
SimLDA: A tool for topic model evaluation

Rebecca M.C. Taylor1 and Johan A. du Preez2

1 Department of Electrical and Electronic Engineering, Stellenbosch University,
Stellenbosch, 7602 RSA, e-mail: becci.rr@gmail.com

2 Department of Electrical and Electronic Engineering, Stellenbosch University,
Stellenbosch, 7602 RSA, e-mail: dupreez@sun.ac.za

Abstract. Topic model evaluation is a well studied field. Two classes
of metrics are typically used to evaluate the quality of extracted topics,
namely held-out perplexity and coherence measures. Although these
metrics have been improved and refined, they still have drawbacks. In
this paper we propose using simulated data generated from our flexible
corpus generation tool, SimLDA, combined with an exact measure of
dissimilarity, the average Kulback-Leibler divergence (KLD), to achieve
a more fine-grained method for detecting differences in topic quality. In
this work, we use our proposed approach to evaluate and compare topics
extracted from synthetic data using two inference algorithms for latent
Dirichlet allocation (LDA), namely variational Bayes (VB) and collapsed
Gibbs sampling. We then evaluate the extracted topics using a coherence
measure (the Cv score). Using the same two inference algorithms we then
extract topics from the popular 20 Newsgroups data set and evaluate the
extracted topics based on the Cv score. Through these three steps, we show
that although collapsed Gibbs sampling consistently outperforms VB,
the use of simulated data (evaluated using both coherence measures and
KLD) provides more insight into the quality of the extracted topics and
allows us to examine performance differences of the inference algorithms.

Keywords: topic model evaluation, latent Dirichlet allocation, varia-
tional Bayes, collapsed Gibbs sampling, divergence measure, topic coher-
ence

1 Introduction

In supervised learning models, the ability of a trained model to predict a target
variable is evaluated using a test set. Evaluating the performance of unsupervised
learning algorithms such as topic models, is less straightforward and a measure
of success needs to be defined. Typically, to evaluate topic models, the metrics
discussed below can be utilised.

1.1 Standard measures for evaluating LDA performance

Held-out perplexity [1] has been the most popular evaluation metric for topic
models such as latent Dirichlet allocation (LDA) [2]. Although much work has
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been done to improve the estimators [3], held-out perplexity does not give
sufficiently fine-grained resolution: Minka and Lafferty address similar concerns
[4]. They demonstrate that held-out perplexity for two different models can be
almost identical but when inspected (using simulated data where the word-topic
and topic-document distributions are known), large performance differences are
seen [4]. Furthermore, a large-scale human topic labeling study by Chang et al.
[1] demonstrated that low held-out perplexity is often poorly correlated with
interpretable latent spaces.

In more recent work, coherence measures are typically preferred in topic
evaluation [5]. Coherence, unlike held-out perplexity, is highly correlated with
human interpretability of topics [6]. In a comprehensive study of multiple coher-
ence measures, the CV coherence score had the highest correlation with human
topic ratings [6]. This measure is a combination of three measures: the indirect
cosine measure, the Boolean sliding window and the normalised pointwise mutual
information score, CNPMI, which performed almost as well as the CV score. Other
well-known coherence measures evaluated in their analysis include CUCI and
CUMass [6, 7]. The CV score (used in this article) and the simpler CNPMI score,
are now popular for evaluating topic modelling results.

These coherence measures, however, are not without their drawbacks since
they take only the top words per topic into account, and not the full distributions
over topics. Consequently, much detail of the learnt distributions is discarded.

Because these measures are not comprehensive evaluation tools, it is good
practice to inspect the topics extracted (read through the words in each topic)
where the metrics indicate good performance [1]. Here we propose using simulated
data along with a Kulback-Leibler divergence (KLD) measure to replace extensive
use of this tedious process and show how this metric gives more fine-grained
results than the CV coherence score for the same simulated data sets.

1.2 A more exact measure of topic model performance for
simulated data

To avoid the problems mentioned above, we implement a corpus simulation
system based on the generative LDA graphical model. In this corpus simulation
system, the underlying distributions are known, allowing a more fine-grained
approach to evaluating algorithm performance.

A distance measure (forward KLD) is then used to compare the approximate
distributions learned from the topic model and the true distributions. An error
value, taking into account the error over all topics, is generated per run of each
model.

A further advantage of using simulated data is that an array of data sets with
a range of hyperparameters, like number of documents, number of topics, and
number of topics per document can be generated. This allows us to evaluate a
variety of corpus types.
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1.3 Overview

In Section 2 (Background), we introduce LDA and define the distributions used
in the LDA graphical model. We also introduce the two inference methods that
will be used to extract topics from the simulated corpora.

In Section 3, we present SimLDA and describe its use in relation to topic
model evaluation . In Section 4 we describe the two simulated data sets that are
used in this article as example data sets, as well as the hyperparameters used in
the topic extraction experiments.

The topic modelling results are presented in Section 5. Using box plots we
summarise average KLD values obtained using the two algorithms for each data
set. Word-topic plots are included for closer scrutiny of the results from individual
corpora. We then present the topic coherence over a range of topic numbers so as
to compare the coherence and KLD results. To show the typical usage of coherence
metrics on a non-simulated data set, we also compare the two performance of the
two inference algorithms to a real, well known, text corpus—the 20 Newsgroups
corpus.

In Section 6, we discuss our results and motivate the use of our topic model
evaluation methodology. We conclude this paper and present ideas for future
work in Section 7.

2 Background

In this section, we introduce latent Dirichlet allocation (LDA) and the two
approximate inference techniques that will be used to showcase our topic model
performance evaluation methodology.

2.1 Latent Dirichlet allocation (LDA)

Although many types of topic models exist, ranging from latent-sematic indexing
(LSI) [8], as well its probabilistic counterpart, probabilistic-LSI (pLSI) [9], to
correlated topic models (CTM) [10], latent Dirichelt allocation (LDA) is still one
of the most popularly used topic models [11].

While the LDA model can extract latent topics of any type from a wide range
of inputs, it is most commonly known for its ability to extract latent semantic
information from text corpora (collections of documents).

By applying LDA to text corpora, we can extract topics, each consisting of a
list of words, where each word in the vocabulary has a probability of being in
that topic. Similarly, after running the inference algorithm, each document in
the corpus is represented as a probability distribution over topics. The notation
used to represent these word-topic and topic-word distributions, as well as the
other distributions that characterise LDA, are listed in Table 1.
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Fig. 1: Plate model of LDA system as a Bayes net. The symbols used in this
figure are explained in Table 1.

Table 1: Symbols used for the LDA model shown in Figure 1.

Symbol Description

M Total number of documents
m Current document

N Number of words in current document
n Current word (in document)

K Total number of topics
k Current topic

Km n Number of topics per document

V Total number words in the vocabulary
v Current word (in vocabulary)
v Observed word (in vocabulary)

θm Topic-document Dirichlet for document m
Zm,n Topic-document categorical for word n in document m
Wm,n Word-topic conditional categorical for word n in document m
φk Word-topic Dirichlet for topic k

We use the LDA model in this article to perform topic modelling, and compare
the topic extraction results using two different approximate inference techniques
that are introduced in the following section.

2.2 Approximate inference for LDA

Exact inference is intractable for many useful graphical models such as LDA
[12, 13, 14]. In fact, one cannot perform exact inference on any graphical model
where continuous parent distributions have discrete children [15]. A range of
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approximation techniques can be used to overcome this difficulty. These techniques
vary in performance, based on the models to which they are applied [16].

Particle based approaches, such as collapsed Gibbs sampling [17, 18], are
computationally expensive [19] and convergence rates can be slow, though asymp-
totic convergence is guaranteed. Because larger data sources are now readily
available, faster and equally effective approaches such as variational Bayes (VB)
have gained popularity [20, 21, 22].

Collapsed Gibbs sampling and VB are currently two of the most frequently
used inference techniques for LDA, and in this work, we use our topic model
evaluation approach to compare these inference algorithms for two simulated data
sets. To demonstrate how our results compare with standard coherence measures,
we also show how the two inference algorithms perform on a text corpus, namely
the 20 Newsgroups corpus [23].

3 SimLDA: as a tool for generating simulated documents

In this section we present our corpus simulation tool, SimLDA, and describe
our method of measuring topic model performance based on the extracted and
ground truth topics. We also discuss the implementation details of SimLDA.

3.1 Generation of simulated documents

Our corpus simulation system outputs a corpus after input of the following
parameters: number of documents, corpus vocabulary, number of words per
document, number of topics in the corpus, number of topics per document (these
will be assigned random proportions that sum to 1 within a document), and a
measure of overlap.

Each corpus is generated as follows:

1. For each topic, generate it’s word distribution.
2. For each document, generate its topic distribution.

To facilitate graphical evaluation of the results of topic models, the words
in the corpus are all word indices, so that they can be reordered and plotted
for visual inspection (See Figure 2 (a) for ordered words and (c) for unordered
words).

The words are organised in a circular arrangement i.e., the last one is adjacent
to the first one, and a topic is represented by a collection of words centered around
a particular position on this circle with a Laplace, Figure 2 (a), or Gaussian,
Figure 2 (b), decline to both sides, depending on the data set. Note that in our
modelling we do not make use of this particular distribution of words in the
topics—it merely serves to illustrate the results in an understandable way. We
show this in Figure 2 (c), where we display the unordered vocabulary on the
x-axis. As noted by Blei et al. in [12], LDA handles documents in a bag-of-words
[24] manner, which implies that the actual sequence of words or topics is not
taken into account by the LDA model.
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(a) Generated word-topic
distributions for a Laplace
distributed data set with
number of topics being 7,
with the 7th topic as the
function words topic.
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(b) Generated-word distri-
butions on a Gaussian dis-
tributed data set with 15
topics. This data set has a
narrow width (support) per
document.
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(c) Shuffled word-topic dis-
tributions for (a). This il-
lustrates that no reliance is
made on the sequence of
words within a topic or the
fact that adjacent topics are
significantly more likely to
share words.

Fig. 2: Plots of generated word-topic distributions from which samples are drawn
in the simulation of documents. The width of the word-topic distributions relates
to the support of each distribution.

To the topics mentioned above, we add an additional topic, non-overlapping
with the others, but occurring in all documents (the rightmost flat topic in
Figure 2 (a) and (b)). The addition of these words makes the task of learning
the word-topic and topic-document distributions significantly more challenging.
This is one of the challenges when applying LDA to true text corpora and it
is typically handled by applying pre-processing techniques before running LDA
(such as removing stop words and using the TF-IDF) [25] or by post-processing
(removing ”context-free” words after extracting topics [4]). By including these
stop words, we aim to make our simulations more difficult and realistic.

3.2 Measuring performance

All word-topic and topic-document distributions are Dirichlet distributions. One
can easily calculate the forward Kullback-Leibler divergence (KLD) between two
Dirichlet distributions.

Unfortunately, the Gensim implementation of the VB algorithm allows ac-
cess only to the mean of these Dirichlet distributions, not to the distributions
themselves. Fortunately, in LDA, the mean of these distributions is, in fact,
the probability of finding a word in a topic. We therefore calculate the forward
KLD between the actual word-topic distributions p and approximate word-topic
distribution q for each topic,

KL(p ‖ q) =
∑
i

pi ln
pi
qi

(1)

To match up the extracted topic to the ground truth topic, we compare each
extracted topic with the ground truth topic and choose the extracted topic that
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is closest to the ground truth topic base on KLD. We repeat this process for
all ground truth topics and the average KLD over all topics is taken to be the
error for each model. It is important to note that when generating a corpus, we
are sampling from the underlying true distributions. We compare the extracted
distributions with the ground truth distributions from which we sample, and not
from the sampled distributions.

3.3 Implementation

SimLDA was developed using EMDW, a C++ library for Bayesian statistics from
Stellenbosch University [26, 27, 28, 29], and can be used directly from Python. It
has also been Dockerised so that it can be used on any machine (see Figure 3).
It can be used as an HTTP API (accepting a PUT request with JSON payload),
through the LDA wrapper package or directly from the console.

If the API is used, the documents are returned in JSON format, along with a
dictionary. If SimLDA is used natively, the documents are written to compressed
text files locally.
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(a) Deployment of the Docker container on Amazon Web Services (AWS) Elastic
Container Registry (ECR)

Notebook / Python Script
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Input
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Document
topic

distributions

Topic word
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lda_wrap package 

(b) Local or remote deployment of the Docker container.

Fig. 3: Diagram showing how the SimLDA can be made available either on (a) a
cloud service such as Amazon Web Services (AWS) or (b) on a server or local
machine.

Once the simulated documents are created and made available, our LDA
wrapper package can be used to parse the created documents, and to interface
with the topic models. The LDA wrapper package also allows us to run a number
of iterations for each corpus type for the simulated data sets. On completion,
SimLDA writes the generated documents to file, or, if used as an API, returns
the documents as a JSON payload.
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4 Method

Here we describe the method used to showcase SimLDA and our custom topic
modelling evaluation metric. We start by describing the simulated data sets, and
then describe the hyperparameters that are used in the experiments.

4.1 Simulated data sets

We chose two small synthetic data sets to illustrate the functionality of SimLDA.
Each data set consists of 20 groups of corpora, where each group contains corpora
consisting of a set number of documents per corpus. We generate multiple corpora
per data set so that we can compare performance over a number of samples to
have an idea of how performance varies with small changes to a corpus.

These data sets are small by real-word text topic extraction standards (in
terms of number of documents, and words per document), which makes it harder
for LDA to learn their underlying distributions—they contain less information.
By choosing harder data sets, differences between topic models are often more
apparent.

Furthermore, smaller corpora require less processing time. Choosing small
corpora allows us to:

1. Run collapsed Gibbs sampling for long chains and take multiple samples.
2. Generate many corpora per corpus generation parameters setting (such as

document length, number of topics per document, etc.).
3. Iterate over multiple hyperparameters for LDA (such as the Dirichlet hyper-

parameters, and number of epochs).

We now describe the two simulated corpora that are used in this work.

Smaller simulated data set : For each corpus we use the following corpus
generation parameters (see Table 1): V = 100, N = 100, K = 7 and Km = 3.

This data set is smaller than the other in terms of number of topics and vocab-
ulary length. There are 100 words per document, which makes the total number
of observed words low—which would be the case even with many documents.

The ratio of topics per document to total topics is reasonably high (about
1:2) when compared to text topic extraction data sets. When performing LDA on
text corpora, we typically expect fewer topics within each document (often only
one or two, such in the 20 Newsgroups corpus), but expect many more topics for
the entire corpus.

Larger simulated data set : For each corpus we use the following corpus
generation parameters: V = 500, N = 120, K = 10 and Km = 5. This data set
has a larger vocabulary, though considerably smaller than most text corpora.
Each document contains five documents out of the 10 available topics.
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4.2 Hyperparameter selection for simulated data sets

Here we provide details about the hyperparameters that are chosen to be used
for our experiments.

Epochs: For the implementations of VB and collapsed Gibbs sampling that
are used, one does not have access to the internal distributions at each epoch.
We therefore test convergence by running LDA a number of times for various
numbers of epochs and inspecting the average result. For VB, performance is
significantly worse at 70 epochs, even for the smaller simulated data set but shows
no improvement at 200 epochs for either data set. For the larger simulated data
set, for VB, we use 150 epochs for all runs. For collapsed Gibbs sampling, 5, 000
samples are used since poor results are obtained when using 2, 000 iterations.
This is significantly more than the 2, 000 samples recommended in the Python
package [30] and the 1, 000 used by Zeng et al. [31].

Dirichlet hyperparameters: A grid search is applied to choose the appropriate
Dirichlet hyperparameters for each corpus. The hyperparameters α = β = 0.1 do
well over both algorithms for the larger simulated data set and α = β = 0.5 yield
the best results for the smaller simulated data set.

We now present the topic extraction results for these two simulated data sets,
as well as for a well known text corpus, the 20 Newsgroups corpus [23].

5 Results

To objectively determine the degree to which the estimated topic-word distri-
butions differ from the actual distributions from which the simulated data are
generated, we present average KLD values for each of the two algorithms. For each
group of 20 corpora (each group consisting of a different number of documents
per corpus M—with the other hyperparameters fixed), we compute average KLD
over all topics for the two algorithms.

Using box plots, we show the average KLD against the number of documents
per corpus. This allows the median KLD and interquartile ranges (the latter
indicating the degree of variability in the data) of the algorithms to be compared
visually. These results are summarised in Figure 4 (smaller simulated data set)
and Figure 9 (larger simulated data set).

We also, for select corpora, plot the word-topic distributions inferred by the
algorithms, superimposed on the true distributions from which the corpora are
sampled. Average KLD over all topics is provided in these plots (which we call
word-topic plots), as an objective indication of the extent to which the true
and extracted distributions agree. Algorithm performance can also be visually
assessed by examining the differences between the true distributions and extracted
distributions. In Figure 4, we show the summary box plots for the experiments
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performed on this data set. For corpora containing fewer documents, collapsed
Gibbs sampling outperforms VB in terms of both variability and median value.
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Fig. 4: Box plot showing the average KLD values for collapsed Gibbs sampling
and VB as the number of documents per run increases for the smaller simulated
data set. The average KLD is computed over all topics for 20 runs. For smaller
corpora, collapsed Gibbs sampling performs best. For larger corpora, VB starts
to perform as well or even better than collapsed Gibbs sampling.

We show only one example of poorer performance and one example of better
performance (based on KLD scores provided in each Figure) of each algorithm.
In each plot, the ground truth topics are represented by red lines, and extracted
topics are represented by different colours. The closer the coloured curves are to
the red lines over all topics, the better the performance of the algorithm.

5.1 Smaller simulated data set

For corpora with 200 documents each, VB starts to outperform collapsed Gibbs
sampling in terms of the median value, but not in terms of variability. For corpora
with more than 200 documents, VB outperforms collapsed Gibbs sampling in
terms of median value, and the variably starts to decrease to a level that seems
to be nearing that of collapsed Gibbs sampling.

Inspecting the topic extraction of individual corpora containing 50 documents
each (Figures 5 and 6), allows us to compare the extracted topics (the coloured
curves) with the ground truth topics (as defined in SimLDA). It is clear that
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collapsed Gibbs sampling extracts topics more correctly than VB does, since in
Figure 5, we see that the coloured curves do not match the red curves and that
this is reflected in the high KLD values of 0.49 and (at best) 0.19 (compared
with the KLD values of 0.16 and 0.12 for the examples shown in Figures 5 as
extracted by collapsed Gibbs sampling.
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(a) KLD = 0.16 (average over all topics).
This is one of the corpora where collapsed
Gibbs sampling performed the worst (al-
though it is still good performance).
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(b) KLD = 0.12 (average over all topics).
This is an example of good topic extraction
by collapsed Gibbs sampling.

Fig. 5: True versus extracted topics identified by collapsed Gibbs sampling from
two simulated corpora derived from the smaller simulated data set

Although we have only presented results in this manner for a few select
corpora, one can inspect the results for each corpus. This is valuable when
developing either new topic modelling techniques or when developing a new
inference algorithm.
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(a) KLD = 0.49 (average over all topics).
This is an example of typical topic extrac-
tion by VB.
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(b) KLD = 0.19 (average over all topics).
This shows exceptionally successful typical
topic extraction by VB.

Fig. 6: True versus extracted topics identified by VB from two simulated corpora
derived from the smaller simulated data set. Each corpus contains 20 documents.
The result in (a) is a typical result, not an extreme one. In (b) this result for VB
is in fact the KLD outlier that can be seen in the summary box plot in Figure 4
(plotted where M = 50 on the x-axis).

We now compare these results with the standard Cv coherence score. By
extracting topics for this data set for values of K other than the true number of
K, we can use the standard way of plotting coherence for a range of topics to
evaluate the data set (for a specific corpus group). In Figures 7 and 8 we show
the coherence scores for M = 100 and M = 500 respectively. In both Figures,
the the highest Cv scores are shown for the correct number of topics (K = 7).

In Figure 12, collapsed Gibbs sampling performs better than VB only for the
correct number of topics, and only marginally so. When comparing this with the
KLD score shown in Figure 4 at M = 100, we can see that the KLD score shows
a that VB performs much worse than collased Gibbs.

For M = 500, (see Figure 8), collapsed Gibbs sampling performs better than
VB at for 8 and 9 topics, but worse for lower numbers of topics. At 7 topics, the
correct number based on the underlying distributions, the algorithms perform
very similarly. This is similar to what is seen using the KLD measure in Figure 4.
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Fig. 7: Cv scores for the two algorithms. for the Smaller simulated data set for
corpora containing 100 documents.
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Fig. 8: Cv scores for the two algorithms. for the Smaller simulated data set for
corpora containing 500 documents.
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5.2 Larger simulated data set

Here the inference problem is harder to solve than when performed on the smaller
simulated data set, since there are more topics per document (6 topics, instead of
3), which implies greater topic overlap within each document.

Over all the groups of corpora (from those containing 100 to those containing
500 documents each), collapsed Gibbs sampling outperforms VB with a large
margin in terms of variability as well as median value.

The word-topic plots show more detail with regard to these sumarised results.
In Figure 10, we show topics extracted using VB on two corpora containing 100
documents each. In (a) the topic extraction performance is very poor. In (b) we
can see that the algorithm identifies most of the underlying topics, but not well.

Figure 11 shows topic extraction by collapsed Gibbs sampling. For these
corpora, collapsed Gibbs sampling successfully identifies the topics.
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Fig. 9: Box plot showing the average KLD values for the four algorithms as the
number of documents per run settings increase for the larger data set. KLD is
computed over all topics for 20 runs. It is clear that VB is the worst performing
algorithm over this range of corpora.
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(a) KLD = 1.3 (average over all topics).
This is an example of poor topic extraction
by VB.
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(b) KLD = 0.77 (average over all topics).
This is an example of good topic extraction
by VB.

Fig. 10: True versus extracted topics identified by VB for two simulated corpora
derived from the larger simulated data set. Each corpus contains 100 documents.
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(a) KLD = 0.32 (average over all topics).
This is a typical topic extraction by col-
lapsed Gibbs sampling.
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(b) KLD = 0.3 (average over all topics).
This is another typical topic extraction by
collapsed Gibbs sampling.

Fig. 11: True versus extracted topics identified by collapsed Gibbs sampling for
two simulated corpora derived from the larger simulated data set. Each corpus
contains 100 documents.

To compare our KLD metric with coherence, we chose the corpus group
where M = 200, and plot the Cv coherence scores in box plot form in Figure 12.
Collapsed Gibbs sampling performs better than VB for the correct number of
topics (K = 10), as well as where (K = 9). For other numbers of topics, VB either
performs similarly or better than collapsed Gibbs sampling. It is also interesting
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to note that the correct number of topics, does not give the highest coherence
score.
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Fig. 12: Cv scores for the two algorithms. for the Larger simulated data set for
corpora containing 200 documents.

We now evaluate the two inference algorithms by extracting topics from
a commonly used text corpus, the 20 Newsgroups corpus, and comparing the
coherence scores for these two algorithms.

5.3 Evaluation of the inference algorithms using the 20 Newsgroups
and coherence

The well-known 20 Newsgroups corpus [23, 32, 33, 34] has been generated by
extracting posts from 20 different newsgroups, each typically covering a specific
logical topic.

Before applying topic modelling to this corpus, standard pre-processing steps
are applied, using a combination of regular expressions and functions available
from The Natural Language Toolkit (NLTK) [35, 36] and Gensim [37].

In Figure 13, the Cv scores are shown over a range of K values for the 20
Newsgroups corpus. Collapsed Gibbs sampling clearly performs better than VB,
and shows the highest coherence at 20 topics K = 20. Because we do not know
the true number of topics, it is hard to objectively determine which algorithm is
better at topic extraction.

Given that collapsed Gibbs sampling consistently provides higher coherence
values, over the range of K, based on these results, one could conclude that
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collapsed Gibbs sampling performs better for this data set. This is in keeping
with our results for the simulated data sets, and also with other research [21].
Without the ground truth distributions, however, it is harder to quantify the
differences in performance than when we know the true number of latent topics.
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Fig. 13: Cv scores for the two algorithms. The performance is similar for K = 13,
but for other values of K, collapsed Gibbs sampling performs much better than
VB.

6 Discussion

SimLDA allows very large numbers of simulated documents to be created with
a wide range of hyperparameters. By varying these hyperparameters such as
number of topics per document and topic width, one can compare topic model
performance over a wide range of corpora. In this article, we demonstrate this
for the two simulated data sets.

Because the ground truth distribution of the simulated corpora is known, we
can easily compare the extracted topics with the word-topic distributions used to
create the corpora in the first place. By using an average forward KLD over all the
topics, we can quantify the error that a topic model makes for a specific corpus.
Since many corpora can be extracted using the same underlying distributions,
we can apply LDA to a number of these corpora, and inspect the variability of
the results. This gives an indication of the stability of the topic model, inference
technique used for topic extraction, or hyperparameters chosen. For example, we
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see that in both the smaller simulated data set and the larger simulated data set
(Figures 4 and 9), collapsed Gibbs sampling shows less variability than VB does.

By inspecting these box plots, we can also see that although the general
performance of collapsed Gibbs sampling is better than that of VB by a large
margin, there are times when VB starts to do better than collapsed Gibbs
sampling. This can also be seen by looking at the coherence plot in Figure 8.
Should one have only looked at specific text corpora (such as the 20 Newsgroup
corpus, shown in Figure 13), this effect could have been missed.

In contrast to our results using SimLDA and KLD, plots of CCv scores reveal
that differences between the two algorithms appear to be very small, with a
large amount of variability in scores at each topic number setting. In the larger
simulated data set, the highest scores for both algorithms could not clearly
identify the correct number of topics. Our KLD metric can show the performance
differences between topic models more clearly than the standard Cv score because
we use the ground truth distributions in the KLD metric, and we work with
probabilities and not merely the word rank.

The visual nature of the word-topic plots are another advantage of our topic
modelling performance evaluation methodology. By using these plots we can
see the probabilities of a word being assigned to a topic, compared with the
underlying probability of that word in the topic (as part of the word-topic
distributions from which the corpus was generated). These word-topic plots can,
moreover, be inspected after every few epochs, allowing one to visually compare
convergence for different inference algorithms for the same corpus, or to compare
convergence for corpora with various hyperparameters.

7 Conclusion and future work

In this article, we present SimLDA and show how it can be used to evaluate topic
models. We use two popular approximate inference techniques, collapsed Gibbs
sampling and VB, to perform topic modelling using LDA, and calculate the topic
modelling performance of these algorithms using a forward KLD measure. This
measure utilises the posterior word-topic distributions as well as the original
word-topic distributions from which the corpora were generated.

We plot the results using box plots which show the median values for both
inference algorithms over a range of corpus sizes for both simulated data sets.
Collapsed Gibbs sampling performs better than VB in both data sets overall,
but in the smaller simulated data set, when the number of documents is higher,
VB does marginally better than collapsed Gibbs sampling. This is a function of
the hyperparameters chosen for inference, as well as the corpus hyperparameters.
Being able to identify cases like this is one of the advantages of SimLDA.

We also provide word-topic plots to inspect the results of individual corpora
visually. These plots give a more detailed view of the information provided in the
box plots, and allow the user to see exactly where the topic modelling does well,
and where topics are incorrectly learned. The Cv scores are also computed over a
range of K for the two simulated data sets and compared with the KLD metric.
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Coherence scores were not able to discriminate between the two algorithms as
well as what is seen using the custom KLD metric.

As future work, the use of synthetic data generated using SimLDA, together
with our KLD measure, could find application in research involving new topic
models or for comparing existing models and inference algorithms over a wider
range of corpora. Expanding the scope of these methods to include corpora with
diverse characteristics and data distributions could present opportunities for
future work and advance current understanding on which models are most useful
for specific types of datasets. SimLDA currently supports only topics that have a
Gaussian or Laplace shaped distribution. Future work could include the addition
of distributions having other properties. Additionally, SimLDA could be extended
to generate data for other similar graphical models.
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