
Knapsack Secretary Through Boosting∗

Andreas Abels† Leon Ladewig‡ Kevin Schewior§ Moritz Stinzendörfer¶

August 11, 2022

Abstract

We revisit the knapsack-secretary problem (Babaioff et al.; APPROX 2007), a generalization of the classic

secretary problem in which items have different sizes and multiple items may be selected if their total size

does not exceed the capacity B of a knapsack. Previous works show competitive ratios of 1/(10e) (Babaioff et

al.), 1/8.06 (Kesselheim et al.; STOC 2014), and 1/6.65 (Albers, Khan, and Ladewig; APPROX 2019) for the

general problem but no definitive answers for the achievable competitive ratio; the best known impossibility

remains 1/e as inherited from the classic secretary problem. In an effort to make more qualitative progress,

we take an orthogonal approach and give definitive answers for special cases.

Our main result is on the 1-2-knapsack secretary problem, the special case in which B = 2 and all items

have sizes 1 or 2, arguably the simplest meaningful generalization of the secretary problem towards the

knapsack secretary problem. Our algorithm is simple: It boosts the value of size-1 items by a factor α > 1

and then uses the size-oblivious approach by Albers, Khan, and Ladewig. We show by a nontrivial analysis

that this algorithm achieves a competitive ratio of 1/e if and only if 1.40 . α ≤ e/(e− 1) ≈ 1.58.

Towards understanding the general case, we then consider the case when sizes are 1 and B, and B is

large. While it remains unclear if 1/e can be achieved in that case, we show that algorithms based only on

the relative ranks of the item values can achieve precisely a competitive ratio of 1/(e + 1). To show the

impossibility, we use a non-trivial generalization of the factor-revealing linear program for the secretary

problem (Buchbinder, Jain, and Singh; IPCO 2010).

1 Introduction

In the classic secretary problem, there is a single position to be filled, and n candidates arrive one by one in

uniformly random order. Upon arrival of any candidate, they have to be rejected or accepted immediately and

irrevocably only based on ordinal information on the candidates seen so far, that is, their relative ranks. The

goal is to maximize the probability that the best candidate is selected. The origin of this problem is unclear; for

a discussion, we refer to Ferguson’s survey [16]. It is well known [26, 13] since the 1960s that a probability of

1/e can be achieved by selecting the first candidate that is better than the n/e first candidates and that this is

the best-possible probability under the typical assumption n→∞. Many extensions of this problem have since

been considered, especially in recent years, partially due to relations to beyond-the-worst-case analyses of online

algorithms (e.g., [20, 1, 18]) and to mechanism design (e.g., [24, 4]).

There is extensive work on multiple-choice variants of the secretary problem. Few of these works consider an

ordinal setting [8, 19, 29]; the majority considers the value setting in which each arriving candidate (or item) i is

revealed along with a value vi ∈ R≥0 and must be rejected or accepted immediately and irrevocably so that the

set of accepted items obeys some combinatorial constraint. The goal is to obtain an algorithm with a (strong)

competitive ratio ρ, i.e., that constructs a solution ALG such that v(ALG), the sum of values of accepted items,

is in expectation at least ρ · v(OPT) where OPT is the best solution that could have been constructed.

Whereas the results for the standard secretary problem carry over to the value setting, even relatively simple

variants are not completely understood in that setting. This is arguably due to the sheer amount of conceivable

strategies. For instance, the precise competitive ratio achievable in the 2-secretary problem, the variant in which

two positions are to be filled, is not known—only that it is strictly larger than in the much-better-understood

ordinal “counterpart”, sometimes called the (2, 2)-secretary problem [8, 9].

The secretary variant that has probably received most attention is the matroid secretary problem [5], an

extension of the k-secretary problem [24] (in which k positions are to be filled) to any matroid constraint, see, e.g.,

∗Supported in part by the Independent Research Fund Denmark, Natural Sciences, grant DFF-0135-00018B.
†School of Business and Economics, RWTH Aachen University, Germany. Email: andreas.abels@oms.rwth-aachen.de.
‡Munich, Germany. Email: leonladewig@mail.de.
§Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark. Email: kevs@sdu.dk.
¶Department of Mathematics, TU Kaiserslautern, Germany. Email: stinzendoerfer@mathematik.uni-kl.de.

1

ar
X

iv
:2

20
8.

05
39

6v
1

 [
cs

.D
S]

 1
0

A
ug

 2
02

2

the state-of-the-art result [25, 15] and the survey by Dinitz [12]. An orthogonal and also well-known extension

of k-secretary is the knapsack secretary problem in which items additionally have sizes and the total size of

accepted items must not exceed some given capacity B [4, 23, 2, 28, 21]. While this line of work has improved

the competitive ratio from 1/(10e) to 1/6.65, no impossibility beyond 1/e has been found. For some secretary

versions, e.g., the bipartite-matching variant [22], it is known that this ratio can in fact be matched.

Our paper may raise hope that the ratio of 1/e can in fact be matched for knapsack secretary. First,

we consider the 1-2-knapsack problem. Here, items have sizes either 1 or 2 and the capacity B is 2. We

develop a 1/e-competitive algorithm. To us, this result is both surprising and significant because the problem

generalizes both the classic secretary problem, which severely restricts the set of candidate algorithms, and the

not-entirely-understood 2-secretary problem. We also consider the problem with sizes either 1 or B and B large,

for which we show initial results, namely that 1/(e + 1) ± o(1) is precisely the competitive ratio that can be

achieved by ordinal algorithms. These are algorithms that only use the relative rank of the items and disregard

the actual values.

1.1 Related Work

Kleinberg [24] first considers k-secretary as introduced above, gives an algorithm with competitive ratio

1−Θ(1/
√
k), and shows that this ratio is asymptotically best possible. This result is reproduced by Kesselheim

et al. [23] in the more general context of packing LPs. Buchbinder et al. [8] consider the (j, k)-secretary problem

in the ordinal setting in which j items can be selected and the goal is to maximize the expected ratio of elements

selected from the top k items. They also state the algorithm-design problems as linear programs, which they

can only solve for small values of j and k, but Chan et al. [9] can solve them for larger values. Any guarantee

for the (k, k)-secretary problem carries over to the k-secretary problem, but Chan et al. [9] rule out the other

direction. More specifically, Chan et al.’s results include an optimal algorithm for (2, 2)-secretary with guarantee

approximately 0.489 and a (not necessarily optimal) algorithm for 2-secretary with guarantee approximately

0.492. Albers and Ladewig [3] revisit the problem and give simple algorithms with improved (albeit non-optimal)

competitive ratios for many fixed values of k.

The knapsack secretary problem is introduced by Babaioff et al. [4] who give a 1/(10e)-competitive algorithm,

which was subsequently improved by Kesselheim et al. [23] to 1/8.06 and by Albers, Khan, and Ladewig [2] to

1/6.65. Essentially all known Ω(1)-competitive algorithms for the knapsack secretary problem are somewhat

wasteful in the competitive ratio, presumably at least partially for the sake of a simpler analysis, in that they

randomize between different algorithms that are tailored to respective item sizes. It seems that qualitative

progress can only be made by a more fine-grained analysis avoiding such case distinctions.

A variant of the knapsack secretary problem that has recently been considered is the fractional variant in

which an item can also be packed fractionally, avoiding situations in which an arriving item cannot be selected at

all, even when there is space. The currently best known achievable competitive ratio is 1/4.39 [17], also achieved

by a blended approach.

It is not difficult to see that no constant competitive ratio can be achieved when the items do not arrive in

random but in adversarial order, even in the unit-value case [27]. Starting from this problem, problems in which

other assumptions than the order are relaxed are considered as well. For instance, Zhou et al. [30] consider the

version in which each item has a small size; Böckenhauer et al. [6] and Boyar et al. [7] introduce advice and

untrusted predictions, respectively, to the problem.

Lower bounds for secretary problems in the value setting are rare. For some related problems [10, 11, 14],

the rich class of strategies can be handled by, for any strategy, identifying an infinite set of values (using Ramsey

theory) on which it is much better behaved. It is, however, not clear how such an approach could be applied,

e.g., for knapsack secretary since it seems one would need to control how the values in the support are spread

out, a property that is irrelevant in the other settings.

1.2 Our Contribution

The special case 1-2-knapsack is not only arguably the simplest special case that exhibits features of the knapsack

problem distinguishing it from the matroid secretary problem. Since the problem generalizes both the standard

secretary problem and 2-secretary, we believe that settling it in terms of the achievable competitive ratio is also

interesting per se.

A good starting point for tackling 1-2-knapsack seems to be the extended secretary algorithm, which is

1/3.08-competitive in the slightly more general case when all items have size larger than B/3 [2]. This algorithm

simply ignores the item sizes, samples some prefix of length cn for some optimized constant c ∈ (0, 1), and

afterwards selects all items that surpass the largest value from the sampling phase and that can still be feasibly

2

packed. It is, however, easy to see that this approach cannot achieve 1/e: Achieving 1/e in an instance where the

optimal solution consists of a large item requires setting c = 1/e± o(1). The resulting algorithm will, however,

not be 1/e-competitive in an instance where the optimal solution consists of two small items of equal value, but

there are many large items, each slightly more valuable than the individual small items, making sure that the

small items are (almost) never selected by the algorithm. In this case, the competitive ratio of the algorithm

will be essentially half the probability that the algorithm selects a (large) item, that is, (1− 1/e)/2 < 1/e. We

denote two instances of the above forms by I1 and I2, respectively, in the following. Clearly, it is possible to

choose c so as to balance between I1 and I2. As a small side result, we show that a ratio of approximately

0.353 < 1/e can be achieved that way.

The key observation leading to our 1/e-competitive algorithm is that keeping c = 1/e and internally

multiplying (boosting) values of small items with a suitable constant factor α > 1 prior to running the extended

secretary algorithm may handle both I1 and I2: While this is clear for I1 when the ranking of values does not

change through boosting, a small item may overtake the most valuable (large) item. This however means that

this small item has relatively large (actual) value. Using that the algorithm also accepts the second-best item

with a significant probability (1/e2), we can show that, with the right choice of α, we still extract enough value

from the small and large items to cover 1/e · v(OPT). In I2, the small items would overtake the large items,

significantly improving the expected value achieved by the algorithm; conversely, if they did not overtake, they

would not have been harmfully valuable in the first place—again with the right choice of α. To sum up, “I1
type” instances impose an upper bound on α, and “I2 type” instances impose a lower bound on α. We show

that the algorithm is 1/e-competitive if and only if 1.40 . α ≤ e/(e− 1) ≈ 1.58 where the upper bound comes

essentially from the above consideration for I1. Note that therefore, in particular, our boosting is different from

ordering the items by their “bang for the buck” ratios.

We note that, while α-boosting seems reminiscent of β-filtering [9] (for β < 1), applying β-filtering to the

extended secretary algorithm will not yield a 1/e-competitive algorithm. The extended secretary algorithm would

be adapted by ignoring items with a value less than β times the highest value seen so far. Note that indeed, a

“I1 type” instance where all but the most valuable item have a similar small value, one would have to choose

c = 1/e± o(1) again, independently of β. But such an algorithm would again only be (1− 1/e)/2-competitive

on I2.

The crux of our analysis is distinguishing all possible cases beyond those covered by I1 and I2 in a smart

way. To bound the algorithm’s value in each of these cases, we precisely characterize the probabilities with which

the algorithm selects an item depending on its size and its position in the (boosted) order of values, significantly

extending observations made by Albers and Ladewig [3].

Before tackling the general case and understanding potentially complicated knapsack configurations, we

propose considering a clean special case called 1-B-knapsack where items have sizes either 1 or B, and B is

large. One may be tempted to think that this special case is difficult in that selecting a small item early on may

lead to a blocked knapsack and a horribly inefficient use of capacity, e.g., because all other items are large. On

the other hand, when B is large, one can easily avoid such situations by sampling. We do not give a conclusive

answer on whether 1/e can be matched in this case, but we give some preliminary results.

Unfortunately, a competitive ratio of 1/e for 1-B-knapsack cannot be achieved with our boosting approach.

The same consideration we made for I1 earlier (for 1-2-knapsack) to get an upper bound of e/(e− 1) on α still

works; in contrast, a generalization of I2 rules out any constant boosting factor.

We then give another algorithm for 1-B knapsack which can be viewed as a linear interpolation between the

classic secretary algorithm and the algorithm by Kleinberg [24] for k-secretary. We show that it is 1/(e+ 1)-

competitive. This algorithm turns out to be ordinal, that is, its decisions only depend on the item sizes and the

relative order of their values. Remarkably, we are able to show that 1/(e+ 1) is the best-possible guarantee such

algorithms can achieve. We do so by generalizing the factor-revealing linear program due to Buchbinder et al. [8]

by adding variables and constraints. Arguing that the LP indeed models our problem becomes more difficult

because, in contrast to the setting of Buchbinder et al., at any time, even the size of the next item is random.

We do so by showing reductions between our model and an auxiliary batched-arrival model.

2 Preliminaries

We use the following notation. Let I = {1, . . . , n} be the set of items (also called elements), where each item

i ∈ I is specified by a profit vi and a size si. Moreover, we are given a knapsack of capacity B ∈ N≥2. The goal

is to find a maximum-profit packing, i.e., a subset of items S such that
∑
i∈S si ≤ B and

∑
i∈S vi is maximized.

Without loss of generality, we assume that all elements have distinct values and that v1 > v2 > ... > vn. This

way, the name of an item i corresponds to the (global) rank in I.

3

Algorithm 1: Extended secretary algorithm

Input: Instance of 1-B-knapsack arriving in uniformly random order, parameter c ∈ (0, 1).
Output: A knapsack packing.
for round ` = 1 to n do

if ` ≤ cn then
Reject the current item; // sampling phase

end
if ` > cn then

Let v∗ be the highest profit seen up to round bcnc;
Pack the current item if its profit exceeds v∗ and the remaining capacity is large enough;

end

end

Throughout the following sections, an important subclass of the knapsack problem arises where each item

has either size 1 or B.

Definition 1 (1-B-knapsack). We call the special case of the knapsack problem where all items have size 1 or

B the 1-B-knapsack problem. Items of size 1 are called small and items of size B are called large.

Within the context of 1-B-knapsack, we use the following further notation. Let IS be the set of small items.

For any small item i ∈ IS , let rs(i) denote its rank among the small items. Note that rs(i) is at most the global

rank i of this item. Further, let r′g(a) denote the global rank of the small item x that satisfies rs(x) = a. When

we use just the word “rank”, we refer to the global rank.

Let OPT be an optimal offline algorithm. For any algorithm ALG, we overload the notation and use the same

symbol also for the packing returned by the algorithm. Further, we denote by v(ALG) :=
∑
i∈ALG vi the total

profit of the packing returned by ALG. We are particularly interested in online algorithms, i.e., algorithms that

are initially only given n and are presented with the items one by one. Upon arrival of any item, an online

algorithm has to irrevocably decide whether it includes the item or not. A special class of algorithms we consider

are ordinal algorithms. These algorithms only have access to the item sizes and the relative order of item values.

We say that an online algorithm ALG is ρ-competitive if E[v(ALG)] ≥ ρ · v(OPT) for all instances, where

the expectation is taken over a uniformly random arrival order (and possibly internal randomization that the

algorithm uses). In general, we assume n→∞ for our bounds. Note that, for a fixed number of items, we can

achieve a guarantee that is arbitrarily close to the guarantee for n→∞ by adding a sufficient amount of virtual

dummy items.

Finally, throughout the paper, we use the notation [k] := {1, . . . , k} for any k ∈ N.

3 Matching 1/e for 1-2-Knapsack

In this section, we develop an optimal algorithm for 1-2-knapsack. For this purpose, we first propose a natural

algorithm for 1-B-knapsack, based on the size-oblivious approach from [2]. Here, items are accepted whenever

their profit exceeds a certain threshold, similar to the optimal algorithm for the classic secretary problem.

Therefore, we call it the extended secretary algorithm. From an initial sampling phase of length cn, where

c ∈ (0, 1) is a parameter of the algorithm, the best item is used as a reference element. Subsequently, any item

beating the reference element is packed if it still fits. A formal description is given in Algorithm 1.

In the following, we denote Algorithm 1 by ALG and set

pi(j) := Pr[ALG packs item i as the j-th element],

pi := pi(1),

Pi :=
B∑
j=1

pi(j).

Thus, Pi is the probability that the algorithm packs item i at all, while pi is the probability that it is packed

as the first item. We first state some results on the values pi, which have essentially been investigated in [3].

Indeed, the following results follow from that work and some simple observations.

4

Lemma 1. For i ∈ N, it holds that

pi = c

(
ln

1

c
+

i−1∑
`=1

(−1)`+1

(
i− 1

`

)
c` − 1

`

)
± o(1).

Proof. Let i ∈ N. The extended secretary algorithm packs i as the first item if and only if the single-ref

algorithm from [3] with r = 1 and k = i packs i as the first item. Hence, the probability pi can be derived

from [3] as follows: If i = 1, item i is a dominating item in the terminology of [3] and Lemma 6 of [3] gives

p1 = c · ln(1/c)− o(1). In the case i ≥ 2, item i is a non-dominating item in the terminology of [3]. Here, Lemma

4 of [3] gives pi = pi(i) and Lemma 5 of [3] and gives pi(i) = p1(i), that is, pi turns out to be the probability

that the dominating item 1 is accepted as the i-th item by the single-ref algorithm. Again, the claim follows

from Lemma 6 of [3].

Furthermore, observe that, since increasing the profit of an item cannot decrease its probability of being

selected, we have pi ≥ pi+1 for all i ∈ [n− 1]. Note that ALG accepts no item if and only if the best item is in

the sampling phase. Therefore, we have the following observation.

Observation 1. It holds that

n∑
i=1

pi = 1− Pr[ALG accepts no item]

= 1− Pr[item 1 appears in sampling phase] = 1− c .

In the following subsection, we identify relations between the probabilities Pi and pj .

3.1 Structural Lemma

In this subsection, we show the following lemma connecting the probabilities Pi to the probabilities pj from

Lemma 1. The analysis showing the 1/e-competitiveness of our algorithm is crucially based on this result. Note

that we only use it for B = 2 but it holds for all B.

Lemma 2. The probability that ALG packs element i ∈ I is

Pi =

pi if element i is large, (1)

i∗s · pi +

B∗∑
x=rs(i)+1

pr′g(x) if element i is small, (2)

with i∗s := min{rs(i), B} and B∗ := min {B, |IS |}.

Observe that (1) follows immediately: Any large element can only be packed when the knapsack is empty,

i.e., as the first element. The proof of (2) requires a bit more work.

Definition 2. Let Ei,jx,y be the event that the small elements i and j are packed as the x-th and y-th items,

respectively.

Note that the event that any item i ∈ IS is packed as x-th item, where x ≥ 2, can be partitioned according

to the item packed first. Therefore, for any i ∈ IS and x ≥ 2,

pi(x) =
∑
j∈IS

Pr
[
Ej,i1,x

]
. (3)

We have the following technical lemmata.

Lemma 3. Let i ∈ IS be any small item and i∗s = min{rs(i), B}. For 2 ≤ ` ≤ i∗s, it holds that
∑
j∈IS

Pr
[
Ei,j1,`

]
= pi.

Proof. The first step is to show that at least ` elements are accepted in total, if element i is accepted first. Since

element i has rank rs(i) among the small elements, there are rs(i)− 1 small elements that are more valuable.

Their position in the input sequence cannot be in the sampling phase, nor before element i if it is packed first.

So there are at least i∗s small elements that can be packed subsequently. Therefore, for 2 ≤ ` ≤ i∗s, a small

element is packed as `-th item. The claim follows by partitioning the event that i is packed first according to the

item j ∈ IS packed as `-th item.

5

Element r i j m1 m2

1

Element r m j i1 i2

Slot	in	knapsack:

possible	occurrence	of	element	m

possible	occurrence	of	element	i

rs(m) -

Figure 1: Occurrence of element i and m in event Em,j1,rs(m) and Ei,j1,rs(m)

Lemma 4. For any two small elements i, j ∈ IS and any x, y ∈ [B], we have Pr
[
Ei,jx,y

]
= Pr

[
Ej,ix,y

]
.

Proof. Consider any input sequence of Ei,jx,y and the sequence resulting from swapping the elements i and j.

Since both elements are not part of the sample, the reference element is not changed by the swap. Therefore, no

element that was previously accepted will be rejected and none that was previously rejected will be accepted.

Only the order of selection changes.

Lemma 5. For any small items i, j,m ∈ IS with rs(m) > 1 and rs(i) < rs(m), it holds that Pr
[
Em,j1,rs(m)

]
=

Pr
[
Ei,j1,rs(m)

]
.

Proof. Consider any input sequence from Em,j1,rs(m). Since rs(i) < rs(m) applies, element i lies behind the element

with rank m in the sequence. If both are selected (see i1 in Figure 1), this also applies after they have been

swapped (see Lemma 4 and m1 in Figure 1). If previously only element m of the two is packed, only element i

(of the two) is selected after their swapping (i2 and m2 in Figure 1), since in this case, nothing changes in the

reference element either. Therefore Pr
[
Em,j1,rs(m)

]
≤ Pr

[
Ei,j1,rs(m)

]
applies.

Now consider any input sequence from Ei,j1,rs(m). We show that the element m lies behind the element i in

the sequence since an element is packed as z-th item, where z = rs(m). Assuming this did not apply and m is in

the sample, then there would be at most rs(m)− 1 small elements that can be packed.

In the case that it occurs in the sequence after the sampling phase, but before element i, there must be a more

valuable element in the sample (because m was not packed) and therefore there are again at most rs(m)− 1 small

elements that can be selected. In particular, in both cases, no element is packed as z-th item for rs(m). This is a

contradiction to the fact that we consider an input sequence in Ei,j1,rs(m). Now, using the same argumentation as

in the first case, it follows that Pr
[
Em,j1,rs(m)

]
≥ Pr

[
Ei,j1,rs(m)

]
, which completes the proof.

Using Lemmas 3 to 5, we are now able to prove Lemma 2.

Proof of Lemma 2. Let i ∈ I be any item. If i is large, it can only be packed as the first item, thus Pi = pi.

Now, assume that i is small. It holds that

Pi =

B∗∑
x=1

pi(x) =

i∗s∑
x=1

pi(x)︸ ︷︷ ︸
(∗)

+

B∗∑
x=rs(i)+1

pi(x)

︸ ︷︷ ︸
(∗∗)

.

We next simplify both starred terms using Lemmas 3 to 5. For (∗), it holds that

i∗s∑
x=1

pi(x) = pi(1) +

i∗s∑
x=2

∑
j∈IS

Pr
[
Ej,i1,x

]
(Equation (3))

= pi +

i∗s∑
x=2

∑
j∈IS

Pr
[
Ei,j1,x

]
(Lemma 4)

6

= pi +

i∗s∑
x=2

pi(1) (Lemma 3)

= i∗s · pi.

For (∗∗), we obtain

B∗∑
x=rs(i)+1

pi(x) =

B∗∑
x=rs(i)+1

∑
j∈IS

Pr
[
Ej,i1,x

]
(Equation (3))

=

B∗∑
x=rs(i)+1

∑
j∈IS

Pr
[
Ei,j1,x

]
(Lemma 4)

=

B∗∑
x=rs(i)+1

∑
j∈IS

Pr
[
E

r′g(x),j

1,x

]
(Lemma 5, rs(i) < x)

=

B∗∑
x=rs(i)+1

pr′g(x), (Lemma 3, 2 ≤ x = rs(r
′
g(x)) ≤ B)

which completes the proof.

The following corollary is an immediate consequence of Lemma 2 for B = 2.

Corollary 1. For B = 2, the probability that ALG packs element i ∈ I is

Pi =

pi if i is large,

pi + pr′g(2) if i is small and rs(i) = 1,

2pi if i is small and rs(i) > 1 ,

where, if the second most valuable small item does not exist, we set pr′g(2) = 0.

3.2 First approach: Without Boosting

In this subsection, we study Algorithm 1 (as is) for 1-2-knapsack. Unfortunately, there are two instances such

that it is impossible to choose the parameter c so that Algorithm 1 is (1/e)-competitive on both instances.

Lemma 6. For 1-2-knapsack, the competitive ratio of ALG is at most 0.35767, assuming n→∞.

Proof. Let 1 > ε > 0 be a constant. We define two instances I1 and I2. In the first instance I1, all items are

large and only one item has substantial profit. Formally, let v1 = 1, vi = εi for 2 ≤ i ≤ n, and si = 2 for all

1 ≤ i ≤ n. Then, for instance I1,

lim
ε→0

E[v(ALG)] = P1 · v1 = p1 · v(OPT). (4)

In the second instance I2, most items are large and essentially of the same profit. However, the optimal

packing contains two small items that appear at ranks n − 1 and n. Formally, set si = 2 for 1 ≤ i ≤ n − 2,

sn−1 = sn = 1, and vi = 1 + εi for all i ∈ {1, . . . , n}. As item n never beats any reference item, we have Pn = 0.

Hence, the algorithm selects only items from {1, . . . , n− 1} with positive probability, and always at most one

item. For instance I2, we get

lim
ε→0

E[v(ALG)] = lim
ε→0

n∑
i=1

(Pi · (1 + εi)) =

n∑
i=1

pi

Obs. (1)
= 1− c ≤ 1− c

2
· v(OPT). (5)

Overall, by Equations (4) and (5), the competitive ratio as n→∞ of ALG is bounded from above by

max
c∈(0,1)

min

{
p1,

1− c
2

}
= max
c∈(0,1)

min

{
c · ln 1

c
,

1− c
2

}
≤ 0.35767 .

This completes the proof.

7

As a small side result, we show that this bound is almost tight. The techniques are similar to those used for

our main result and presented in the full version of the paper.

Proposition 1. For 1-2-knapsack, the competitive ratio of ALG is 0.35317 − o(1), setting c = 0.26888 and

assuming n→∞.

3.3 Optimal algorithm through α-Boosting

The proof of Lemma 6 reveals the bottleneck of Algorithm 1: If the optimal solution consists of two elements

having a high rank, the probability of selecting those items is small. This problem can be resolved by the concept

of α-boosting.

Definition 3 (α-boosting). Let α ≥ 1 be the boosting factor. For any item i ∈ I, we define its boosted profit to

be

v′i =

{
α · vi if i is small,

vi otherwise.

In the following, we investigate Algorithm 1 enhanced by the concept of α-boosting, denoted by ALGα. This

algorithm works exactly as given in the description of Algorithm 1, but works with the boosted profit v′i instead

of the actual profit vi for any item i ∈ I. Note that the unboosted algorithm analyzed in Proposition 1 is

ALG1. For the remainder of this subsection, we fix c = 1/e. In particular, this implies p1 = 1/e ± o(1) and

p2 = 1/e2 ± o(1) according to Lemma 1.

So far, we did not specify the boosting factor α. However, the following intuitive reasoning already shows

that α should be bounded from above and below: If α is too large, we risk that ALGα packs small items with

high probability, even when they are not part of the optimal packing. On the other hand, by the result of

Proposition 1 we know that ALG1 cannot achieve an optimal competitive ratio. The following theorem provides

lower and upper bounds on α such that ALGα is (1/e)-competitive.

Theorem 1. For 1-2-knapsack, algorithm ALGα is (1/e−o(1))-competitive if and only if 1.400382 . α ≤ e/(e−1)

and c = 1/e, assuming n→∞.

Proof. For any item x ∈ I, let ρ(x) denote the global rank of x after boosting. On a high level, we need to

consider two cases.

In the first case, the optimal packing contains a single item x. If ρ(x) = 1, we immediately obtain

E[v(ALGα)] ≥ p1vx = (1/e) · v(OPT). Now, suppose ρ(x) ≥ 2. Let a and b be the items such that ρ(a) = 1 and

ρ(b) = 2, respectively. Hence,

v′a > v′b ≥ v′x ≥ v(OPT) .

We note that a is small, as otherwise va = v′a > v(OPT). Moreover, for α < 2, item b is large: If b was small, it

would follow that v′b = α · vb and therefore va + vb = v′a/α + v′b/α > (2/α) · v(OPT) > v(OPT), contradicting

the assumption that the optimal packing contains a single item. Therefore, a is small and b is large, implying

va = v′a/α > v(OPT)/α and vb = v′b ≥ v(OPT). Hence,

E[v(ALGα)] ≥ p1 · va + p2 · vb (6)

=

(
1

e
± o(1)

)
· v(OPT)

α
+

(
1

e2
± o(1)

)
· v(OPT)

≥
(

1

e
± o(1)

)
· v(OPT) ,

where the latter inequality holds for α ≤ e/(e−1). Note that, when v′a = 1, v′b = 1−ε, and v′z = O(ε) for all other

items y, Inequality (6) becomes satisfied with equality as ε→ 0. Therefore, ALGα is not (1/e− o(1))-competitive

when α > e/(e− 1).

In the remainder of the proof, we consider the case where the optimal packing contains two small items x

and y, where we assume vx > vy without loss of generality. We set j := ρ(x) and k := ρ(y), where 1 ≤ j < k.

Now, let a1, . . . , aj−1 and bj+1, . . . , bk−1 denote the items appearing before x and between x and y, respectively,

in the ordered sequence of boosted profits:

v′a1 > . . . > v′aj−1
> v′x > v′bj+1

> . . . > v′bk−1
> v′y .

We observe that neither a items nor b items can be small: Otherwise, the profit of such an item would be strictly

larger than vy, and as any two small items fit together, this item should be in the optimal packing instead

8

Table 1: Upper bounds on θj,k for 3 ≤ k ≤ 10 according to Equation (9).

k 3 4 5 6 7 8 9 10

1/e−3pk∑k−1
i=2 pi

1.3475 1.3962 1.400382 1.3988 1.3968 1.3952 1.3941 1.3934

of y. Therefore, we have vai = v′ai > v′x = α · vx for all i ∈ {1, . . . , j − 1} and vbi = v′bi > v′y = α · vy for all

i ∈ {j + 1, . . . , k − 1}.
Now, we can bound the expected profit of ALGα as follows:

E[v(ALGα)] ≥

(
j−1∑
i=1

Pi · α · vx

)
+ Pj · vx +

 k−1∑
i=j+1

Pi · α · vy

+ Pk · vy (7)

=

(
j−1∑
i=1

pi · α · vx

)
+ (pj + pk) · vx +

 k−1∑
i=j+1

pi · α · vy

+ 2pk · vy

=

(
pj + pk + α ·

j−1∑
i=1

pi

)
︸ ︷︷ ︸

λx

· vx +

2pk + α ·
k−1∑
i=j+1

pi

︸ ︷︷ ︸

λy

· vy ,

where we use Corollary 1 for the first equality.

If λx < λy we immediately get λxvx+λyvy > λx(vx+vy) ≥ p1(vx+vy) = (1/e)·v(OPT). Therefore, we assume

λx ≥ λy in the following. By Chebyshev’s sum inequality, it holds that λxvx +λyvy ≥ (1/2) · (λx +λy) · (vx + vy).

Therefore, the competitive ratio is

E[v(ALGα)]

v(OPT)
≥ λx + λy

2
=

1

2
·

(
(1− α) · pj + 3pk + α ·

k−1∑
i=1

pi

)
. (8)

If k = 2, it follows that j = 1 and therefore Equation (8) resolves to

E[v(ALGα)] ≥ 1

2
· (p1 + 3p2) · v(OPT) >

1

e
· v(OPT) ,

which holds independently of α. For k ≥ 3, ALGα is (1/e− o(1))-competitive by Equation (8) if

α ≥ 2/e− pj − 3pk∑k−1
i=1 pi − pj

=: θj,k .

It remains to show θj,k ≤ 1.400382 for all k ≥ 3 and j with 1 ≤ j < k. For this purpose, we first show

θj,k =
2/e− pj − 3pk∑k−1

i=1 pi − pj
≤ 2/e− p1 − 3pk∑k−1

i=1 pi − p1
=

1/e− 3pk∑k−1
i=2 pi

± o(1) for any k ≥ 3. (9)

Since pj is decreasing in j, the inequality in Equation (9) follows immediately if we can show 2/e−3pk >
∑k−1
i=1 pi

for large-enough n. This inequality is easily verified for k = 3, as 2/e− 3p3 > p1 + p2, for large-enough n. For

k ≥ 4, note that pk < p1 − 1/3, again for large-enough n, which is equivalent to 2/e − 3pk > 1 − p1. Using

Observation 1, we obtain
∑k−1
i=1 pi <

∑n
i=1 pi = 1− c = 1− p1. Combining both inequalities yields Equation (9).

By computing the last term in Equation (9) for 3 ≤ k ≤ 10, we obtain the upper bounds on θj,k given in

Table 1, up to additive o(1) terms. Note that the maximum value is 1.400382. For k ≥ 11, we obtain from

Equation (9) together with pi ≥ 0 for all i ≥ 11 that

θj,k ≤
1/e− 3pk∑k−1

i=2 pi
≤ 1/e∑11−1

i=2 pi
< 1.398875± o(1) .

For the lower bound of approximately 1.400382 on α, first note that for j = 1 and k = 5, it holds indeed that

θ1,5 =
2/e− p1 − 3p5∑5−1

i=1 pi − p1
=

1/e− 3p5
p2 + p3 + p4

± o(1)

9

= −51

16
+

9

4e
+

75− 522e+ 486e2

16− 96e+ 288e2 − 64e3
± o(1) ≈ 1.400382± o(1) .

Next, note that setting v′x,v′b2 ,v′b3 ,v′b4 , and v′y all equal to 1 +O(ε) and v′(z) = O(ε) for all other items z makes

Inequality (7) as well as Inequaltiy (8) tight as ε→ 0. Therefore, the above arguments imply that α ≥ θ1,5 if

and only if ALGα is (1/e− o(1))-competitive. This completes the proof.

4 Ordinal Algorithms for 1-B-Knapsack

In this section, we consider ordinal algorithms for 1-B-knapsack with B large. Recall that ordinal algorithms

have access to both item sizes and the relative order on item values (of previously arrived items) but not to the

actual item values. We show the following theorem.

Theorem 2. There is an ordinal (1/(e+ 1)− o(1))-competitive algorithm for the 1-B-knapsack problem, and

every ordinal algorithm has a competitive ratio of at most 1/(e+ 1) + o(1) for this problem.

We first discuss the lower bound, i.e., the algorithm. Note that, while the input is any combination of large

and small items, the optimal solution still consists of either the single most valuable item OPTL or of a set of

up to B small items OPTS . Our algorithm can be viewed as a linear combination of (near-)optimal algorithms

ALGL and ALGS against the respective cases. In particular, ALGL is the (1/e)-competitive algorithm [16] for the

standard secretary problem and run with probability e/(e+ 1); ALGS is the (1− o(1))-competitive algorithm for

k-secretary by Kleinberg [24] and run with probability 1/(e+ 1). The competitive ratio follows by a simple case

distinction. A small subtlety that we need to take care of is that these subroutines require the number of items

as input. To deal with this problem, we introduce dummy items. In the following, we make this idea formal.

Proof (Algorithm). The algorithm ALGL treats all items as if they were large and then applies the standard

secretary algorithm [26, 13]. For the algorithm ALGS , whenever a large item arrives, we pretend that a small

dummy item with value 0 arrives. These dummy items can be accepted and take up space in the capacity

constraint, but they do not contribute to the solution value. On this adapted instance, we apply an optimal

algorithm for the multiple-choice secretary problem, e.g. Kleinberg [24] or Kesselheim et al. [23]. Clearly, for

both algorithms, any solution for the respective adapted instance can be translated back to a solution with equal

value for the original instance. Also, both of these algorithms are ordinal.

For every input instance, our algorithm chooses ALGL with probability e
e+1 and ALGS otherwise. To analyze

the competitive ratio, distinguish two cases. If OPT = OPTL, we use that the algorithm chooses ALGL with

probability e/(e + 1) and conditioned on that achieves an expected value of v(OPTL)/e [26, 13], yielding an

unconditional expected value of v(OPTL)/(e+ 1). Otherwise, i.e., if OPT = OPTS , we use that ALGS is run

with probability 1/(e+ 1) which achieves, as B →∞, an expected value of (1− o(1)) · v(OPTS), resulting in an

unconditional expected value of (1− o(1)) · v(OPTS)/(e+ 1).

We now discuss the upper bound, i.e., the impossibility. In our construction, there are B large and B small

items. All items have different values, and each large item is more valuable than each small item. The adversary

chooses between two ways of setting the values: The first option is to make the solution consisting of all small

items much more valuable than any single large item; the second option is to make a single large item much

more valuable than any other solution.

Ideally, we would like to analyze algorithms in the following setting: In each of n rounds, the algorithm is

presented with both a uniformly random small and a uniformly random large item out of the items not presented

thus far. Upon presentation of any such two items, the algorithm has to choose whether to select all small

items from now on or to select the current large item. While the actual setting, in which all items arrive in

uniformly random order, is clearly different, we show below that working with the other setting is only with a

(1± o(1))-factor loss in the impossibility by reductions between our problem and an auxiliary batched-arrival

model.

Assuming the latter setting, we can write a linear program similar to that of Buchbinder et al. [8]. Like in

that approach, each LP solution corresponds to an algorithm and vice versa. More specifically, our LP uses two

variables (rather than one) for every time step, corresponding to the probabilities that the algorithm accepts

a large item or the first small item, respectively. In addition, there is a variable representing the competitive

ratio, and there are two upper bounds (rather than one) on that variable, representing the two instances the

adversary can choose. A feasible dual solution then yields the desired impossibility. We formalize these ideas in

the following.

10

max c min
k∑

i=1

(xi + yi)

s.t. c ≤
1

k

k∑
i=1

(i · pi) s.t. α+ β = 1

c ≤
k∑

i=1

[(
1−

i− 1

k

)
· qi
]

i · xi +
k∑

j=i+1

(xj + yj) ≥
i

k
· α ∀ i ∈ [k]

i · pi ≤ 1−
i−1∑
j=1

(pj + qj) ∀ i ∈ [k] yi +

k∑
j=i+1

(xj + yj) ≥
(
1−

i− 1

k

)
· β ∀ i ∈ [k]

qi ≤ 1−
i−1∑
j=1

(pj + qj) ∀ i ∈ [k] xi, yi ≥ 0 ∀ i ∈ [k]

pi, qi ≥ 0 ∀ i ∈ [k] α, β ≥ 0

Figure 2: The primal and dual linear programs used in our proof of the upper bound in Theorem 2.

Proof (Impossibility). Consider the following two instances that are treated identically by ordinal algorithms.

There are n = 2B items where items i ∈ {1, . . . , B} are large and items i ∈ {B + 1, . . . , 2B} are small. In one

instance, the item values are vi = 1 + (B − i) · ε for i ≤ B and vi = 1 − iε for i > B. In the other instance,

the values are the same except for v1 = B2. So, for both instances, the rank of item i is indeed i, for all

i ∈ {1, . . . , 2B}. The two optimal solutions are OPTL = {1} and OPTS = {B+ 1, B+ 2, . . . , 2B}. The adversary

decides which of the two instances is the actual instance.

We consider the following batched-arrival setting parameterized with some constant k and assume that k

divides n. The items still arrive in uniformly random order, but the algorithm does not always have to make a

decision upon the arrival of an item. More specifically, for any i ∈ {1, . . . , k}, upon the arrival of the (i · n/k)-th

item, the algorithm may make a decision about all items that have arrived in the current batch, i.e., after the

((i− 1) · n/k)-th item. Clearly, any upper bound on the competitive ratio achievable in this setting, is also an

upper bound on the competitive ratio achievable in the original setting.

Note that the expected number of items of each type, i.e., small and large, in each batch is n/(2k). Let

δ > 0 be some constant. As follows from a standard concentration (e.g., Chernoff) bound, when n→∞, the

probability that the number of items from each type is between (1− δ) · n/(2k) and (1 + δ) · n/(2k) approaches

1. From the union bound over all batches it then follows that also the probability that the number of items of

each type in each batch is within the given range approaches 1. We may therefore assume that this is indeed the

case at an arbitrarily small loss in our impossibility.

To analyze the algorithm in the batched-arrival setting, we write a linear program similar to that of Buchbinder

et al. [8]. The LP encodes a probability distribution for the decisions that an algorithm ALG makes against the

pair of instances. The variable pi represents the probability that the algorithm selects the best large item from

the i-th batch. Similarly, the variable qi represents the probability that the algorithm selects all small items

from both the i-th batch and forthcoming batches.

Note that the algorithm may make any such decision, i.e., selecting the best largest item or starting to select

small items from a batch, for at most a single batch. Hence, we obtain qi ≤ 1−
∑i−1
j=1 pj + qj as a constraint for

our LP for all i ∈ [k]. Further, observe that we may assume that the algorithm only selects a large item when

the best largest item so far is in the current batch. In batch i, the probability for this to happen is at most

(1 + δ)/((1 + δ) + (i− 1) · (1− δ)). As δ → 0, we obtain

pi ≤

1−
i−1∑
j=1

pj + qj

 · 1

i

for all i ∈ [k], another constraint of the LP.

The objective function of the LP is c, an upper bound on the competitive ratio of the algorithm. For each of

the two instances that the adversary could choose, we write an additional constraint upper bounding c. If the

adversary chooses the first instance and the algorithm starts selecting small items at the end of the i-th batch,

the fraction of v(OPTS) the algorithm obtains is at most

(k − i+ 1) · (1 + δ)

(k − i+ 1) · (1 + δ) + (i− 1) · (1− δ)
δ→0−−−→ 1− i− 1

k
.

11

Hence, as δ → 0, we obtain the constraint c ≤
∑k
i=1

(
1− i−1

k

)
qi. Now consider the case that the adversary

chooses the second instance. Suppose that the algorithm selects the best large item from the i-th batch, which is

by assumption the best item that has already arrived. Since the order of large items is a uniformly random

order, the probability that the chosen item is the globally best large item is the fraction of already observed

large items within the whole instance, that is, at most

i · (1 + δ)

i · (1 + δ) + (k − i) · (1− δ)
δ→0−−−→ i

k
.

Hence, as δ → 0, we get the constraint c ≤
∑k
i=1(pi · ik) = 1

k

∑k
i=1 i · pi. We give both the resulting LP and its

dual in Figure 2.

We give a solution to the dual LP. Let τ be the integer number such that

k−1∑
i=τ

1

i
< 1 ≤

k−1∑
i=τ−1

1

i
.

We set yi = 0 for all i < k, yk = 1/((e+ 1) · k), xi = 0 for i < τ , and

xi =
e

(e+ 1) · k
·

1−
k−1∑
j=i

1

j

for i ≥ τ . Further, α = e/(e+ 1) and β = 1/(e+ 1). Note that this choice of x is analogous to the dual solution

by Buchbinder et al. [8] but scaled by a factor of α.

We argue that the solution is feasible when x is scaled up by a (1 + o(1)) factor (where the Landau symbol

is with respect to k →∞). Clearly, α+ β = 1. The inequality ixi +
∑k
j=i+1 xj + yj ≥ i

k · α is the same as in

the dual by Buchbinder et al., except for additional y variables on the left-hand side and a scaling by α of the

right-hand side. Therefore with our choice of x (which is scaled up by α compared to Buchbinder et al.), the

inequalities are identical and the previous proof of feasibility also holds, even without additional scaling of x.

We consider the remaining (new) inequalities. For i = 1, we have

y1 +

k∑
j=2

xj + yj ≥
e

(e+ 1) · k
·
k∑
j=τ

1−
k−1∑
`=j

1

`

=

e

(e+ 1) · k
·

(k − τ + 1)−
k∑
j=τ

k−1∑
`=j

1

`

=

e

(e+ 1) · k
·

(k − τ + 1)−
k∑

j=τ+1

j − τ
j

=

e

(e+ 1) · k
·

1 + τ

k∑
j=τ+1

1

j

 ≥ 1

1 + o(1)
· 1

e+ 1
.

For 1 < i < τ the corresponding inequality is weaker than the latter inequality. For i ≥ τ , we have

yi +

k∑
j=i+1

xj + yj = yk +

k∑
j=i+1

xj .

Since yk = β/k, we therefore have to show that, after scaling x up by a (1 + o(1))-factor,
∑k
j=i+1 xj is at least

as large as (1− i/k) · β. This is clear for i = k. For τ ≤ i ≤ k − 1,

k∑
j=i+1

xj =
e

(e+ 1) · k
·

k∑
j=i+1

1−
k−1∑
`=j

1

`

=

e

(e+ 1) · k
·

(k − i)−
k∑

j=i+1

k−1∑
`=j

1

`

12

=
e

(e+ 1) · k
·

(k − i)−
k−1∑
j=i+1

j − i
j

=

e

(e+ 1) · k
·

1 + i

k−1∑
j=i+1

1

j

 ≥ 1

1 + o(1)
·
(

1− i

k

)
· 1

e+ 1
.

Similar to the previous calculations, the objective-function value is

(1 + o(1)) · e

(e+ 1) · k
·
k∑
j=τ

1−
k−1∑
`=j

1

`

= (1 + o(1)) · e

(e+ 1) · k
·

1 + τ

k∑
j=τ+1

1

j

≤ (1 + o(1)) · e

(e+ 1) · k
· τ

≤ (1 + o(1)) · 1

e+ 1
,

as claimed.

5 Conclusion

In this paper, we have established that the 1-2-knapsack secretary problem is no harder than the classic secretary

problem in a competitive-ratio sense. While we previously noticed that our technique cannot directly be extended

to the general setting, we believe that our work is a first non-trivial step within the larger research plan of

settling the achievable competitive ratio for general knapsack secretary.

It seems plausible that our result extends to the setting of arbitrary knapsack size B and item sizes 1 or 2.

One approach may be combining our techniques with simple 1/e-competitive algorithms for k-secretary [4]. More

general variants seem to require handling packings of items of various sizes. A variant that avoids considering such

potentially complicated configurations and may still yield an impossibility of larger than 1/e is 1-B-knapsack.

13

References

[1] S. Albers, A. Khan, and L. Ladewig. Best fit bin packing with random order revisited. Algorithmica,

83(9):2833–2858, 2021.

[2] S. Albers, A. Khan, and L. Ladewig. Improved online algorithms for knapsack and GAP in the random

order model. Algorithmica, 83(6):1750–1785, 2021.

[3] S. Albers and L. Ladewig. New results for the k -secretary problem. Theor. Comput. Sci., 863:102–119, 2021.

[4] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A knapsack secretary problem with applications.

In Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pages

16–28, 2007.

[5] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Matroid secretary problems. J. ACM, 65(6):35:1–

35:26, 2018.

[6] H. Böckenhauer, D. Komm, R. Královic, and P. Rossmanith. The online knapsack problem: Advice and

randomization. Theor. Comput. Sci., 527:61–72, 2014.

[7] J. Boyar, L. M. Favrholdt, and K. S. Larsen. Online unit profit knapsack with untrusted predictions. In

Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pages 20:1–20:17, 2022.

[8] N. Buchbinder, K. Jain, and M. Singh. Secretary problems via linear programming. Math. Oper. Res.,

39(1):190–206, 2014.

[9] T. H. Chan, F. Chen, and S. H. Jiang. Revealing optimal thresholds for generalized secretary problem via

continuous LP: impacts on online k-item auction and bipartite k-matching with random arrival order. In

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1169–1188, 2015.

[10] J. R. Correa, P. Dütting, F. A. Fischer, and K. Schewior. Prophet inequalities for independent and identically

distributed random variables from an unknown distribution. Math. Oper. Res., 47(2):1287–1309, 2022.

[11] J. R. Correa, P. Dütting, F. A. Fischer, K. Schewior, and B. Ziliotto. Streaming algorithms for online

selection problems. In Innovations in Theoretical Computer Science (ITCS), pages 86:1–86:1, 2021.

[12] M. Dinitz. Recent advances on the matroid secretary problem. SIGACT News, 44(2):126–142, 2013.

[13] E. Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet Math. Dokl., 4, 1963.

[14] T. Ezra, M. Feldman, N. Gravin, and Z. G. Tang. General graphs are easier than bipartite graphs: Tight

bounds for secretary matching. In ACM Conference on Economics and Computation (EC), pages 1148–1177,

2022.

[15] M. Feldman, O. Svensson, and R. Zenklusen. A simple O(log log(rank))-competitive algorithm for the

matroid secretary problem. Math. Oper. Res., 43(2):638–650, 2018.

[16] T. S. Ferguson. Who solved the secretary problem? Statistical Science, 4(3):282–289, 1989.

[17] J. Giliberti and A. Karrenbauer. Improved online algorithm for fractional knapsack in the random order

model. In Workshop on Approximation and Online Algorithms (WAOA), pages 188–205, 2021.

[18] A. Gupta and S. Singla. Random-order models. In T. Roughgarden, editor, Beyond the Worst-Case Analysis

of Algorithms, page 234–258. Cambridge University Press, 2021.

[19] M. Hoefer and B. Kodric. Combinatorial secretary problems with ordinal information. In International

Colloquium on Automata, Languages, and Programming (ICALP), pages 133:1–133:14, 2017.

[20] C. Kenyon. Best-fit bin-packing with random order. In ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 359–364, 1996.

[21] T. Kesselheim and M. Molinaro. Knapsack secretary with bursty adversary. In International Colloquium on

Automata, Languages, and Programming (ICALP), pages 72:1–72:15, 2020.

[22] T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking. An optimal online algorithm for weighted bipartite

matching and extensions to combinatorial auctions. In European Symposium on Algorithms (ESA), pages

589–600, 2013.

14

[23] T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking. Primal beats dual on online packing lps in the

random-order model. SIAM J. Comput., 47(5):1939–1964, 2018.

[24] R. D. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions. In ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 630–631, 2005.

[25] O. Lachish. O(log log rank) competitive ratio for the matroid secretary problem. In IEEE Symposium on

Foundations of Computer Science (FOCS), pages 326–335, 2014.

[26] D. Lindley. Dynamic programming and decision theory. Appl. Statist., 10, 1961.

[27] A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems. Math. Program., 68:73–104,

1995.

[28] D. Naori and D. Raz. Online multidimensional packing problems in the random-order model. In International

Symposium on Algorithms and Computation (ISAAC), pages 10:1–10:15, 2019.

[29] J. A. Soto, A. Turkieltaub, and V. Verdugo. Strong algorithms for the ordinal matroid secretary problem.

Math. Oper. Res., 46(2):642–673, 2021.

[30] Y. Zhou, D. Chakrabarty, and R. M. Lukose. Budget constrained bidding in keyword auctions and online

knapsack problems. In International Workshop on Internet and Network Economics (WINE), pages 566–576,

2008.

15

A Proof of Propostion 1

Proof of Propostion 1. In the first case, the optimum consists of a single element, thus, v(OPT) = v1. Since

ALG chooses this element with probability P1 ≥ p1, we have

E[v(ALG)] ≥ p1 · v1 = p1 · v(OPT) ≥ (0.35317± o(1)) · v(OPT) , (10)

where for the last inequality we used Lemma 1 with c = 0.26888.

Now, assume that the optimal packing contains two elements x and y, where we assume x < y w.l.o.g..

Hence, v(OPT) = vx + vy. Note that x and y must be the most profitable items among the set of small items,

i.e., rs(x) = 1 and rs(y) = 2. Next, we bound the expected profit of the packing. Since vi ≥ vx for 1 ≤ i ≤ x and

vi ≥ vy for x+ 1 ≤ i ≤ y, we obtain

E[v(ALG)] ≥
y∑
i=1

(Pi · vi) = vx ·
x∑
i=1

Pi + vy ·
y∑

i=x+1

Pi .

Define λx :=
∑x
i=1 Pi and λy :=

∑y
i=x+1 Pi. If λx < λy, then λy > λx ≥ p1 and thus E[v(ALG)] ≥ vx ·p1+vy ·p1 =

p1 · v(OPT), which gives the same bound as in (10). Therefore, we assume λx ≥ λy in the following. Since

vx ≥ vy, applying Chebyshev’s sum inequality gives

E[v(ALG)] ≥
(
vx + vy

2

)
(λx + λy) =

v(OPT)

2
·
y∑
i=1

Pi =
v(OPT)

2
·

(
2py +

y∑
i=1

pi

)
,

where the last step results from Corollary 1 with rs(x) = 1 and rs(y) = 2. Let θy = (1/2) ·
∑y
i=1 pi + py. By

calculating pi for 1 ≤ i ≤ 7 and c = 0.26888 using Lemma 1, we obtain the following upper bounds up to additive

o(1) terms:

y = 2 y = 3 y = 4 y = 5 y = 6 y = 7

θy 0.4115 0.3820 0.3718 0.3678 0.3662 0.3656

Thus, for y ∈ {2, . . . , 7} we have θy ≥ θ7 for large-enough n. For y ∈ {8, ..., n}, we get θy = (1/2) ·
∑y
i=1 pi+py ≥

(1/2) ·
∑7
i=1 pi = θ7 − p7. Hence, for any y ≥ 2 it holds that θy ≥ θ7 − p7 ≥ 0.35317 ± o(1). Overall, in the

second case it holds that

E[v(ALG)] ≥ v(OPT)

2
·

(
2py +

y∑
i=1

pi

)
≥ (θ7 − p7)v(OPT) ≥ (0.35317± o(1)) · v(OPT) .

This completes the proof.

16

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 Matching 1/e for 1-2-Knapsack
	3.1 Structural Lemma
	3.2 First approach: Without Boosting
	3.3 Optimal algorithm through -Boosting

	4 Ordinal Algorithms for 1-B-Knapsack
	5 Conclusion
	A Proof of Propostion 1

