Skip to main content

Compression of Clustered Ship Trajectories for Context Learning and Anomaly Detection

  • Conference paper
  • First Online:
  • 515 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 531))

Abstract

This paper presents a context information extraction process over Automatic Identification System (AIS) real world ship data, building a system with the capability to extract representative points of a trajectory cluster. With the trajectory cluster, the study proposes the use of trajectory segmentation algorithms to extract representative points of each trajectory and then use the K-means algorithm to obtain a series of centroids over all the representative points. These centroids combined, form a new representative trajectory of the cluster. The results show a suitable approach with several compression algorithms that are compared with a metric based on the Perpendicular Euclidean Distance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Herrero, D.A., Pedroche, D.S., Herrero, J.G., López, J.M.M.: AIS trajectory classification based on IMM data. In: 2019 22th International Conference on Information Fusion (FUSION), pp. 1–8 (2019)

    Google Scholar 

  2. Sánchez Pedroche, D., Amigo, D., García, J., Molina, J.M.: Architecture for trajectory-based fishing ship classification with AIS data. Sensors. 20, 3782 (2020). https://doi.org/10.3390/s20133782

    Article  Google Scholar 

  3. Pedroche, D.S., Herrero, D.A., Herrero, J.G., López, J.M.M.: Clustering of maritime trajectories with AIS features for context learning. In: 2021 IEEE 24th International Conference on Information Fusion (FUSION), pp. 1–8 (2021)

    Google Scholar 

  4. Enmei, T., Zhang, G., Rachmawati, L., Rajabally, E., Huang, G.-B.: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology. IEEE Trans. Intell. Transp. Syst. 19(5), 1559–1582 (2018). https://doi.org/10.1109/TITS.2017.2724551

    Article  Google Scholar 

  5. Harati-Mokhtari, A., Wall, A., Brooks, P., Wang, J.: Automatic identification system (AIS): data reliability and human error implications. J. Navigation. 60, 373–389 (2007). https://doi.org/10.1017/S0373463307004298

    Article  Google Scholar 

  6. IMO: SOLAS chapter V: Safety of navigation. http://www.imo.org/en/OurWork/facilitation/documents/solas%20v%20on%20safety%20of%20navigation.pdf

  7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953

    Article  MATH  Google Scholar 

  8. Rong Li, X., Jilkov, V.P.: Survey of maneuvering target tracking. part v: multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1255–1321 (2005). https://doi.org/10.1109/TAES.2005.1561886

    Article  Google Scholar 

  9. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: AAAIWS’94: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, pp. 359–370 (1994)

    Google Scholar 

  10. Ester, M., Kriegel, H.-P., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996). https://doi.org/10.5555/3001460.3001507

  11. Liu, B., de Souza, E.N., Matwin, S., Sydow, M.: Knowledge-based clustering of ship trajectories using density-based approach. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 603–608. IEEE, Washington, DC, USA (2014)

    Google Scholar 

  12. International Maritime Organization: Ships’ Routeing (2019). ISBN 978-9280100495. https://www.imo.org/en/OurWork/Safety/Pages/ShipsRouteing.aspx

  13. Amigo, D., Sánchez, D., García, J., Molina, J.M.: Segmentation optimization in trajectory-based ship classification. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 540–549. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_52

    Chapter  Google Scholar 

  14. Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: a survey and novel approach. In: Last, M., Kandel, A., Bunke, H. (eds.) Data mining in Time Series Databases, pp. 1–21. WORLD SCIENTIFIC (2004). https://doi.org/10.1142/9789812565402_0001

    Chapter  Google Scholar 

  15. Cao, W., Li, Y.: DOTS: An online and near-optimal trajectory simplification algorithm. J. Syst. Softw. 126, 34–44 (2017). https://doi.org/10.1016/j.jss.2017.01.003

    Article  Google Scholar 

  16. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization 10(2), 112–122 (1973). https://doi.org/10.3138/FM57-6770-U75U-7727

    Article  Google Scholar 

  17. Pikaz, A., Dinstein, I.: An algorithm for polygonal approximation based on iterative point elimination. Pattern Recognit. Lett. 16, 557–563 (1995)

    Article  Google Scholar 

  18. Muckell, J., Hwang, J.-H., Lawson, C.T., Ravi, S.S.: Algorithms for compressing GPS trajectory data: an empirical evaluation. In: GIS ’10 (2010)

    Google Scholar 

  19. Muckell, J., Olsen, P.W., Hwang, J.-H., Lawson, C.T., Ravi, S.S.: Compression of trajectory data: a comprehensive evaluation and new approach. GeoInformatica 18(3), 435–460 (2013). https://doi.org/10.1007/s10707-013-0184-0

    Article  Google Scholar 

Download references

Acknowledgement

This research was partially funded by public research projects of Spanish Ministry of Science and Innovation, references PID2020-118249RB-C22 and PDC2021-121567-C22 - AEI/https://doi.org/10.13039/501100011033, and by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors, reference EPUC3M17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sánchez Pedroche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez Pedroche, D., García, J., Molina, J.M. (2023). Compression of Clustered Ship Trajectories for Context Learning and Anomaly Detection. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_16

Download citation

Publish with us

Policies and ethics