Scheltens, P., Launer, L.J., Barkhof, F., Weinstein, H.C., van Gool, W.A.: Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J. Neurol. 242(9), 557–560 (1995)

    Article  Google Scholar 

  20. Scheltens, P., et al.: Atrophy of medial temporal lobes on MRI in" probable" Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psych. 55(10), 967–972 (1992)

    Article  Google Scholar 

  21. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

  22. Spasov, S., et al.: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s Disease. Neuroimage 189, 276–287 (2019)

    Article  Google Scholar 

  23. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  24. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  25. Wang, W., Tran, D., Feiszli, M.: What makes training multi-modal classification networks hard? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12695–12705 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Hyun Suh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, D. et al. (2022). Augmenting Magnetic Resonance Imaging with Tabular Features for Enhanced and Interpretable Medial Temporal Lobe Atrophy Prediction. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2022. Lecture Notes in Computer Science, vol 13596. Springer, Cham. https://doi.org/10.1007/978-3-031-17899-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17899-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17898-6

  • Online ISBN: 978-3-031-17899-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics