

Vrije Universiteit Brussel

Specifying Blockchain-based Resource-Exchange Systems by Business-Level Users Using a
Generic Easy-To-Use Framework
Soni, Kushal; De Troyer, Olga

Published in:
Proceeding of the Future Technologies Conference (FTC)

DOI:
https://doi.org/10.1007/978-3-031-18458-1

Publication date:
2022

Document Version:
Final published version

Link to publication

Citation for published version (APA):
Soni, K., & De Troyer, O. (2022). Specifying Blockchain-based Resource-Exchange Systems by Business-Level
Users Using a Generic Easy-To-Use Framework. In K. Arai (Ed.), Proceeding of the Future Technologies
Conference (FTC) (Vol. 2, pp. 36-54). (Lecture Notes in Networks and Systems; Vol. 560). Springer.
https://doi.org/10.1007/978-3-031-18458-1

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 25. Apr. 2024

https://doi.org/10.1007/978-3-031-18458-1
https://cris.vub.be/en/publications/specifying-blockchainbased-resourceexchange-systems-by-businesslevel-users-using-a-generic-easytouse-framework(72a8dcca-e465-41a7-aef9-ccd68e2fe473).html
https://doi.org/10.1007/978-3-031-18458-1

Specifying Blockchain-Based
Resource-Exchange Systems by Business-Level
Users Using a Generic Easy-To-Use Framework

Kushal Soni(B) and Olga De Troyer

Computer Science Department, Vrije Universiteit Brussel, Brussels, Belgium
{Kushal.Soni,Olga.DeTroyer}@vub.be

Abstract. Blockchain technology has been rapidly emerging in the past years.
The notion of decentralization, enabling ecosystems that provide true ownership of
resources without requiring a trusted third party, is gaining interest and is applied
in use cases daily. Such use cases vary from simple currency-exchange applica-
tions to complex smart contract applications. Designing, building, and deploying
blockchain-based applications mostly requires software developers. This intro-
duces a technological burden for organizations who would like to benefit from
such systems in their own use case(s) but lack time, financial means, or qualified
people. To overcome this burden, we developed a software framework allowing
an easy and quick setup of blockchain-based systems for use cases dealing with
the exchange of resources. To set up such a system, an easy-to-use user interface is
provided that allows business-level people to give the specifications of the system
without the need for technical software-, blockchain- or smart contract knowl-
edge. From these specifications an implementation is generated. In this paper, we
present the architecture of the framework and discuss the principles used, and the
user interface developed for specifying such use cases.

Keywords: Blockchain · Smart contracts · Generic framework · Specification
system · Easy-to-use · Resource exchange

1 Introduction

More and more businesses and organizations are offering digital services, such as online
shopping, cloud storage, streaming services to increase user convenience and revenue.
However, this implies the need for IT infrastructures to store and maintain related user
data and/or resources. Currently, users of these services must rely on the goodwill of the
businesses and organizations, and assume that these will reliably manage their data and
resources. This implies that users are lacking true ownership of their data and resources.
Moreover, since providing such services requires (significant) data storage, (intense)
computing power and IT experience, many businesses and organizations prefer to rely
on specialized cloud-based infrastructure providers, such as Amazon, Google, DigitalO-
cean. By leveraging such services, they save both time and financial investments, which
would otherwise be required for hardware and expensive software developers. However,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Arai (Ed.): FTC 2022, LNNS 560, pp. 36–54, 2023.
https://doi.org/10.1007/978-3-031-18458-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18458-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-18458-1_3

Specifying Blockchain-Based Resource-Exchange Systems by Business-Level Users 37

consequently, they give away control of their data. As a result, users of the services are
also forced to expose their personal data, as well as hand over full control of it, not only to
the businesses or organizations providing the services, but also to the underlying cloud
providers, managing the services. This leaves users in a vulnerable “forced-to-trust”
position. The use of blockchain technology, embedded with smart contracts, would be
a good solution to deal with these issues. In [1], blockchain technology is proposed
to introduce verifiable true ownership in ecosystems, whilst ensuring reliability, robust-
ness, integrity of data, and prevention of data loss. However, to develop blockchain-based
applications, one needs to rely on software developers. This introduces a technological
burden for organizations who would like to benefit from such systems in their own use
case(s) but lack time, financial means, or qualified people. To overcome this barrier, we
propose a software framework, usable by business-level people, which allows an easy
and quick setup of blockchain-based systems with which organizations and their users
can exchange resources.

The proposed framework has the advantage that it allows business-level people with-
out technical software-, blockchain- or smart-contract knowledge, to set up custom use
cases by simply providing the required information. The actual blockchain-based use-
case system is generated based on the given information. In addition, the framework also
generates a web application for the use case, supporting the actual exchange of resources
between the involved organizations and users. The use of this framework saves time and
resources, and allows all organizations involved in a use case (independent of their size)
to participate.

Creating the proposed framework posed several challenges. The first challenge was
to provide a generic approach that can deal with different types of use cases. Since use
cases for the exchange of resources can vary strongly (in terms of the types of resources
and rules involved), software needs to be constructed that allows to enter and capture all
possibilities andwhich can generate smart contracts adapted to the specific specifications
of the individual use cases. A second challenge pertained to the programming constructs
available for the development of blockchain applications. These are still in an early
stage: standard object-oriented programming constructs are not available and debugging
blockchain applications is cumbersome (the well-known “revert” or “out of gas” errors
are not very descriptive).

In this paper, the focus is on the component that allows a businessperson to specify a
use case. However, to provide the context, we also present the overall architecture of the
framework. Section 2 introduces background and in Sect. 3, we discuss related work.
The overall framework is presented in Sect. 4. In Sect. 5, we report on the user study
performed as formative evaluation. The paper ends with conclusions and future work.

2 Background

A blockchain is a distributed, decentralized kind of database, allowing data storage
not controlled by a single party [2, 3]. The data stored in blockchains is distributed
across the nodes of a peer-to-peer network. Based on the purpose, transaction costs,
and the popularity, participants select a network to join. Electronic cash systems and
smart contracts are two examples of the most common use cases building on top of

38 K. Soni and O. De Troyer

a blockchain. For instance, the most popular currency for digital payments is bitcoin
(BTC) [4], which runs on the bitcoin network. Ethereum is the most popular protocol
used for establishing and interacting with smart contracts.

Smart contracts are programs that reside on the blockchain, allowing traceable and
immutable data modifications, such as transfer of ownership of resources based on
defined application logic [5, 6]. Ethereum is the most popular network to run smart
contracts, using ether (ETH) as native currency. Binance (Smart) Chain [7], Cardano
[8], Polkadot [9] and Solana [10] are other examples.

Solidity1 is the programming language used to write smart contracts for Ethereum.
Although it has similar characteristics as other programming languages, it has quite
some limitations. Calling a function in Solidity corresponds to executing a transaction
on the Ethereum blockchain. Hence, the more instructions within a single function, the
more transaction fees (gas) one will have to pay [11]. Therefore, when using Solidity,
one needs to take code efficiency and contract size into account. Also, not all common
programming constructs are available in Solidity. Truffle [12] and Embark [13] are
developer frameworks which ease the testing and development of smart contracts. They
are intended to support software developers.

Tokens are digital assets on top of a cryptocurrency or blockchain [14], often used to
represent ownership of a resource. The ERC Token standard [15] has a large number of
token types.Themost popular ones canbe summarized into twobase categories: Fungible
Tokens and Non-Fungible Tokens. The ERC-20 Standard [16] is the most widely used
and general token standard for Fungible Tokens. In practice, this token is mostly used
as a form of payment in smart contracts. The ERC-721 Standard [17] concerns Non-
Fungible tokens, where each token is distinct (aka non-fungible). In practice, such tokens
are used to represent ownership of unique assets (e.g., artworks or academic degrees).
TheERC-1155 Standard [18] allows for themanagement of any combination of Fungible
and Non-Fungible Tokens.

3 Related Work

In this section, we explore related work. To the best of our knowledge, no frame-
works exist that ease the setup of systems with which end users are able to exchange
resources across organizations, through the use of an intuitive, easy to use interface that
allows the specification of permissions and rules without the necessity for knowledge
about blockchain or smart contracts. However, there are tools, such as generators and
marketplaces available, allowing to quickly create tokens on the blockchain without
the need for any blockchain or smart contract knowledge, as we will discuss below
(Sect. 3.1). Additionally, we discuss specification tools designed for more complex
systems (Sect. 3.2).

1 https://docs.soliditylang.org/en/v0.8.6/

https://docs.soliditylang.org/en/v0.8.6/

Specifying Blockchain-Based Resource-Exchange Systems by Business-Level Users 39

3.1 Generators and Marketplaces for Non-programmers

Minacori has created a tool for specifying and deploying Fungible ERC-20 Tokens on
Ethereum [19]. Its purpose is to provide people with the ability of tokenizing their ideas
without coding or paying large amounts for it. One can specify the initial and total supply
of tokens, as well as whether the total supply can be increased or decreased at a later
stage. The tool requires users to have the browser extension MetaMask [20] installed,
which is a web3.js-based [21] electronic wallet that allows purchasing, selling, sending
and receiving of tokens, as well as engagement in other types of transactions. Minacori
also created tools for the creation of BEP-20 tokens, the Binance Smart Chain version
of ERC-20 tokens on Ethereum [22].

Opensea is a marketplace for Non-Fungible Tokens [23]. It allows to create, buy,
sell, and auction tokens. After creating a collection, one can create items provided with
images, videos or 3D models, individual properties and more.

3.2 Smart Contract Specification for Business-Level Users

Astigarraga et al. [24] propose a framework for specifying smart contracts with a con-
trolled English business-level rules language (called BCRL). The authors state that
business-level users should be able to understand, create, and modify smart contracts or
at least large portions of them. BCRL seems to be quite powerful, but this has the disad-
vantage that the language is also quite complex and will require training to be able to use
it. Defining rules is possible with their smart editor, but it is not clear how much support
this editor provides for non-trained persons. Compared to our work, this work seems to
be more focused on complex business cases. In addition, code generation is only for the
Hyperledger Blockchain fabric, which limits the scope to permissioned blockchains.

In [25] Caterpillar is described, a blockchain-based BPMN2 execution engine.
The Ethereum blockchain is used and smart contracts are generated by a BPMN-to-
Solidity compiler. Similar to the previous work, this work focusses on complex business
applications.

In [26], a framework for the auto-generation of smart contracts is presented. It uses
ontologies and semantic rules to represent the domain knowledge of the use case. A smart
contract template serves as the basis for the final smart contract. While our framework
is tailored towards resource exchange, this ontology approach can be used for a much
broader range of applications. However, this power comes with the price that first an
ontology needs to be developed and the sematic rules need to be expressed in SWRL,
two tasks that require time and technical expertise.

SPESC [27] is a specification language for smart contracts aiming to ease the process
of smart contract creation in a collaborative environment. To do so, the authors introduce
domain concepts such as parties, terms, conditions, and transactions and involve them
in a custom specification language to set up smart contracts. However, though the used
language does not seem to be very complex, it is a mix of class-type (java, python …)
and query-type (sql) languages. Therefore, compared to our work, the specification still
requires basic programming skills.

2 Business Process Model and Notation – https://www.bpmn.org/

https://www.bpmn.org/
Kushal Soni

40 K. Soni and O. De Troyer

UDL-SC [28] is a description language for smart contracts that facilitates the anal-
ysis of smart contracts and its blockchain. It also helps programmers to better under-
stand smart contracts that are not open source (since smart contract code is compiled to
bytecode, which is hard to interpret). Like our framework, UDLSC makes it easier to
understand (deployed) smart contracts, but our framework allows to generate the smart
contracts, as opposed to theirs.

4 Framework

The proposed framework is intended for the development of blockchain-based systems
for supporting the exchange of resources across different organizations and end users.
The framework allows business-level people, without technical IT knowledge to quickly
set up such a system. In this section, we explain the architecture of the framework
(see Fig. 1), the different modules and their interaction, and the communication of the
framework with the blockchain network. We end this section with justifying our design
decisions by discussing their advantages.

Note that we use two different terms to distinguish between the people interacting
with the framework to set up a use case system (i.e., business-level people) and the
people interacting with a generated use case system. We call the latter ones “end users”
and the first ones “users”.

4.1 Overall Architecture

The framework consists of two independent layers. As shown in Fig. 1, Layer 1 contains
two components. The “Use Case Specification” component (1) is a web app that allows
users to create use cases by giving their specifications. These specifications are passed
to Layer 2 (2), which generates the necessary smart contracts (3). These smart contracts
will be deployed on a blockchain network [(4) and (5)] chosen during setup of the use
case, e.g., the Ethereum Network. The “Use Case Interaction” component is a web app
generated for each specified use case from the specifications given (6) and allowing end
users to consult their digital resources and transfer these resources. It calls the generated
smart contracts functions, which result in transactions (8) and state changes (such as
balance of currencies or change of ownership of resources) (9) on the blockchain.

4.2 Layer 1 – Use Case Specification

The specification component provides business-level people a user interface to formulate
the specifications of their use case. The component is implemented as a responsive
web application, storing use case specifications by running the Django3 framework as
backend and using React4 as frontend. The tool allows the user to go (back and forth)
through different steps, each gathering different types of information.

3 https://www.djangoproject.com/
4 https://reactjs.org/

https://www.djangoproject.com/
https://reactjs.org/

Specifying Blockchain-Based Resource-Exchange Systems by Business-Level Users 41

Fig. 1. Architecture, network and interactions

Now, we present the concepts used for specifying a use case specification and how
they are specified in the user interface. The UML class diagram is given in Fig. 2.
Examples of the user interface are given in Figs. 3, 4, 5 and 6. Apart from naming the
use case (step 1), the following needs to be specified:

Organizations. All organizations participating in the resource exchange of the use case
should be specified by providing a name and a unique identifier (Step 2). The VAT-Nr,
a description, email address, website, and postal address are optional.

Owners. Organizations need to be represented by one or more individuals who can sign
transactions and messages in the name of the organization; they are called owners and
should be specified by a unique name (step 3); the option “SElect All” easily allows to
appoint a single owner to all organizations involved in the use case.

End Users. If only particular people can participate in the resource exchange of the use
case, they should be specified by means of a unique name (step 4). In case that anyone
is allowed to participate, this step can be skipped.

42 K. Soni and O. De Troyer

Fig. 2. UML class diagram for the specification component

Resource Types. Each resource is either a FRT (Fungible Resource Type) or a NFRT
(Non-Fungible Resource Type). FRTs Can be limited in supply. If so, the total supply
should be given. Otherwise, one must give the initial supply. In the latter case, the
supply can be increased at a later stage, after contract deployment, and the initial supply
will be distributed among the participating organizations according to the given ratios.
One should specify whether resources of a specific type can be removed after contract
deployment by (an) appointed individual(s). NFRTs are similar to NFTs mentioned in
Sect. 2. For example, the resource type “ACademic Degrees” (a NFRT) could be used for
the resource “A Master’s degree, awarded to John Doe by MIT”. Resource types should
have a unique name and symbol. All needed resource types should be defined (step 5 -
see Fig. 3).

Property Types. In addition to the required properties, resources may have some
optional properties. These properties are described by property types. For example,
we can add the overall score and degree of distinction as additional properties to the
resource type “Academic Degree”, allowing to have the resource “A master’s degree,
awarded to John Doe by MIT”, with 85/100 as overall score and great distinction as
degree of distinction”. Property types are defined in step 5 by means of a unique name,
a data type, and an optional constraint pattern to limit its possible values.

Specifying Blockchain-Based Resource-Exchange Systems by Business-Level Users 43

Fig. 3. User interface: Step 5 - define resource types

Operation Types. An operation will correspond to an immutable data modification in
the network, such as the change of ownership of a resource. An operation type defines
the properties of similar operations, such as the possible sender(s) and receiver(s), and
resource types. All types of operations that may occur in the use case should be defined
in step 6 (Fig. 4). Note that only transactions compliant with a defined operation type
can be executed after deployment.

Rules. A rule allows to define requirements and constraints for operation types and
operations, i.e., what type of operations should take place in order to execute (an) other
specified operation(s). A rule contains one or more IF- and THEN statements. An IF

44 K. Soni and O. De Troyer

Fig. 4. User interface: step 6 - define operation types

statement has the purpose of looking for specific executed operations on the network. For
this, it uses a set of conditions involving constraints on the sender(s), resource type(s)
and amount(s), and the receiver(s) of an operation. Multiple senders, receivers, resource
types and an amount (range) can be specified. Figure 5 shows an example IF statement.
During deployment, an IF statement is fulfilled when at least one matching operation is

Specifying Blockchain-Based Resource-Exchange Systems by Business-Level Users 45

found. THEN statements describe what operations to execute when all IF statements of
a rule are fulfilled. They have only one sender, resource type, amount, and receiver. To
allow the specification of dynamic rules, variables and wildcards can be used. A variable
refers to a sender, receiver, resource type, or amount used in a previous statement. They
are generated on the fly, for every statement. for example, in any THEN statement,
one can refer to a receiver in any previous IF statement, by selecting “Receiver from IF
Statement ‘X’” (See Fig. 6).Additionally, certainwildcards can be used by the sender and
receiver fields of IF statements, such as “All Organizations” or “AnyOrganization except
‘X’”. The latter allows to invert a selection, e.g., in a scenario where the participating
organizations are “Store 1”, “Store 2” and “Store 3”, the possible sender(s) of an IF
statement where the “except Store 1” was selected, would be “Store 2” and “Store 3”.
A combination of variables and wildcards is possible. the grammar for the rules is as
follows:

<rule> ::= if(<ifstmts>) <thenstmts>
<ifstmts> ::= <ifstmt>; {<ifstmts>}
<thenstmts> ::= <thenstmt>; {<thenstmts>}

<ifstmt> ::= <operationtype>, ar(<amtrange>)
<thenstmt> ::= <operation>

<operationtype> ::= snd(<senders>), rt(<resoucetypes>), rcv(<receivers>)
<operation> ::= snd(<sender>), rt(<resoucetype>), a(<amt>), rcv(<receiver>)
<senders> ::= <orgs>|<custs>
<sender> ::= <org>|<cust>
<receivers> ::= <orgs>|<custs>
<receiver> ::= <org>|<cust>

<orgs> ::= <org> {<orgs>}
<custs> ::= <cust> {<custs>}
<rts> ::= <frts>|<nfrts>
<frts> ::= <frt> {<frts>}
<nfrts> ::= <nfrt> {<nfrts>}
<org> ::= ? all orgs from step 2 ?|<var>
<cust> ::= ? all custs from step 4 ?|<var>
<frt> ::= ? all FRTs from step 5 ?|<var>
<nfrt> ::= ? all FRTs from step 5 ?|<var>
<amtrange> ::= <amt>|<amt>-><amt>
<amt> ::= <number>|<var>|any
<var> ::= ? all generated variables on-the-fly ?
<number> ::= ? all existing numbers ?

4.3 Layer 1 – Use Case Interaction

The “Use Case Interaction” component is a web app generated for a specified use case
that allows organizations and end-users to consult their digital resources and transfer
these resources amongst each other. The web application calls smart contracts functions,
which result in transactions and state changes (such as balance of currencies or change
of ownership of resources) on the blockchain.

46 K. Soni and O. De Troyer

Fig. 5. User interface: step 7 - define rules - IF statement

4.4 Layer 2 – Smart Contract Generation

This layer generates the smart contracts necessary to deploy the use case, based on the
information collected in the previous layer. As explained in Sect. 2, it is important to
consider smart contract size. Therefore, the generator distributes the logic across different
smart contracts, including a controller, a contract for each token and each organization,
a contract for the rules as well as the transactions, and a migrations contract. We have
provided an implementation for the Solidity programming language, but one can easily
add implementations for other smart contract languages.

Specifying Blockchain-Based Resource-Exchange Systems by Business-Level Users 47

Fig. 6. User interface: step 7 - define rules - use of variables

We briefly explain below how the concepts from layer 1 are implemented in smart
contracts. Note that in blockchains: (1) wallets are means used to identify individual
end users (instead of traditional login and password), allowing them to hold resources,
sign transactions and messages [29]; and (2) smart contracts are means used to facilitate
interactions across wallets and other smart contracts.

Organizations and Owners. Typically, organizations are not controlled by a single
person, but by multiple individuals instead. As explained earlier, we introduced orga-
nization owners for this. These should be able to sign transactions and messages in the
name of the organization. Therefore, a contract holding the logic for the organizations
and its owners will be generated, ensuring that the owners have the permission to execute
transactions or sign messages on behalf of the organization.

End Users. Each end user is an individual who may hold, receive, or spend resources.
Therefore, each end user will be represented by a wallet.

Resource Types and Resources. As the token standards indicate, a token specification
on a blockchain is implemented by means of a smart contract [14, 15]. That contract
can generate tokens compliant with their specification. As such, a resource type will
be implemented by a token specification contract, while a resource will be an instance
generated by such contract (represented by a token).

48 K. Soni and O. De Troyer

Property Types and Properties. Additional properties of a resource will be stored
as fields or functions in the token contract corresponding with the resource type. As
such, resources having properties in layer 1, correspond to tokens having field values or
functions in layer 2.

Operation Types and Operations. Operations in layer 1 correspond to blockchain
transactions in layer 2, and defined operation types correspond to allowed transactions
on the blockchain. Transactions which do not correspond to a defined operation type
will revert.

Rules. A rule will be implemented with one or more function(s) in Solidity.

4.5 Blockchain Network

The blockchain network will allow interactions with and deployment of smart contracts.
The network of deployment can be chosen during use case setup.

4.6 Advantages

The structure of the framework, and the use of decoupled layers, has a couple of advan-
tages. First, when organizations want to adapt a use case or migrate the use case to a
different network, one may redeploy a new copy of the contracts with a simple click,
since use case specifications are stored on a (centralized) backend. Note that this back-
end only stores the data needed to generate the contracts for the use case. The actual
interaction of the end users with the generated contracts for the use case occurs on
the (decentralized) blockchain, and the generated smart contracts are shown to the user
before final deployment on the blockchain (to ensure transparency).

Also, as discussed above, Layer 2 is currently implemented to support the Solidity
programming language. However, if another blockchain is desired, or if one wants to add
the ability to map the use cases to a different program language (e.g. Rust5 for Solana),
the framework can be extended by adding a new implementation to Layer 2 to support
that program language.

5 Use Case Specifications - Examples

We illustrate the process of specifying a use case by two use case examples. Note that
use cases can be deployed on various blockchains, such as Ethereum, Binance Chain
and Cardano. Each has its advantages and disadvantages, such as popularity (e.g. social
community), trustworthiness (e.g. degree of decentralization), efficiency (e.g. transaction
speed) and cost (e.g. transaction fees, gas price…). Proper consideration must be given
to above factors before deploying the use case on a certain blockchain.

5 https://docs.solana.com/developing/on-chain-programs/developing-rust.

https://docs.solana.com/developing/on-chain-programs/developing-rust

Specifying Blockchain-Based Resource-Exchange Systems by Business-Level Users 49

5.1 Loyalty Programs

In loyalty programs, stores offer rewards to customers as an incentive for their frequent
or recurring purchases. Such programs are offered in different forms: loyalty points,
punch cards, cash back programs, and more, as the analysis in [30] shows. In this use
case example, we will consider loyalty points. In most current systems, the customer
can only use its points in the same store or a store from the same business group, and
does not hold true ownership of its points as explained in the introduction. Making use
of the described framework, we can generate an application serving a loyalty program
where the customer could for instance earn points in store A by buying water packs and
spend these points in store B to get a free cold drink (instead of a water bottle from store
A). For this, and depending on their business model, stores A and B will have to agree
on a settlement contract. A possible option could be that store B needs to return 15%
of the points the customer spent in its store, to store A, since the points rewarded to the
customer were issued by store A. We now illustrate the specification of this use case.
For this use case, steps 1 to 5 are obvious. In step 6, we define two operation types: (1)
stores need to be able to award loyalty points to customers and (2) customers need to be
able to spend them in stores.

Using the given grammar, these operation types are defined as follows:

<operationtype> -> snd(all_orgs), rt(loyalty_coin), rcv(all_custs)
<operationtype> -> snd(all_custs), rt(loyalty_coin), rcv(all_orgs)

In step 7, we define the 15% return rule. In natural language, this rule could be
formulated as follows: “IF a store awards loyalty points to a customerAND that customer
spends those points (same amount or less) in another store, THEN this second store will
pay the first store 15% of the received points as compensation”. Using the grammar, the
rule is as follows:

<rule> ->
if(snd(store_a store_b), rt(loyalty_coin), rcv(any_customer), ar(any);

snd(receiver_from_if_1), rt(rt_from_if_1),
rcv(any_except_sender_from_if_1), ar(0->amt_from_if_1);)

then(snd(receiver_from_if_2), rt(rt_from_if_2), a(amt_from_if_2*0.15),
rcv(sender_from_if_1);)

5.2 University Collaboration

Most academic institutions store degrees issued to their students on their own and/or
government-controlled, centralized infrastructure and provide a verified paper degree
to the student. This does not give the student true ownership of the degree: in case
of doubt, other institutions will verify the ownership of the degree by contacting the
issuing institution. Making use of the proposed framework, a system can be developed
that allows a student to prove to any party that he/she holds the degree. Also, constraints
can be easily set up. As an example rule, one can specify that the student that wants to
enroll in a university will only receive an enrollment certificate of the university when

50 K. Soni and O. De Troyer

he/she has a secondary education certificate and he/she has deposited enough budget
(e.g., expressed in “university coins”) to pay for the enrollment.

Wenow illustrate the specification of this use case in our framework. For this use case,
steps 1 to 5 are obvious. In step 6, we define three operation types: (1) secondary schools
should be able to award students with secondary education certificates; (2) universities
should be able to award students with enrollment certificates and (3) students should be
able to pay universities for enrollment:

<operationtype> -> snd(all_schools), rt(se_cert), rcv(all_students)
<operationtype> -> snd(all_univs), rt(enr_cert), rcv(all_students)
<operationtype> -> snd(all_students), rt(univ_coin), rcv(all_univs)

In step 7, we define a rule which requires students to pay (for the enrollment) (e.g.,
“10” university coins) before receiving their enrollment certificate. Moreover, the stu-
dents should have received a secondary education certificate. In natural language: “IF
any school awarded a secondary education certificate to a student AND that student will
receives an enrollment certificate from a university, THEN that student needs to pay ‘10’
university coins” to this university:

<rule> -> if(snd(any_school), rt(se_cert), rcv(a_student), ar(1);
snd(any_univ), rt(enr_cert), rcv(receiver_from_if_1))

then(snd(receiver_from_if_1), rt(university_coin), a(10),
rcv(sender_from_if_2);)

6 User Study

A pilot user study has been performed for the Use Case Specification web application
developed for Layer 1. The purpose of this first user study was to investigate the usability
of the tool for the target audience (business-level people), as well as to evaluate the termi-
nology and principles used. It concerned a formative evaluation [31], i.e., an evaluation
conducted during development to investigate whether improvements to the product are
needed.

At the time of writing, the pilot study was performed by one participant but in
the coming time more people will be asked to participate. The participant was a male,
56 years old, studied Bachelor of Engineering, worked as an Engineer and managed
a family-owned business. Currently, he is director of a company and an independent
Salesman. This person did not have any knowledge of blockchain or smart contracts.

6.1 Setup of an Evaluation Session

We start with providing the participant with background information on the framework
and its goal. It is explicitly mentioned that the goal of the user study is to evaluate
the ease with which the tasks can be done with the web application’s user interface
by people without IT background. The participant is also informed that (s)he will be

Specifying Blockchain-Based Resource-Exchange Systems by Business-Level Users 51

asked to fill in a questionnaire about the application that would cover the following
topics: Attractiveness, Efficiency, Perspicuity, Dependability, Intuitive Use, Clarity, and
ResponseBehavior.At any point during the study the participant can ask for clarifications
or more information. Each evaluation session is performed under the supervision of the
first author. The participant is encouraged to speak aloud while interacting with the
system and is observed while performing the task, which is using the web application
for specifying a use case that the participant can propose himself.

Next, a semi-structured interview takes place, involving filling in a questionnaire, as
well as answering open questions.

As an introduction to the task, a demonstration of the user interface is given by
browsing through the different steps of the application, giving the participant an idea
on how to use it (without providing a detailed explanation). As a reference, we use
and explain the “Loyalty Points” use case, mentioned in Sect. 5.1. This takes about 30
min in total. Afterwards, we ask the participant to propose a use case (suitable for this
framework) and specify this use case with the web application. The participant is guided,
and explanations are given when needed.

For the questionnaire, UEQ + 6is used, being a modular extension of the User
Experience Questionnaire (UEQ). The following modules are included: Attractiveness,
Efficiency, Perspicuity, Dependability, Intuitive Use, Clarity, and Response Behavior.
In total, there are 5 questions with opposing pairs of product properties and 7 grades
per pair for indicating the level of agreement with the terms. In UEQ +, the pairs are
organized into groups related to one single aspect. For each group, the participant can
state his or her opinion about the level of importance of the respective aspect. After
having filled out the questionnaire, the participant is asked to clarify his/her answers.

Next, open questions regarding the usability of the web application are asked. The
questions are about the naming conventions used, possible system improvements, intu-
itiveness, clarity of the application, clarity of the given oral introduction (explaining the
system), and whether the participant would use such system in his/her business. For the
questionnaire and the interview about 30 min in total is foreseen.

6.2 Results

The participant was able to finish the specification of the use case. Devising a use case
took about one hour and entering its specification in the web application also took one
hour. The use case he proposed was a mobility reward system, with the goal to make
public transport cheaper and more accessible. A collaboration between stores and public
transport, allows customers to earnmobility points in stores during shopping, which they
can use later as a payment method for public transport services, such as busses, trams,
trains, public cycles, public e-steps, public cars and more.

According to the questionnaire, the participant experienced the user interface as: (1)
quite attractive and pleasant in general, although the visibility and placement of some of
the UI elements can be improved; (2) efficient and fast, though sometimes impractical
(prefers more visual guidance); (3) overall perspicuous, though the learnability and
ease of use could be improved by more visual guidance; (4) very dependable; (5) very

6 https://ueqplus.ueq-research.org/

https://ueqplus.ueq-research.org/

52 K. Soni and O. De Troyer

intuitive; (6) organized, structured, ordered and well-grouped; (7) quite responsive; and
the participant was very happily surprised by the ability to define “rules” in the user
interface, since it allows to define settlements between businesses, without the need for
trusted third parties (as in traditional businesses).

During the interview, the participant gave a more in-depth explanation of his opinion
on certain aspects. The participant found the used naming conventions very clear, except
for the terms “use case” and “mapper”. Bymeans of the oral introduction, the participant
understood and could interpret all parts of the user interface. As a suggestion to improve
the system, he suggested offering more guidance during the different steps, preferably
by using a “pop-out effect”7 as well as the ability to use existing monetary resources
(e.g., such as Bitcoins or stablecoins like USDT8) in the rules section. He stated that all
parts of the user interface were clear and well-organized, except for the specification of
the “amount (range)” in the rules section (step 7), which was not very intuitive to him.
He indicated that the system could definitely be useful for the participant’s business.

During the performance of the task, we noted that the participant was often confused
after creating an entity. It was not clear to him that sometimes multiple entities were
needed (like for organizations, owners, operations,…), and sometimes only one (like
only one use case definition). This issue can be tackled by improving the guidance
during the steps, as the participant suggested. In step 4, customers can be optionally
defined. However, it was not clear to the participant that the definition of customers in
step 4 is optional. This can be resolved by using the pop out effect.

6.3 Discussion

We can conclude that the participant in general had a good experience with the user
interface, enjoyed the functionality, but lacked a more in-depth, preferably visual, step-
per-step guidance. The provided explanation at the beginning of the session was required
for the participant. This means that a small introduction should be provided in the tool.
All the usability issues the participant had, can be resolved by adding more guidance to
the web application, as well as by adding and/or tweaking UI components where needed.

According to this participant, the product is quite plausible, enjoyable, and has high
potential. Of course, as this is only the opinion of one person, but the purpose of this
evaluation was to verify the approach and decisions taken (i.e., a so-called formative
evaluation). After improving the software, a user evaluation with more participants will
take place in order to be able to generalize the results.

7 Conclusion and Future Work

We have presented a framework allowing the easy setup of systems for the exchange of
resources between organizations and end users, in which the end users hold ownership
of resources and can spend/use them across various organizations. We presented the
principles used, as well as the layered architecture of the framework. The extensible

7 Occurs when one object visually pops out from the rest of the objects.
8 https://tether.to/

https://tether.to/

Specifying Blockchain-Based Resource-Exchange Systems by Business-Level Users 53

character of the framework allows to add support for more implementation languages
and networks.

The focus of the paper was on the specification layer that allows people without an
IT background to specify their use case. This is supported by a web-based user interface.
Other than specifying general information about the use case, the UI allows the user
to express requirements and constraints by means of IF-THEN rules. We illustrated the
specification by means of two use case examples.

Currently, the user interface is improved based on the feedback of the user study and
a user evaluation with more participants is set up. Future work related to Layer 1 of the
framework includes the development of a multi-user version (allowing multiple users
to access the same use case), adding rules that allow the definition of resource types in
statements based on individual properties, and using network native currencies (such as
Ethereum) in the rule definitions.

References

1. Golosova, J., Romanovs, A.: The advantages and disadvantages of the blockchain technology.
In: 2018 IEEE 6thWork. Adv. Information, Electron. Electr. Eng. AIEEE 2018 - Proc. (2018).
https://doi.org/10.1109/AIEEE.2018.8592253

2. Scherer,M.: Performance andScalability ofBlockchainNetworks andSmartContracts (2017)
3. Underwood, S.: Blockchain beyond bitcoin. Commun. ACM. 59, 15–17 (2016). https://doi.

org/10.1145/2994581
4. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System –Whitepaper. https://bitcoin.

org/bitcoin.pdf. Last accessed 21 July 2021
5. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things.

IEEE Access. 4, 2292–2303 (2016). https://doi.org/10.1109/ACCESS.2016.2566339
6. Giancaspro, M.: Is a ‘smart contract’ really a smart idea? insights from a legal perspective.

Comput. Law Secur. Rev. 33, 825–835 (2017). https://doi.org/10.1016/J.CLSR.2017.05.007
7. Binance Smart Chain: A Parallel Binance Chain to Enable Smart Contracts Motivation
8. Cardano | Home: https://cardano.org/. Last accessed 11 July 2021
9. Polkadot: Vision for a Heterogeneous Multi-Chain Framework. https://github.com/ethereum/

wiki/wiki/Chain-Fibers-Redux. Last accessed 05 July 2021
10. Solana: Build crypto apps that scale | Scalable Blockchain Infrastructure: Billions of

transactions & counting. https://solana.com/. Last accessed 31 March 2022
11. Pierro, G.A., Rocha, H.: The influence factors on ethereum transaction fees. In: Proc. - 2019

IEEE/ACM2nd Int.Work. Emerg. Trends Softw. Eng. Blockchain,WETSEB2019, pp. 24–31
(2019). https://doi.org/10.1109/WETSEB.2019.00010

12. Sweet Tools for Smart Contracts | Truffle Suite. https://www.trufflesuite.com/. Last accessed
11 July 2021

13. Embark into the Ether. | Embark: https://framework.embarklabs.io/. Last accessed 11 July
2021

14. Di Angelo, M., Salzer, G.: Tokens, Types, and Standards: Identification and Utilization in
Ethereum. In: Proceedings - 2020 IEEE International Conference on Decentralized Appli-
cations and Infrastructures, DAPPS 2020, pp. 1–10. Institute of Electrical and Electronics
Engineers Inc. (2020). https://doi.org/10.1109/DAPPS49028.2020.00001

15. ERC | Ethereum Improvement Proposals: https://eips.ethereum.org/erc. Last accessed 12 July
2021

https://doi.org/10.1109/AIEEE.2018.8592253
https://doi.org/10.1145/2994581
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1016/J.CLSR.2017.05.007
https://cardano.org/
https://github.com/ethereum/wiki/wiki/Chain-Fibers-Redux
https://solana.com/
https://doi.org/10.1109/WETSEB.2019.00010
https://www.trufflesuite.com/
https://framework.embarklabs.io/
https://doi.org/10.1109/DAPPS49028.2020.00001
https://eips.ethereum.org/erc

54 K. Soni and O. De Troyer

16. ERC-20 Token Standard | ethereum.org: https://ethereum.org/en/developers/docs/standards/
tokens/erc-20/. Last accessed 12 July 2021

17. ERC-721 Non-Fungible Token Standard | ethereum.org https://ethereum.org/en/developers/
docs/standards/tokens/erc-721/. Last accessed 12 July 2021

18. EIP-1155: ERC-1155 Multi Token Standard. https://eips.ethereum.org/EIPS/eip-1155. Last
accessed 12 July 2021

19. ERC20 Token Generator | Create ERC20 Token for FREE. https://vittominacori.github.io/
erc20-generator/. Last accessed 05 July 2021

20. MetaMask: https://metamask.io/. Last accessed 05 July 2021
21. web3.js - Ethereum JavaScript API — web3.js 1.0.0 documentation. https://web3js.readth

edocs.io/en/v1.3.4/. Last accessed 05 July 2021
22. BEP20 Token Generator | Create BEP20 Token for FREE on Binance Smart Chain. https://

vittominacori.github.io/bep20-generator/. Last accessed 05 July 2021
23. OpenSea: Buy NFTs, Crypto Collectibles, CryptoKitties, Decentraland, and more on

Ethereum. https://opensea.io/. Last accessed 05 July 2021
24. Astigarraga, T., et al.: EmpoweringBusiness-LevelBlockchainUserswith aRules Framework

for Smart Contracts. In: Pahl, C., Vukovic,M., Yin, J., Yu, Qi. (eds.) ICSOC 2018. LNCS, vol.
11236, pp. 111–128. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9_8

25. López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.: Caterpillar:
a business process execution engine on the Ethereum blockchain. Softw. - Pract. Exp. 49,
1162–1193 (2019). https://doi.org/10.1002/SPE.2702

26. Choudhury, O., Rudolph, N., Sylla, I., Fairoza, N., Das, A.: Auto-generation of smart con-
tracts from domain-specific ontologies and semantic rules. In: Proc. - IEEE 2018 Int. Congr.
Cybermatics 2018 IEEE Conf. Internet Things, Green Comput. Commun. Cyber, Phys. Soc.
Comput. Smart Data, Blockchain, Comput. Inf. Technol. iThings/Gree, pp. 963–970 (2018).
https://doi.org/10.1109/CYBERMATICS_2018.2018.00183

27. He,X.,Qin,B., Zhu,Y.,Chen,X., Liu,Y.: SPESC: a specification language for smart contracts.
Proc. - Int. Comput. Softw. Appl. Conf. 1, 132–137 (2018). https://doi.org/10.1109/COM
PSAC.2018.00025

28. Ben Slama Souei, W., El Hog, C., Sliman, L., Ben Djemaa, R., Ben Amor, I.A.: Towards
a Uniform Description Language for Smart Contract, pp.. 57–62 (2022). https://doi.org/10.
1109/WETICE53228.2021.00022

29. Mahmoud, Q.H., Lescisin, M., AlTaei, M.: Research challenges and opportunities in
blockchain and cryptocurrencies. Internet Technol. Lett. 2, e93 (2019). https://doi.org/10.
1002/ITL2.93

30. Agrawal, D., Jureczek, N., Gopalakrishnan, G., Guzman, M.N., Mcdonald, M., Kim, H.:
Loyalty Points on the Blockchain. Bus. Manag. Stud. 4 (2018). https://doi.org/10.11114/bms.
v4i3.3523

31. Redish, J. (Ginny), Bias, R.G., Bailey, R., Molich, R., Dumas, J., Spool, J.M.: Usability in
practice. 885 (2002). https://doi.org/10.1145/506443.506647

https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://eips.ethereum.org/EIPS/eip-1155
https://vittominacori.github.io/erc20-generator/
https://metamask.io/
https://web3js.readthedocs.io/en/v1.3.4/
https://vittominacori.github.io/bep20-generator/
https://opensea.io/
https://doi.org/10.1007/978-3-030-03596-9_8
https://doi.org/10.1002/SPE.2702
https://doi.org/10.1109/CYBERMATICS_2018.2018.00183
https://doi.org/10.1109/COMPSAC.2018.00025
https://doi.org/10.1109/WETICE53228.2021.00022
https://doi.org/10.1002/ITL2.93
https://doi.org/10.11114/bms.v4i3.3523
https://doi.org/10.1145/506443.506647

	Specifying Blockchain-Based Resource-Exchange Systems by Business-Level Users Using a Generic Easy-To-Use Framework
	1 Introduction
	2 Background
	3 Related Work
	3.1 Generators and Marketplaces for Non-programmers
	3.2 Smart Contract Specification for Business-Level Users

	4 Framework
	4.1 Overall Architecture
	4.2 Layer 1 – Use Case Specification
	4.3 Layer 1 – Use Case Interaction
	4.4 Layer 2 – Smart Contract Generation
	4.5 Blockchain Network
	4.6 Advantages

	5 Use Case Specifications - Examples
	5.1 Loyalty Programs
	5.2 University Collaboration

	6 User Study
	6.1 Setup of an Evaluation Session
	6.2 Results
	6.3 Discussion

	7 Conclusion and Future Work
	References

