2112.14773v1 [cs.CR] 29 Dec 2021

arxXiv

Working mechanism of Eternalblue and its
application in ransomworm

Zian Liu

Swinburne University of Technology, Victoria 3122, Australia

Abstract. After the leaking of exploit Eternalblue, some ransomworms
utilizing this exploit have been developed to sweep over the world in
recent years. Ransomworm is a global growing threat as it blocks users’
access to their files unless a ransom is paid by victims. Wannacry and
Notpetya are two of those ransomworms which are responsible for the
loss of millions of dollar, from crippling U.K. national systems to shutting
down a Honda Motor Company in Japan. Many dynamic analytic pa-
pers on Wannacry were published, however, static analytic papers about
Wannacry were limited. Our aim is to present readers an systematic
knowledge about exploit Eternalblue, from a high—leveled semantic view
to the code details. Specifically, the working mechanism of Eternalblue,
the reverse engineering analysis of Eternalblue in Wannacry, and the
comparison with the Metasploit’s Eternalblue exploit are presented. The
key finding of our analysis is that the code remains almost the same when
Eternalblue is transplanted into Wannacry, which indicates its potential
for signatures and thus detection.

Keywords: Cyber Threat - Ransomworm - Static Analysis - Wannacry

1 Introduction

With computers and networks being applied more and more widely in daily life,
enterprise and organizations tend to store large scale data digitally. However,
those information management systems often contain vulnerabilities and are
prone to be exploited by hackers. In May 2017, a ransomworm called Wannacry
bursts out worldwide. It caused massive infection and enormous economic losses
by infecting various industrial and government internal networks, such as UK’s
National Health Service and etc [2]. The average attack the other organizations
suffer is 14,300 per day according to [6]. It is reported to derive from an NSA ex-
ploit tool [15]. Once Wannacry infects a system, it encrypts copies of various file
types and deletes the originals. The encrypted files cannot be accessed without
a decryption key.

A lot of work has been done to analyze Eternalblue and Wannacry. Most
of the papers on Wannacry focused on the dynamical analysis. D.Y. KAO et
al. analyzed Wannacry dynamically, from the aspects of process name, Registry,
file system, and Network activity, respectively. They also applied the features
to these aspects to create Yarra rules for pattern-matching detection [9]. Qian

2 Z. Liu et al.

et al. also dynamically analyzed Wannacry for testing the performance of an
automatic dynamical analysis tool [7]. As to the static analysis, D.Y. KAO et al.
provided a detailed analysis based on different phases. Critical files and strings
participating in those phases were highlighted [10]. Hirokazu statically analyzed
Wannacry based on the Eternalblue and DoublePulsar modules. He also applied
the discoveries into Snort rules to defend future network attacks based on those
two modules [11].

Even though those works helped investigate the working mechanism of Wan-
nacry and Eternalblue, there lacks the study on the comparison between Wan-
nacry’s Eternalblue module and the original Eternalblue module. To bridge this
research gap, we proceed with our analysis by first studying the exploit’s work-
ing mechanism that applied in Wannacry. Then we use code analytic tools and
network capture tools to compare Wannacry’s Eternalblue module and the orig-
inal Eternalblue module. After a detailed study, we find that the exploit utilized
in Wannacry shares a very similar pattern to the original exploit, which can be
used as features for signature extraction.

The remainder of this paper is organized as follows. In section 2, the original
Eternalblue module’s working mechanism is introduced. Section 3 analyzes the
Eternlablue module in Wannacry and Section 4 concludes this paper.

2 Eternalblue’s working mechanism in Metasploit

Assume we have two computers: an attacking machine and a victim machine.
At the very beginning, Eternalblue is a piece of code on the attacking machine.
Once executed, it will send multiple SMB (Server Message Block) requests to
the victim machine through the SMB protocol. As a result, the victim machine
must respond to these requests. In this SMB communication phase, the attacking
machine plays the role of client and the victim machine plays the role of server,
which is the reason we refer them to attacking machine and victim machine
respectively. Among these SMB requests, the Transaction SMB commands are
essential because they are utilized to tamper the data on the server (victim) with
a buffer overflow bug, which further leads to the execution of the ransomworm
on the victim machine.

Hence, prior to introducing details of the working mechanism of Eternalblue,
in this section we will firstly introduce the normal usage of Transaction SMB.
According to MSDN [3], Transaction SMB commands enable the client to access
advanced features on the server. Specifically, the three transaction messages are:

— SMB_.COM_TRANSACTION (or Trans),
— SMB_COM_TRANSACTION2 (or Trans2),
— SMB_COM_NT_TRANSACT (or NT Trans).

It is also noted in [4] that, SMB_.COM_NT_TRANSACT subcommands en-
able the transfer of very large data chunks. And SMB_COM_TRANSACTION2
subcommands provide richer file system services such as allowing clients to set

Working mechanism of Eternalblue and its application in ransomworm 3

and retrieve Extended Attribute key/value pairs, to make use of long file names,
and to perform directory searches, etc.

The information above summarizes the legitimate usage of the Transaction
SMB commands. However, in Eternalblue, they are not applied for the original
legitimate purposes, but for a buffer overflow bug. Specifically, when responding
to these crafted requests, the server will convert the payload contained in these
requesting Transaction SMB packets, i.e., the original Os2Fea [1] list, to the
currently used NtFea [1] format (result type), as Os2Fea (the original type) is
outdated [12]. The NtFea list will be stored into a result list buffer. This process
is also referred to the conversion process. Under some mild conditions, the server
can be fooled by allocating a result list buffer smaller than the NtFea list to be
stored. Thus the NtFea list can overwrite the next buffer. And the original list
with a specific length will satisfy such mild conditions.

In more detail, the “next buffer” is a Srvnet.sys [1] buffer, which is allocated
on the server for the attacker’s SMB request. Once allocated, this buffer will wait
for another data package to be sent to the server. There are two parameters in the
header of this Srvnet.sys buffer: one decides where to map the data package on
this server upon receiving the data package and another decides what function to
execute when the Srvnet connection is disconnected. So if these two parameters
are modified to the same address, the payload will be mapped and be executed
upon closing the connection.

To trigger the overflow of Srvnet.sys and thus inject the malicious codes to
the victim, Eternalblue covers three essential steps: crafting original list, buffer
grooming, and sending the payload. We proceed our discussion of Eternalblue by
first showing a high-level description of the three steps, then dive into details of
each step.

From a high-level point of view, in step crafting original list, an original list is
crafted. In the second step, multiple grooming packages are sent in a deliberate
order which changes the server’s buffer status to a point that is vulnerable to
overflow. Then, sending the complete original list results in the overflow. In the
final step, the payload is sent to the server’s Srvnet.sys buffer. Because of the
overflow, the payload can be mapped to the desired location and executed upon
closing the connection.

2.1 Crafting original list

To understand crafting of the original list, we firstly recall the normal conversion
process on the server machine.

As shown in Algorithm 1, in the Os2Fea format, there is a parameter ULONG
SizeOfList prior to the actual records describing the total bytes of the original
list.

The server’s legitimate conversion process is shown in Algorithm 2. In step
Compute S1, the algorithm will go through the original list and discard the
records that exceed the boundary set by SizeOfList, and the remaining original
list (Os2Fea) size is S2, as shown in Fig. 1. S1 is the result list (NtFea) size

4 Z. Liu et al.

corresponding to the remaining original list with size S2. Hence, in the third line
of Algorithm 2, the server allocates the result list buffer with size S1.

Back into the second line of Algorithm 2, S2 needs to be assigned to the
original list’s parameter SizeOfList, as this parameter will be used later in the
while loop. In the while statement of Algorithm 2, the server calls a subfunction
repeatedly to convert the original list block by block and stores the result list into
this result list buffer. The number of the loop is determined by the SizeOfList’s
value. The original_list_initial_address in this algorithm points to the beginning
of the original list. It is later assigned to variable Current_pointer, which will
increase after each iteration.

Above is the server’s conversion process. The bug occurs when assigning
S2 to the original list’s parameter SizeOfList if the SizeOfList is no less than
216 (0x10000 in hexadecimal) and the actual original list’s record exceeds the
boundary set by SizeOfList [13], like shown in Fig. 1.

In more detail, when parsing S2 to SizeOfList, only the LOWORD (low-
order word) bytes of the DWORD (double word) variable SizeOfList is updated
because of a wrong casting instruction. Hence the End_pointer in Algorithm
2 will be miscalculated, which leads to an unexpected conversion time. This
corresponds to a different time to execute the while statement in Algorithm 2. For
example, as occurred in this Eternalblue exploit, the SizeOfList is initiated with
0x10000. After discarding, the remaining original list size S2 is 0xff5d. However,
when executing the second line of Algorithm 2 (i.e., assigning S2 to SizeOfList),
only the LOWORD bytes of SizeOfList is updated, which turns SizeOfList from
0x10000 to 0x1ff5d rather than Oxff5d, hence enlarge this SizeOfList.

Algorithm 1 Os2Fea list structure
Struct Os2FeaList{
ULONG SizeO fList
UCHAR Os2FeaList|SizeO f List — 4]
}

Algorithm 2 The legitimate server’s conversion process

Compute S1
S2 assigned to SizeO f List
Allocate buf fer (result list buf fer) with size S1
End_pointer = original list_initial_address + SizeO f List
Current_pointer = original list_initial_address
while Current_pointer<End_pointer do
convert(Current_pointer)
Current_pointer+ = each_record_size
end while

Working mechanism of Eternalblue and its application in ransomworm 5

Original list

Size is S2 Excessive record, to be discarded

Size
para-
meter

Size parameter

Fig. 1. Server discards the out-of-boundary records and calculates the result list size
(S1) based on the remaining records

Based on the discussion above, the crafted list is as follows. The forged origi-
nal list is of the Os2Fea type, its parameter SizeOfList is with value 2¢ (0x10000
in hexadecimal), followed by a list of Os2Fea data, as demonstrated in Algorithm
1. There are 607 pieces of data included in this crafted list and garbage data
at the end which confines the request packet to a particular size. The first 605
pieces of records are empty, the 606th record is not empty and can be filled with
arbitrary data of a certain length. The 607th record contains the fake Srvnet.sys
header and this 607th record exceeds the boundary set by SizeOfList [12]. As
analog in Fig. 1, the 607th record is the black section, followed by some garbage
data. After discarding, only the first 606 records should be converted.

When converting this crafted list on the server, as demonstrated in Algorithm
2, after discarding, S1 and S2 are calculated representing the first 606 records
of the result list and the original list. Then, the SizeOfList should be assigned
to S2 but in fact assigned to an enlarged value because of the wrong casting
(assigned 0x1ff5d rather than 0xff5d). Hence the End_pointer is also enlarged.
Afterwards, the result list buffer that can only store the first 606 result records
will be allocated. Later, the conversion begins, and the loop will be executed for
extra times as the End_pointer is enlarged. Hence the server will convert and
store 607 records in the buffer for 606 records. This is the reason why this 607th
record shall be crafted with a forged Srvnet.sys buffer header and the preceding
records can be filled with arbitrary data of a certain size.

As mentioned earlier, once the Srvnet.sys buffer is allocated on the server,
it waits for another data packet. There are two critical fields in the Srvnet.sys
buffer header for processing the data packet: one is called memory descriptor
list (MDL) which points to a virtual address that the data package shall be
mapped to once received the other one is called pSrvNet WskStruct. It points to
a function which shall be called when the Srvnet connection is closed. Therefore,
overwriting these two fields with the same address can make the server map the
shellcode to the desired location and execute the shellcode after closing the
Srvnet connection.

6 7. Liu et al.

Finally, it should be noted that the crafted data in the 607th record should
be differentiated from the shellcode since the crafted 607th record is used to
overwrite the Srvnet.sys buffer’s header, which paves the way for sending the
shellcode. The sending process of the shellcode is to be discussed later.

2.2 Buffer grooming

We have discussed how the crafted list will lead to the buffer overflow in Srvnet.sys.
If the buffer Srvnet.sys is not allocated exactly after the result list buffer, the
attack fails. This buffer grooming process aims to improve the success rate of
overflowing the Srvnet.sys buffer. Table. 1 shows all the grooming packages sent
by Eternalblue in timeline. We have validated the packets by analyzing the
packets sent by the samples from 2 sources [14] and [8]. The ultimate goal of
the grooming procedure is to make the server allocate a Srunet.sys buffer im-
mediately following the result list buffer. Only when this goal is achieved, the
excessive data from the result list buffer can overwrite the Srvnet.sys buffer’s
header later. The order of the packages sent in Table. 1 can increase the possi-
bility of achieving our ultimate goal. However, the proof is complicated and out
of the scope of this paper.

The following paragraphs introduce the packages sent in each step listed in
Table. 1. To validate the buffer grooming process, we reproduce the spread-
ing process in a virtual environment and check the captured network packages
listed in Table. 1. The samples are created based on scripture on the exploit-db
website [14] and Metasploit Eternalblue module [8]. The baseline of the virtual
environment and experiment tools are shown below:

— Virtual Machine: VMWare Workstation

— Client (attacker) machine OS: Windows 7 x64 SP1
— Client (attacker) machine IP address: 10.10.10.151
— Server (victim) machine OS: Windows 7 x64 SP1
Server (victim) machine IP address: 10.10.10.152
— Analysis tools: Wireshark

Firstly the exploit from the client (attacker) machine establishes a connection
and determines the target operating system’s version and architecture based on
the SMB and DCE/RPC (Distributed Computing Environment / Remote Pro-
cedure Calls [5]) reply, respectively. Figure. 2 shows the server (victim) machine’s
buffer initial status before receiving any packages from the client (attacker) ma-
chine.

Then the exploit sends the original list to the target machine through con-
nection No.l. However, the legitimate usage of the Transaction SMB request is
to send Trans2 Secondary Request after Trans2 Request or to send the NT Trans
Secondary Request after the NT Trans Request. Here in this exploit, the pur-
pose of sending Trans2 Secondary Requests packets after the initial NT Trans
Request is to utilize another data parsing bug, which permits the attacker to
send the payload in a Trans2 request that is bigger than its limit, e.g. Oxffff [12].

Working mechanism of Eternalblue and its application in ransomworm 7

Table 1. Eternalblue package sent in timeline

No. Type |Description
Anonymous login and IPC$ tree connect, then send the crafted original list
1 Sev except the last segment to the server through an NT Trans Request and
multiple Trans2 Secondary Requests. An Echo package is followed to ensure the
list was sent successfully.
Lst Send malformed Negotiate Protocol Request and Session Setup AndX Request
2 to reserve buffer (0x10000 bytes) with size smaller than the result list buffer in
reserve
NonPagedPool on the server.
315 Srvnet Send multiple TCP packages to establish Srvnet connections which fill up the
slot before the result list buffer.
ond Send malformed Negotiate Protocol Request and Session Setup AndX Request
16 reserve to reserve buffer (0x11000) slightely bigger than the result list buffer. This
reserved buffer serves as a place holder for the result list buffer.
2 Lst Send a FIN TCP package to free the 1st reserved buffer.
reserve
1799 Srvnet Send TCP packages to establish extra Srvnet connections. One of them is
expected to be allocated next to the 2nd reserved buffer.
16 2nd Send a FIN TCP package to free the 2nd reserved buffer.
reserve
Send the last segment of the original list through a Trans2 Secondary Request.
So the Srv.sys will convert the list. To store the result list with size 0x10fe8
1 Srv (S1), the server allocates 0x11000 bytes. Because of Windows memory’s
last-in-first-out working fasion, the 2nd reserved buffer just being freed should
be allocated here.
3-15 and Srvnet Send the shellcode through Mutiple TCP packages. The overflow ensures the
17-22 shellcode be mapped to a desired location. Then close the connections.

8 7. Liu et al.

busy chunk. free chunk|:|

free chunk

busy chunk

busy chunk

free chunk

Fig. 2. Server machine’s buffer initial status

To ensure the original buffer is received correctly by the target machine, the
exploit on the client machine sends an echo package to the server machine. After
receiving those packages, the server machine’s buffer status changes to the one
depicted in Fig. 3.

busy chunk. free chunk|:| Srv buffer.

Srv buffer

Fig. 3. Server machine’s updated buffer state

Then in connection No.2, to reserve a buffer chunk which is used for grooming,
another request is sent from the client to the server. After receiving the request,
the server’s buffer status is updated as shown in Fig. 4.

Next, in order to keep grooming the buffer, as in connection No.3-15 in Table.
1, multiple Srvnet requests are sent to allocate multiple Srvnet.sys buffer chunks
on the server. This is the first series of the Srvnet request packages which fill
up the slot before the second reserved buffer. Fig. 5 demonstrates the server’s

Working mechanism of Eternalblue and its application in ransomworm 9

busy chunk. free chunk|:| Srv buffer. reserved chunk[]

reserved chunk

Fig. 4. Server machine’s updated buffer state

buffer status after receiving these Srvnet requests. Srvnet connections in this step
increase the probability that the Srvnet buffer allocated in connections No.17-
22 be allocated immediately following the result list buffer because connections
No.3-15 fill up the slot between the two reserved Srv buffer (connection 2 and
connection 16).

busy chunk. free chunk|:| Srv buffer. reserved chunk[] Srvnet buffer [

Srvnet buffer

Fig. 5. Server machine’s updated buffer state

As in connection No.16 in Table. 1, the second reserving buffer chunk is
reserved as a placeholder (to be replaced with the result list buffer later). Af-
terwards, the first reserved buffer chunk through connection No.2 shall be freed.
The first and second buffer reserving packets also utilize a bug by setting special
parameters in the request to make the large NonPagedPool allocation [12], which
is much greater than it is permitted to. After these two steps, the server’s buffer
status changes to the one depicted in Fig. 6.

Next, in connection No.17-22, extra Srvnet request packages are sent to the
server. It is expected that one Srvnet.sys buffer allocated by these requests can
be immediately after the result list buffer, hence the overflow in the result list

10 Z. Liu et al.

busy chunk. free chunk|:| Srv buffer. reserved chunk[] Srvnet buffer]

reserve chunk

Fig. 6. Server machine’s updated buffer state

buffer can overwrite the following Srvnet.sys buffer’s header. Figure. 7 shows the
server buffer status after receiving the extra Srvnet requests.

busy chunk. free chunk|:| Srv buffer. reserved chunk|:| Srvnet buffer .

free chunk
|

Fig. 7. Server machine’s updated buffer state

In connection No.16, the second reserved buffer is freed. And in connection
No.1, the last segment of the original list is sent to the server, making the system
start the conversion.

To start the conversion process, the server tries to allocate a result list buffer
with size S1. Since the second reserved buffer, which has the size slightly greater
than the result list, is just freed, Windows memory’s last-in-first-out working
fashion guarantees this buffer be allocated as the result list buffer. During the
conversion process, as introduced before, the data in the result buffer can over-
write the following Srvnet.sys buffer. The server buffer status changes to the one
shown in Fig. 8.

Working mechanism of Eternalblue and its application in ransomworm 11

busy chunk. free chunk|:| Srv buffer. reserved chunk|:| Srvnet buffer .

Result list buffer .

Result list buffer

Fig. 8. Server machine’s updated buffer state

Finally, the exploit sends the shellcode through each of the previously estab-
lished Srvnet connections (i.e, connection No.3-15, and 17-22).

2.3 Sending the shellcode

The payload is a piece of executable code that is sent after the target machine
is penetrated. Once the payload is executed, the attacker can leverage the vul-
nerability and do whatever he wants to do. In previous discussion, we have
explained that by sending the grooming packages, multiple Srvnet connections
are established and one of these corresponding Srvnet.sys buffes is expected to be
overflown. According to the Check Point Reseach paper [1], after the Srvnet con-
nections are established, these connections wait for another data packages and
upon receiving the data packet, it will map the data according to the parame-
ter pMdl contained in the Srvnet buffer’s header. Also, upon closing the Srvnet
connection, the function pointed by HandlerFunction in the pSrunet WskStruct
will be called. The Srvnet.sys buffer has a structure as shown in Algorithm 3.

In this section, we have introduced the shellcode sending process. However,
the detailed code analysis on the shellcode is not discussed in this paper as it is
beyond the scope of this paper.

3 Code analysis

As described in Section 1, Wannacry utilizes the famous exploit Eternalblue in
its spreading process. In this section, we provide a static analysis on Wannacry’s
exploit module to investigate how this exploit is utilized. The baseline of the
analysis tools are shown below:

— Wannacry SHA256 hash: 24d004a104d4d54034dbcffc2a4bl19all
£39008a575aa614ea04703480b1022¢

12 Z. Liu et al.

Algorithm 3 Srvnet.sys buffer structure
Struct Srvnet_header{

— Static analysis tool: IDA 6.8

3.1 Wannacry

Wannacry creates local network spreading threads and Internet spreading threads
to propagate through the network. Both threads use the same exploit Eternal-
blue to infect other systems.

In the local network spreading process, Wannacry creates a target IP address
table and tries to attack the potential victims in the table exhaustively. In the
Internet spreading process, Wannacry generates a random IP address and tries
to attack the system sharing the same network segment. Like Eternalblue, the
spreading process in Wannacry also consists of 3 essential steps: crafting original
list, buffer grooming and sending the payload. Table. 2 depicts the summery
of Wannacry’s package capture after we analyzed the network traffic during
the infection. This table describes almost the same process as shown in Table.
1, except for several differences. Even though the general process described in
Table. 2 is similar to the process given in Table 1, some of the packets are not
introduced in Table. 1, as they are unique in Wannacry.

Through the static analysis of Wannacry by using IDA 6.8, we discovered the
function beginning at offset 0x00401D80 crafts the fake original list and prepares
the grooming packages, which is discussed in the crafting original list and buffer
grooming steps. These fake original list, grooming packages, and the shellcode
mentioned above are embedded into the ransomworm by the ransomworm au-
thor. During the runtime, they are extracted and pasted into a buffer chunk in
the same order as listed in Table 1. Then data in this buffer chunk will be sent
later to the server, which spreads the ransomworm and executes the ransom-
worm on the server. All the data is in plain-text format and is barely different
from the Metasploit’s exploit. We will discuss the particulars in the following
paragraphs.

Prior to preparing the grooming packages and the shellcode, Wanancry sends
a PeekNamePipe package and a Trans2 Request package to detect the existence
of MS17.010 and backdoor Doublepulsar respectively [9] as in Fig. 9 and Fig.
10. As step 1 listed in Table. 2, the PeekNamePipe package data is embedded

Working mechanism of Eternalblue and its application in ransomworm

13

Table 2. Summery of package capture of Wannacry

Step|Attempt Packages
Detect the existence of MS17.010 .
1 and DoublePulsar. PeeckNamedPipe Request and Trans2 Request
9 Send the original list except the |A NT Trans Request and multiple Trans2
last segment. Secondary Requests
3 Ensure the package in last step Fcho Request
were sent successfully.
4 Reserve the first buffer. Negotiate Protocol Request and Session Setup
Andx Request
5 Reserve Srvnet.sys buffers. Multiple TCP packages
6 Reserve the second buffer. Negotiate Protocol Request and Session Setup
Andx Request
7 Free the first reserved buffer. A FIN TCP package
8 Reserve extra Srvnet.sys buffers. |Multiple TCP packages
9 Ensure the packages sent in last Echo Request
step were sent successfully.
10 |Free the second reserved buffer. |A FIN TCP package
11 Se.n d the.last segment of the A Trans2 Secondary Request
original list.
12 [Send the shellcode. Mutiple TCP packages

into the ransomworm, as depicted in Fig. 9. It is used when the ransomworm
needs to send it (by instruction call send at offset 00401AFE). After sending this
package, the ransomworm waits for the response from the server by calling the
recv function at offset 00401B15. If the data in the response package equal to
STATUS_INSUFF_SERVER_RESOURCES (0xC0000205 in hexadecimal), that
denotes the MS17_010 vulnerability resides on the server. As shown in Fig. 10, the
Trans2 package data is also embedded into the ransomworm. The ransomworm
waits for the response from the server by the instruction call recv. If the Multiplex
ID field in the response package equals to 0z51, that denotes the server is infected
with Doublepulsar, whereas if the field equals to 0z41, that denotes the server
is not infected.

To establish the connection to the server (victim) machine, the first Negotiate
Protocol package is crafted as shown in Fig. 11. The Session Setup AndX and
Tree Connect AndX Request packages are crafted in the similar way as depicted
in Fig. 12 and Fig. 13.

Next, as in step 2 of Table. 2, an NT Trans Request package, and multiple
Trans2 Secondary Request packages containing the crafted Os2Fea list without
the last segment are prepared as in Fig. 14, Fig. 15, and Fig. 16.

In step 3 of Table. 2, to ensure the original list is received completely, an
echo package is prepared as shown in Fig. 17.

In step 4 of Table. 2, a package which reserves the first buffer chunk on
the target is prepared. The corresponding Negotiate and Session Setup Request
packages are shown in Fig. 18.

14 Z. Liu et al.

.text:@88481ADF push L4Eh ; length

.text:80481AE1 push offset PeekNamePipe ; PeekHamePipe %\
.text:084681AE1 ; source buffer
text:88481AEG push esi ; socket

.text:88481AFE call send ; smb PeekHamePipe package

text:80401B03 cmp eax, BFFFFFFFFh

text:A0401BB6 jz short loc_L4B81BSH

.text:084081E88 push 5] ; Flags

text:00481E0A lea ecx, [esp+428h+buf]

text:88481EBE push 488h : len

.text:80481B13 push BCX ; buf

.text:80481B14 push esi -

text:88481B15 call recw ; receive response from server
text:80401B1A cmp eax, BFFFFFFFFh

text:80401B1D jz short loc_L4B81BSH

-text:00401B1F

.text:80481B1F compareWithError: ; STATUS_INSUFF_SERVER_RESOURCES,\
text:80401B1F cmp byte ptr [esp+25h], & ; CO886205 in hexadecimal
.text:80401B24 jnz short loc_L4B81BSH

Fig. 9. PeekNamePipe package

As in step 5 of Table. 2, to continue the buffer grooming process, multiple
Srvnet connection requests should be sent to reserve Srvnet.sys buffer chunks on
the target system. Figure. 19 shows the crafting of each Srvnet package.

As in step 6 of Table. 2, the second reserving package shall be sent to the
server. The crafting process is shown in Fig. 21, including Negotiate Protocol
Request and Session Setup AndX Request. In step 7, the first reserving buffer
allocated previously shall be freed.

In step 8, extra 5 Srvnet connection requests are crafted as shown in Fig. 22
and will be sent to the target machine to reserve Srvnet.sys buffers. It is expected
that one Srvnet.sys buffer allocated in this step is immediately after the second
reserved buffer, which will be replaced with the result list buffer later. In step 9,
an Echo package is crafted as shown in Fig. 23.

In step 10, the second reserved buffer shall be freed and in step 11, the last
segment of the crafted original list shall be sent to the target as shown in Fig. 24.
Once this last segment is received, the target’s conversion process (converting
the original list to the result list) begins.

In step 12, multiple packages that contain the same shellcode are crafted
as Figs. 25. Later they will be sent through the Srvnet connections established
earlier.

Working mechanism of Eternalblue and its application in ransomworm 15

.text:88481CA7 push a ; Flags
.text:@8481CA? push 52h ; length
.text:88481CAB push offset trans2 ; Trans2
.text:08481CAB ; source buffer
.text:88481CE@ push esi ; socket

.text:00481CC8 call send ; trans2 request

textAB4E1CCD cmp eax, BFFFFFFFFh

-text:00481CDA jz loc_481D62

textA84E1CDG6 push a ; flags

text:00481CD8 lea eax, [esp+4Z2ih+buf]

text:A8481CDE push Laah ; len

text:00481CE1 push eax s buf

.text:080481CE2 push esi -

.text:00481CE3 call recu ; receive response from server
.text:A0481CER cmp eax, BFFFFFFFFh

.text:@80481CEBR j=z short loc_4@iD62

.text:B80481CED
.text:@B481CED comparelithError: ; Multiplex ID, 8x51--infected,}
textiAB4E1CED cmp [esp+42Bh+var_3DE], 51h ; @=41--not infected

Fig. 10. Trans2 package

mov ecx, 22h ; copy time
nov esi, offset first_negotiate ; neogotiate %

; package data source address
mov edi, offset unk_433BBY4 ; destination address
rep movsd copy from source address X

to destination address
moush

Fig. 11. Negotiate Protocol package

4 conclusion

The wide application of exploit Eternalblue is a meaningful security incident.
The massive infection based on Eternalblue spurs everyone to raise the awareness
of patching computers to current status. This paper introduced the underlying
mechanism of exploit Eternalblue, as well as the reverse engineering result of

16 Z. Liu et al.

mou ecx, 23h ; copy time
moy esi, offset session_setup ; sessionsetup

; package source address
mov edi, offset unk_438n04 ; destination address
rep movsd ; copy from source to %

; destination

Fig. 12. Session Setup AndX package

mow ecx,_1[:h ; copy time

mouw esi, offset treeConnectAndX ; tree connect %
; source address

mow edi, offset unk_43D854 ; destination address

rep movsd ; copy from source address \

; to destination address

Fig. 13. Tree Connect AndX package

Eternalblue. The code of Eternalblue applied in Wannacry is compared with the
original exploit based on the reverse engineering results. The analysis reveals
that the exploit Eternalblue is slightly modified when applied in Wannacry. Our
work gathered much-known knowledge of Eternalblue to provide readers with a
clear picture of this exploit. We have concluded the similarity and the difference
of Eternalblue’s code in Wannacry. We have also analyzed Notpetya and found
the exploit in Notpetya is encrypted and only decrypted while the shellocode
is executed. After decrypting it, the Notepetya exploit is almost identical to
the original Eternalblue exploit. Due to the length constrains of the paper, the
analysis details are not included here. It is possible to extend our work to the
code analysis for ransomworm detection.

References
1. EternalBlue — Everything There Is To Know (2017),
https://research.checkpoint.com/eternalblue-everything-know/, [Online]; ac-

cessed 15 April 2018

2. Investigation: =~ Wannacry Cyber Attack and the NHS (2018),
https://www.nao.org.uk/report/investigation-wannacry-cyber-attack-and-the-
nhs/, [Online]; accessed 18 March 2018

3. (2019), https://msdn.microsoft.com/en-us/library/ee441928.aspx, [Online]; ac-
cessed 16 May 2018

4. (2019), https://msdn.microsoft.com/en-us/library/ee441720.aspx, [Online]; ac-
cessed 16 May 2018

5. (2019), https://www.dcerpc.org/documentation/rpc-porting.pdf, [Online]; ac-
cessed 18 March 2018

Working mechanism of Eternalblue and its application in ransomworm 17

Jtext:00401F68 mov ecx, 26h ; copy time

-text:@0401F65 mov esi, offset Nt_Trans_S ; NT Trans Requesty
Jtext:B04B1F 65 ; data source address
-text:@80401F6A mov edi, offset Nt_Trans_D ; NT Trans Requesty
.text:00401F6A ; data destination address
-text:00401F6F rep movsd ; copy from source to destination
.text:808481F71 movsb ; copy from source to destination

Fig. 14. Nt Trans Request

.text:a84820808D0 mou ecx, 134h ; copy time

text: 0040826812 mow esi, offset NT_Trans2_S ; HT Trans 2 Requesty
-text:ae482812 ; data {part1) source address
text:A8402817 mow edi, offset NT_Trans2_D ; HT Trans 2 Requesty
.text:oouezo17 ; data (part1) destination address
.text:B848281C mov dword_44C330, BBOOBOAOGH

.text:a84820826 mou dword_44C334, 3F43A985h

text: 00402830 mov word_44C338, ax

.text:a84820836 mou dword_44C33C, edx

text:A04082083C mow dword_44C348, 4D1h

-text:a0482046 rep movsd ; copy from source to destination
text:00402048 movsh ; copy from source to destination

10.

11.

12.

13.

Fig. 15. Part of Nt Trans2 Request

Alterson, G.: Confronting One of Healthcare’s Biggest Challenges: Cyber Risk
(2019), https://www.forbes.com/sites/insights-intelai/2019/02/11/confronting-
one-of-healthcares-biggest-challenges-cyber-risk/amp/, [Online]; accessed 11
February 2019

Chen, Q., Bridges, R.A.: Automated Behavioral Analysis of Malware A Case Study
of Wannacry Ransomware (2017), https://arxiv.org/abs/1709.08753, [Online]; ac-
cessed 03 April 2018

. Dillon, S., Jennings, L.: ms17_010_eternalblue (2017),

https://github.com/rapid7/metasploit-framework/blob /master /modules/exploits/
windows/smb/ms17_010_eternalblue.rb., [Online]; accessed 24 April 2018

KAO, D.Y., HSTAO, S.C.: The Dynamic Analysis of WannaCry Ransomware.
In: International Conference on Advanced Communications Technology (ICACT)
(2018), https://www.dcerpc.org/documentation/rpc-porting.pdf, [Online]; ac-
cessed 18 April 2018

KAO, D.Y., HSIAO, S.C.: The Static Analysis of Wannacry Ransomware. In: Inter-
national Conference on Advanced Communications Technology (ICACT) (2018),
https://ieeexplore.ieee.org/document /8323679/, [Online]; accessed 18 April 2018
Murakami, H.: Reverse Engineering of Wannacry @ Worm and
Anti Exploit Snort Rules (2018), https://www.sans.org/reading-
room/whitepapers/malicious/paper/38445, [Online]; accessed 07 July 2018
Pradeep Kulkarni, Sameer Patil, P.K., Dolas, A Eter-
nalblue: A prominent threat actor of 2017-2018 (2018),
https://www.virusbulletin.com/uploads/pdf/magazine/2018 /201806~
EternalBlue.pdf, [Online]; accessed 23 May 2018

Sanchez, W.G.: MS17-010: EternalBlue’s Large Non-Paged Pool Overflow in SRV
Driver (2017), https://blog.trendmicro.com/trendlabs-security-intelligence/ms17-
010-eternalblue, [Online]; accessed 16 March 2018

18 Z. Liu et al.

text:A0482 086 mou ecx, 16Dh ; copy time

.text:80482088 mov esi, offset HT_Trans2_1_S ; HT Trans 2 %

.text:0848208B ; Request data (part?) source address

text:804820980 mov edi, offset HT_Trans2_1_D ; HT Trans 2 %

.text:00482098 ; Request data (part?) source address

.text:B04820895 mov dword_451188, BDS88868886H

.text:0048209F mov dword_u51184, 3FSECD73h

text:A04820A7 mov word_451188, ax

text:A804820AF mou dword_45118C, edx

text:A80482 0B mov dword_451198, ebp

.text:@804820EE rep mousd ; copy from source to destination
Fig. 16. Part of Nt Trans2 Request

text: 00402906 mouw ecx, 17h ; copy time

.text:a84829DB mou esi, offset echo_S ; echo data sourcel

-text:084829DB ; address

.text:004029E0 mov edi, offset echo_D ; echo data destination\

.text:084829E0 ; address

.text:a84829E5 mou dword_4BS56E8, DEGOBOOOOH

.text:004829EF mou dword_4BS6EC, 3F11BS78h

.text:a84829F9 mou word_4BS56F0, ax

.text:004029FF mouw dword_4BS6FL, edx

.text:a8482A85 mou dword_4B56F8, S5Fh

text:00402A0F rep mousd ; copy from source to destination

.text:ae482A11 mousw ; copy from source to destination

Fig. 17. Echo package to check original list well received

14. sleepya: Microsoft Windows Windows 7/2008 R2 (x64) - ’Eternalblue’

15.

SMB Remote Code Execution (MS17-010) (2017), https://www.exploit-
db.com/exploits/42031/, [Online]; accessed 12 April 2018

Thomson, L: Leaked NSA Point-and-pwn Hack
Tools Menace Win2k to Windows 8 (2017),
https://www.theregister.co.uk/2017/04/14/latest_shadow_brokers_data_dump/,
[Online]; accessed 5 March 2018

Working mechanism of Eternalblue and its application in ransomworm

.text:@80482A2C mov

ecx, 22h ; copy time

.text:08402A31 mov esi, offset negotiate_S ; Megotiatey

-text:08402031
-text:a0482A31

;5 Request data source addressy
; (First reseruve)

.text:008482n36 mov edi, offset negotiate_D ; MHegotiatey

-text:00402A36
-text:00402A36

.text:00402A98 rep movsd

; Request data destination addressy
(first reserve)

; copy from source to destination

.text:004020A9 mov esi, offset Session_S ; Session Setup \

-text:a0402AA9

; Request data source address (first reserve)

.text:00402AAE mov edi, offset Session_D ; Session Setupy

-text:a0402AAE
-text:08402AAE

.text:008482AF2 rep movsd

; Request data destination \
; address {(first reseruve)

; copy

Fig. 18. Grooming package reserves a buffer chunk

.text:00402B8A mov
.text:@8402E0A
.text:00402B08E mov
.text:88402E0E
.text:00402B13 mov
.text:@8402E13
.text:00402B18 mov
.text:@8402E18
.text:00402B1C mov
.text:@8482B1C
.text:00402B21 mov
text:@e402E21
.text:00402B26 mov
.text:@8402B240
.text:00402B2B mov
.text:@8402E2B
.text:00402B38 mov
.text:@8402E30

byte ptr [esp+SA8h+var_594+1], al ; SHBE2 Rquesth

; data (reserve Srunet.sys buffer)

byte ptr [esp+SA8h+var_594+27, BFFh ; SHB2 Rquesty

; data (reserve Srunet.sys buffer)

byte ptr [esp+SA8h+var_594+3], BF7h ; SHB2 Rquesty

; data (reserve Srunet.sys buffer)
ecx, [esp+SA8h+var_594] ; SHB2 Request sourced
; address (part2)

byte ptr [esp+SA8h+var_598], BFEh ; SHBE2 Rquesth

; data (reserve Srunet.sys buffer)

byte ptr [esp+SA8h+var_596+1], 53h ; SHMBZ Rquesty

; data (reserve Srunet.sys buffer)

byte ptr [esp+SA8h+var_596+2], 4Dh ; SHMBZ Rquesth

; data (reserve Srunet.sys buffer)

byte ptr [esp+SA8h+var_596+3], 42h ; SHMBZ Rquesth

; data (reserve Srunet.sys buffer)
esi, [esp+SABh+var_598] ; SHB2 Request sourcey
; address (parti1)

Fig. 19. Crafting grooming package which reserves a buffer chunk

text:00482BBE mov
text:00482BBE
text:00482BCH mov
text:00482BCY

dword_H4CB764, ecx ; copy SHE2 Requesty

; (part1) to destipation address
dword_4CB768, esi ; copy SHB2 Requesty

; (part?) to destipation address

text:80482C10 mov
text :B8482C1D
text:80482C23 mov
text:88482C23

dword_u4DBSBY4, ecx ; copy SHB2 Requesty

; (part1) to destipnation address
dword_4DAS5BE, esi ; copy SHB2 Requesth

; (part?) to destination address

L text:00402C57 movu
Ltext:AB4A2C5T
L text:00402C5D mov
Ltext:AB4A2C5D

dword_4DZ2CDEC, ecx ; copy SHMBZ Requesty

; (part1) to destination address
dword_4D2CEA, esi ; copy SHMB2 Requesty

; (part2?) to destination address

Fig. 20. Copying crafted grooming package to destination address

19

20 Z. Liu et al.

_text:004830838 mou esi, offset negotiate2 S ; Hegotiate %\
.text: 00403036 ;: Request data source address \
-text:0848383B ; {(second reseruve)

.text:004083048 mov edi, offset negotiate2 D ; Hegotiate A
-text:004083040 ; Request data destination address %
-text: 004030848 ; {second reserve)

.text:p0403688 mou esi, offset Session_S @ ; Session Setuph
.text:00403088 ; Request data source address
.text:084083088 ; {second reserve)

.text:0804083080 mov edi, offset Session_D_@ ; Session Setup
-text:pB403 688D ; Request data destination address %\

.text:o040308D {second reserve)

text:A04838D1 rep mousd
.text:pe483803 movsh

copy from source to destination
copy from source to destination

Fig. 21. Second package to reserve a buffer chunk

text:80408360D04 mov esi, [esp+SABh+var_598] ; SHBZ2 Request %
text:a0403 004 ; source address (partil)
.text:8084030D8 mov ecx, 11h

.text:0040368DD mou edi, 2

.text:884030E2 mov dword_S14EBC, ecx

.text:804030ES mov dword_517534%, ecx ; index=11
.text:8040836EE mov ecx, [esp+5ABh+var_594] ; SHEZ Request \
.text:88483BEE ; source address (part2)
.text:808463195 mov dword_51753C, ecx ; copy 5MBZ2 Request
.text:-00403195 ; (part1) to destination address
.text:8046319B mov duword_517548, esi ; copy SMB2 Request %
.text:-0040319B8 ; (part2) to destination address
.text: 08483208 mov dword_S51EAB4, ecx ; copy SHB2 Request \
.text:- 08483208 ; (part1) to destination address
.text: 88483211 mov duword_51EAB8, esi ; copy SHB2 Request \
text:-oaaa3211 ; (part?) to destination address
Ltext: 88403263 mov dword_523984, ecx ; copy SMBZ Request
.text:00403263 ; {part1) to destipation address
.text:80483269 mou dword_523908, esi ; copy SMB2 Request %\
.text:00403269 : (part2) to destination address

Fig. 22. Crafting extra SMB2 requests which reserve Srvnet.sys buffer

text:084832AC mov ecx, 17h

.text:0084032E1 mou esi, offset echo1 ; echo package source \
text: 08483281 ; buffer

.text:004032B6 mou edi, offset unk_52FCCC ; echo package %
.text:O004032RG ; destination buffer

text:A80408335E rep movsd
.text:a0483360 mousw

Fig. 23. Crafting Echo request

Working mechanism of Eternalblue and its application in ransomworm

.text:-00483363 mov
.text:-00403368 mov
.text:-B04B3368
.text:-8048336D mov
.text:-B04B336D
-text:-8046833C1 mov
-text:-B84A33CH mov
text-B040833CH
text:-004033CE mov
.text:-004033CE

.text:8040833F8 mov
.text:8040833FD mov
.text:004033FD
.text:004083482 nov
text:00403402

ecx,
esi,

edi,
PCH,
esi,

edi,

ecx,
esi,

edi,

21

177h ; copy time
offset lastHT_partA_S ; fake original %

; list last segment partA source address
offset lastHT_parta_ D ; fake original %

; list last segment partA destination address

160h ; copy time
offset lastHT_partB_S ; fake original %

; list last segment partB source address
offset lastHT partB D ; fake original %

; list last segment partB destipation address

134h ; copy time
; fake original list last segmenth
; partC source address
offset lastMHT_partC_D ; fake original list %
; last segment partC destipation address

Fig. 24. Last segment of original list

.text: 0048303 mov ecx, 16Dh ; copy time

text:a0483439 mov esi, offset shellcode_partA_S ; 1st %
.text:00483439 ; package data (partA) source address
Ltext:A0408343E mov edi, offset unk_53E7BC ; 1st package data A
.text:-8048343E ; {partA) destination address
-text:A048348E rep movsd : copy

.text:ao40834EA mov ecx, 160h ; copy time

.text:A04834BF mou esi, offset shellcode_partB_S ; 1st %
.text:-004034BF ; package data (partB) source address
Ltext 0408340 mov edi, offset unk_S4BEE4 ; 1st package
.text:004034CH ; data {partB} destination address
Ltextiaaua34C? rep movsd ; copy from source to destination
.text:804866C1 mou ecx, 128h ; copy time

Ltextiap4e66Ce mov esi, offset shellcode_partC_S ; 1st
.text:0084866C6 ; package {(part C) source address
.text:ag4B66CE mov edi, offset unk_59695C ; 1st package
text:-004066CE ; (part C) destination address
.text:004866F6 rep mousd ; copy from source to destination

Fig. 25. Copying part A, B and C of the first shellcode package

22 Z. Liu et al.

text:00U0304T mou ecx, 1//h ; copy time

Ltext:004035406 mov esi, offset shellcodeV2 _parthA_S ; 3rd 1\
Ltext:00403546 ; package data (partA) source address
.text:00403548 mov edi, offset unk_S4845C ; 3rd package \
.text:00403548 ; data (partA) destination address

L TeXT:uuaugsrE FEE movsa ; COpY +rFOM Source TO 0estlnation
.text:00483580 movw ecx, 163h ; copy time

.text: 00403585 mov esi, offset shellcodeV2? _partB_S ; 3rd 1\
.text:084083585 ; package data (partB) source address
.text:0040358A mov edi, offset unk_S54AB8Y4 ; 3rd package data %
.text:0040358A ; {partB) destination address
.text:0040835BD FEB mousd ; copy from source to destination
text:004835BF mov ecx, 177h ; copy time

text:00486733 mov ecx, 126h ; copy time

.text:00406738 mov esi, offset shellcode partC S ; 3rd \
text:00486738 : package (part C}) source address
.text:0040673D mov edi, offset unk S59B7AC ; 3rd package \
.text:0040673D ; {(part C) destination address

Ltext 00406760 rep movsd ; copy from source to destination

Fig. 26. Preparing part A, B and C of the third shellcode package

Working mechanism of Eternalblue and its application in ransomworm 23

-text:0040836E1 mou ecx, 177h ; copy time

.text:004036E6 mov esi, offset shellcodeV2 partA S ; 6th package data \
text:004836EG ; (partA) source address
text:004836EE movu edi, offset unk_556F4C ; 6th package data (partm) A\
.text:004035EB ; destination address
-text:0040836F8 mou [esp+SA8h+var_58C], BC1h

.text:004036F5 rep movsd ; copy from source to destination
.text: 00483710 mov [esp+5ABh+var 58B], BE7h ; package data
Ltext: 060483722 mov [esp+5A8h+var_58AY, 7 ; package data
Ltext:00403727 mou [esp+5ABh+var_589], 29h ; package data
Ltext:0040372C mov [esp+5A8h+uar_588], BCYh : package data
.text:A808483731 mov [esp+5hA&h+var 5871, bl ; package data
text:-00403735 mov [esp+5ABh+var_ 586], BF8h ; package data
.text:0040373A mov [esp+5A8h+var_585], 31h ; package data
.text:0040373F mou [esp+5A8h+var_584], BC?h ; package data
. text-00483744 movu [esp+5ABh+var_583], 8Ah ; package data
Ltext: 00403747 mov [esp+5SABh+var_582], BEh ; package data
.text:0048374E mov [esp+5A8h+var 581], &8h ; package data
Ltext:00403753 mov [esp+5A8h+var_588], BF?h ; package data
Ltext:00403758 mou [esp+5A8h+var_57F], al ; package data
Ltext:0848375C mov [esp+oA8h+uar_57E], 74h ; package data
text-004083761 mov [esp+SABh+var_57D], & ; package data
text-884067E4 mou ec®, 128h ; copy time

.text:004B67E? mov esi, offset shellcode partC S ; 6th %
text:-004867EY ; package {(part C}) source address
-text:084067EE mov edi, offset unk_S5A2D24 ; 6th package 1
.text:084067EE ; (part C) destination address
.text:0040681D0 rep mousd ;5 copy from source to destipation

Fig. 27. Part A and B of the sixth shellcode package is prepared

