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Abstract
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources. The efficiency
of COVID-19 diagnosis has become highly significant. As deep learning and convolutional neural network
(CNN) has been widely utilized and been verified in analyzing medical images, it has become a powerful
tool for computer-assisted diagnosis. However, there are two most significant challenges in medical image
classification with the help of deep learning and neural networks, one of them is the difficulty of acquiring
enough samples, which may lead to model overfitting. Privacy concerns mainly bring the other challenge since
medical-related records are often deemed patients’ private information and protected by laws such as GDPR and
HIPPA. Federated learning can ensure the model training is decentralized on different devices and no data is
shared among them, which guarantees privacy. However, with data located on different devices, the accessible
data of each device could be limited. Since transfer learning has been verified in dealing with limited data with
good performance, therefore, in this paper, We made a trial to implement federated learning and transfer learning
techniques using CNNs to classify COVID-19 using lung CT scans. We also explored the impact of dataset
distribution at the client-side in federated learning and the number of training epochs a model is trained. Finally,
we obtained very high performance with federated learning, demonstrating our success in leveraging accuracy
and privacy.
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1 Introduction

Caused by severe acute respiratory syndrome coronavirus-2,
coronavirus disease 2019 (COVID-19) has become an ongoing
pandemic after it was found at the end of the year 2019, due to
the fast spread and infection rate of the COVID-19 epidemic,
the World Health Organization (WHO) designated it a pandemic
[1]. It will be critical to find tools, processes, and resources to
rapidly identify individuals infected.

According to several previous researches [2, 3, 4, 5, 6, 7], com-
puted tomography (CT) offers a high diagnostic and prognostic
value for COVID-19, CT scans of individuals with COVID-19
often revealed bilateral lung lesions comprised of ground-glass
opacity [8] and in some cases, abnormalities and changes were
observed [9]. Since CT scans are a popular diagnostic technique
that is simple and quick to get without incurring the significant
expense, incorporating CT imaging into the development of
a sensitive diagnostic tool may expedite the diagnosis process
while also serving as a complement to RT-PCR [10, 8, 11]. How-
ever, utilizing CT imaging to forecast a patient’s individualized
prognosis may identify prospective high-risk individuals who
are more likely to develop seriously and need immediate medical
attention. Researchers have realized that developing effective
methods to assist diagnosis has become critical to their success.

As a key machine learning method, deep learning has evolved in
recent years and has achieved astonishing success in the field of
medical image processing [12, 13, 14]. Because of the superior
capability of convolutional neural networks (CNNs) in medi-
cal image classification, researchers have begun to concentrate
their attention on the application of CNNs in order to address

an increasing number of medical image processing issues using
deep learning, and some previous researches have demonstrated
the great capability of CNNs being implemented in computed
assisted diagnosis [15, 16, 17, 18, 19, 20, 21]. Some previ-
ous researches have also achieved exciting results in COVID-
19 classification [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32],
however, since medical records of patients have always been
deemed as privacy and protected by laws such as GDPR in
the European Union (EU) and HIPPA in the US, collecting
data needed for building high-quality classifiers such as CT
scans becomes extremely difficult. In some other researches
[33, 34, 35, 36, 37, 38, 39, 40], the authors built their covid
detection or classification techniques utilizing federated learn-
ing. Federated learning is a decentralized computation approach
for training a neural network [41, 42, 43, 44], which is able to
address privacy concerns in training neural networks. In feder-
ated learning, rather than gathering data and keeping data in one
place for centralized training, participating clients can process
their own data and communicate model updates to the server,
where the server collects and combines weights from clients
to create a global model [41, 42, 43, 44]. Although federated
learning can be used to handle privacy concerns, since data are
distributed and located in clients’ devices, the data size that can
be accessed by each client may be limited, which may com-
promise the overall model performance. Transfer learning is
designed to address the issue caused by limited data, which
transfers knowledge learned from source task to target task
[45, 46, 47], with transfer learning, previous researches have
also achieved decent covid classification or detection perfor-
mance [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. Even
though all of the papers mentioned above have proposed differ-
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ent methods and frameworks for covid classification, there is still
a lack of a framework that leverages both privacy and accuracy
by integrating two-stage transfer learning introduced in [18] and
federated learning [41, 42, 43, 44]. Therefore, in this paper, we
made a further trial to leverage both accuracy and privacy in clas-
sifying COVID-19 CT images by combining two-stage transfer
learning [18] and federated learning techniques[41, 42, 43, 44].

In this paper, the datasets used are obtained from the COVID-19
Radiography Database [60, 61] and Chest X-Ray Images (Pneu-
monia) [62]. From these two public databases, We obtained
10192 healthy CT scans, 4273 CT scans of bacterial or viral
pneumonia that are not caused by covid, and 3616 covid CT
scans, as are shown in Table 1, Figure 1 and Figure 2.

(a) Covid CT Scan Examples

(b) Non-Covid Pneumonia CT Scan Examples

(c) Healthy CT Scan Examples

Figure 1: CT Scan Examples of COVID-19 Infection,
Non-Covid Pneumonia, and Healthy Ones
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Figure 2: Histogram of Data Size in Different Categories

2 Our Contributions

We proposed a novel two-step federated transfer learning ap-
proach on classifying lung CT scans, with the first step classify-
ing Pneumonia from Healthy and the second step differentiating
Covid Pneumonia from Non-Covid Pneumonia, the achieved
accuracy over limited data is worth being focused on.

We took the privacy concerns into consideration by performing
model training in a decentralized way with a federated learning
technique. Since federated learning requires data to remain on
participated edges devices, combining federated learning and
transfer learning further address the issue of limited data.

We thoroughly evaluated the model performance of centralized
transfer learning and federated transfer learning by measuring
sensitivity, specificity, as well as ROC curves, and AUC values
and showed that our proposed approach has excellent capability
to leverage between accuracy and privacy.

3 Paper Organization

The rest of this paper is organized as follows. In section 4, we
talk about the deep learning, transfer learning, and federated
learning methodologies, as well as present the algorithm used
in this paper. In section 5, we present our experimental results
and discussion. We then made conclusion in section 6, and talk
about future directions in section 7.

4 Theory andMethodology

4.1 Deep Learning, CNNs and Transfer Learning

Deep learning techniques, such as convolutional neural networks
(CNNs) [63], are used to generate predictions about future data.
Convolutional neural networks (CNNs) contain several different
layers such as convolutional layers, pooling layers, and fully
connected layers [64, 65], each layer consists of many individual
units known as neurons, which is a simulation of neurons in the
human brain nervous system [66, 67]. Figure 3 shows a simple
example architecture of CNNs; in CNNs, each neuron takes
input and performs weights calculation, and passes calculation
results to other neurons through activation function [65, 68]. To
construct a decent classifier, CNNs are trained on previously
collected data [69, 70, 71, 72], although a large amount of high-
quality data is an essential factor in achieving better model
training and testing performance, due to collecting and labeling
data being always resource-consuming, the entire model training
process could become less efficient until transfer learning [47,
45] can handle this issue. According to [47, 45, 18], transfer
learning attempts to learn knowledge source tasks and apply it
to a target task, in contrast to the conventional model training
process, which attempts to learn each new task from scratch
[47, 45, 18]. In this paper, we will utilize deep learning and
transfer learning techniques to assist us in the classification task.

4.2 Federated Learning

As a distributed machine learning technique, federated learning
allows machine learning models to be trained using decentral-
ized data stored on devices such as mobile phones and computers
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Table 1: Number of Data in Different Categories

Category Healthy Covid Pneumonia Non-Covid Pneumonia

Number of Data 10192 3616 4273

convolutional
layers fully connected

layers

input
layer

output
layer

Figure 3: Example of a CNN Architecture

[41, 42, 43, 44], which solves the fundamental issues of privacy,
ownership, and localization of data.

A neural model may be trained using federated learning, and
weights from a large number of clients trained on their local
datasets are aggregated by the server and integrated to build an
accurate global model [41, 42, 43, 44].

In paper [41], the authors proposed FederatedAveraging, a
method that is utilized on the server in order to aggregate clients’
local updated weights and generate weights for a global model.
According to [41, 44], current global model weights are sent to a
set of clients at the beginning of each training round, clients start
training local models based on the weights received with their
local accessible data. In the particular case of t = 0, all clients
start from the same weights obtained from the server, which
has either been randomly initialized or pre-trained on other data,
depending on the configuration.

4.3 Two-Stage Federated Transfer Learning Framework

The two-stage transfer learning method was first proposed by
the authors in [18], which achieved very high performance in
classifying lung nodules. We further proposed our two-stage
federated transfer learning framework, which highly references
and is based on the algorithms proposed by the authors in [41,
44], as is shown in the following algorithm 1. In the first stage,
CT scans are classified into Healthy and Pneumonia, while in
the second stage, we further classify Pneumonia into Covid
Pneumonia and Non-Covid Pneumonia. At the beginning of the
framework, We first conducted stage one model training in a
federated format, and weights are saved as a loadable file for
transfer learning use in stage two.

As is shown in Algorithm 1, training round te is the number of
global federated training rounds given by the user, and federated
averaging τe is the number of local training epochs of each
client before sending local weights to the GlobalServer, for the
federated averaged weights calculation in each training round.

w(t) is the federated averaged weights obtained from calculation
at the end of training round t. Before the first training round, at
t = 0, we initialize w(0) to vector containing random values for
stage one, and for stage two, we initialize w(0) to the pre-trained
weights obtained from stage one. At the beginning of each
training round at GlobalServer, then federated averaged weights
from previous training round w(t − 1) is sent to all clients, each
client i start local training on local data Di based on the received
weights in Procedure TrainClient. At training round t, after
finishing local training for τe epochs, each client sends their
weights wi

τe
(t) to GlobalServer for federated averaged weights

calculation. As is discussed in [41, 44], we also take the size
of each client’s local dataset into consideration and performed
a weighted average for the calculation of federated averaged
weights w(t). If the currently running task is stage one, after all
training rounds end, w(te) is saved as a loadable file to be used in
stage two. Please note that for this two-stage federated transfer
learning approach, the stage one must be run prior to the stage
two in order to generate pre-trained weights for transfer learning
in stage two.

5 Experiments and Results
5.1 Dataset Preparation

As the proposed federated transfer learning framework contains two
stages, two different datasets with overlapped data need to be prepared.
To create the dataset for stage one, we combined the aforementioned
3616 covid CT scans and 4273 CT scans of non-covid bacterial or viral
pneumonia into a new category named Pneumonia, which contains
7889 CT scans in total, and the other category is Healthy consists of
10192 CT scans. As for stage two, the 3616 covid CT scans are in the
category named Covid Pneumonia and the other category Non-Covid
Pneumonia contains 4273 CT scans of pneumonia that are not caused
by covid, as is shown in Table 2, all CT scans are pre-processed into
grayscale and resized to 28 by 28 pixels when creating datasets, in
order to be utilized by LeNet model [63].

5.2 CNN model: LeNet

In this paper, we utilize LeNet as the model to first classify CT scans
into Healthy and Pneumonia in stage one, then classify Pneumonia into
Covid Pneumonia and Non-Covid Pneumonia in stage two. LeNet is
one of the most classic CNN architecture developed by Yann LeCun
[63], which was used to classify data from the MNIST dataset [63].
The LeNet architecture we used contains two convolutional layers, two
max-pooling layers, and two fully connected layers, with softmax [73]
being used in the output layer.

5.3 Experiment Results

In this paper, we conducted our experiments in simulation on a single
computer with a GTX 1070 Ti GPU, tensorflow [74] and keras [75]
were utilized to construct the CNN model during our experiments. We
utilized 80% of the dataset as the training set and the remaining 20% as
the testing set, which is shown in Table 3.

Before performing our proposed federated transfer learning, we first
implement two-stage centralized transfer learning as is discussed in
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Algorithm 1: Two-Stage Federated Transfer Learning

1 Input: Total Training Round te, Federated Averaging
Interval τe, Number of Clients N, Stage Indicator S , Data
D with size |D|, Learning Rate η, Batch Size b;

2 Variable: Training Round Counter t, Local Training Epoch
Counter τ, Clients Index i;

3 Loss Function: l;
4 Output: w(te).
5
6 Procedure GlobalServer:
7 if S ← stage_one then
8 Initialize w(0) as a vector that contains random values;
9 else

10 if S ← stage_two then
11 Initialize w(0) to pre-trained weights from

stage_one;
12 end
13 end
14 for t ← 1, 2 . . . , te do
15 Send w(t − 1) to all clients;
16 for i← 1, 2 . . . ,N do
17 wi

τe
(t)← TrainClient(w(t − 1), i);

18 end
19 w(t)←

∑N
i←1

|Di |·wi
τe (t)
|D| ; . calculate federated averaged

weights in the end of this training round
20 end
21 if S ← stage_one then
22 Save the final federated averaged weights w(te) as

loadable file;
23 end
24
25 Procedure TrainClient(w(t), i):
26 Receive w(t) from GlobalServer;
27 wi

0(t + 1)← w(t); . set the initial local model weights of
t + 1 training round to the received federated averaged
weights

28 Initialize τ← 1;
29 for τ← 1, 2 . . . , τe do
30 wi

τ(t + 1)← Optimizer(wi
τ−1(t + 1), η, l,Di, b)) . update

weights based on weights from previous epoch,
learning rate, loss function, local dataset and batch
size using the choosed optmizer, such as gradient
decent, SGD, Adam

31 end
32 Send wi

τe
(t + 1) to GlobalServer;

Note: This algorithm references and is based on algorithms proposed
in [41, 44]

[18]. Centralized learning is the traditional training format where the
dataset is located in only one device, and the model is trained on all
data points. The results of the centralized learning format will be used
as a based line to be compared with our proposed two-stage federated
transfer learning framework. As for the model training configuration,
to begin with, we train our model for stage one, the training epoch is
set to 20, the batch size is set to 32, and the learning rate is set to 0.001,
for stage two, since the previous weights from stage one are transferred,
we reduce the training epochs to 10, while the batch size and learning
rate remain unchanged.

After training models in the centralized setting, we then start the training
model using the proposed federated transfer learning framework. In
federated learning, weights of all clients are sent to GlobalServer for
federated averaging [41] in each training round after being trained
at the client side for certain local training epochs, we then take the
effect of federated averaging interval into consideration. As is shown
in Algorithm 1, in our proposed framework, the federated averaging

interval is controlling the number of epochs a local model is trained
at the client-side; in our experiments, we create five clients, and we
trained our models with the federated averaging interval being set from
1 to 10, in order to explore how it relates to the performance. Data
distribution at each client may also become a key factor for overall
performance; therefore, in our experiments, we explore the influences
of data distribution by training model in two scenarios as is shown
in Table 4: (1) distributing data in training set to each client evenly,
with 20% of data for each client, which is marked as balanced and (2)
distributing data to each client unevenly, with the five clients having
access to 30%, 25%, 20%, 15%, 10% of data respectively, which is
marked as unbalanced. Please note that in the federated model training
process, the number of training rounds is set to 20 in stage one and 10 in
stage two, the learning rate is set to 0.001, the batch size is set to 32 in
both stages, which corresponds to the parameters in the aforementioned
centralized training.

To evaluate the performance, we tested our models on the testing set.
Due to data imbalance of different categories, traditional accuracy
may be biased based on the size of the dataset, and we then decide
to utilize the ROC curve and AUC value for a more robust model
performance evaluation. ROC curves of models trained with balanced
data distribution are shown in Figure 4, Figure 5, Figure 6 and Figure
7, and ROC curves of models trained with unbalanced data distribution
are shown in Figure 8, Figure 9, Figure 10 and Figure 11. All AUC
values are recorded, and we have also calculated precision, sensitivity,
as well as specificity. When calculating AUC, precision, and sensitivity,
we consider Pneumonia as positive and Healthy as negative in stage
one, while in stage two, Covid Pneumonia is considered as positive and
Non-Covid Pneumonia is considered as negative. Precision is calculated
using the following Equation 1,

Precision =
TruePositive

TruePositive + FalsePositive
(1)

while sensitivity is calculated as is shown in Equation 2,

S ensitivity =
TruePositive

TruePositive + FalseNegative
(2)

and the following Equation 3 calculates specificity.

S peci f icity =
TrueNegative

TrueNegative + FalsePositive
(3)

The recorded confusion matrix values are shown in Table 5, and AUC,
precision, sensitivity and specificity are shown in Table 6. Please note
that rounding has been applied to values in Table 6 in order to keep four
decimals, resulting in identical values shown in Table 6, which may not
be equal to each other before rounding.
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Figure 4: ROC Curves of Stage One with Balanced Data
Distribution
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Table 2: Dataset Used in The Two-Stage Federated Transfer Learning Framework

Dataset For Stage One Dataset For Stage two
Category Healthy Pneumonia Covid Pneumonia Non-Covid Pneumonia

Number of Data 10192 7889 3616 4273

Table 3: Dataset Used in Stage One: Classifying Healthy and Pneumonia and Stage Two: Classifying Covid Pneumonia and
Non-Covid Pneumonia

Dataset Size of Training Set: 80% Dataset Size of Testing Set: 20%

Stage One 14464
Healthy 8108

3617
Healthy 2084

Pneumonia 6356 Pneumonia 1533

Stage Two 6311
Non-Covid Pneumonia 3408

1578
Non-Covid Pneumonia 865

Covid Pneumonia 2903 Covid Pneumonia 713

Table 4: Balanced and Unbalanced Dataset Distribution at 5
Clients

Balanced Unbalanced
Client 1 20% Client 1 30%
Client 2 20% Client 2 25%
Client 3 20% Client 3 20%
Client 4 20% Client 4 15%
Client 5 20% Client 5 10%
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Figure 5: Upper Left Zoom-In of ROC Curves of Stage One
with Balanced Data Distribution

5.4 Discussion

The results of experiments show that our proposed two-stage federated
transfer learning framework has achieved excellent accuracy in both
stages. By comparing balanced and unbalanced data distribution at the
client-side, we can see that dataset distribution at the client-side may
not affect the overall model performance in the current two-stage classi-
fication task. Additionally, we observed that the models achieved very
high classification performance in stage two even with the federated
averaging interval set to 1. However, the results of stage one classifi-
cation showed that the increase of federated averaging interval might
help the model achieve better performance, which could be observed
from the sensitivity values. However, the performance may not always
be positively correlated with the federated averaging interval, as too
many local training epochs could result in overfitting.

6 Conclusion
In this paper, we proposed the two-stage federated transfer learning
framework to address privacy concerns while achieving high accuracy.
We also explored the relationship between the performance and the
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Figure 6: ROC Curves of Stage Two with Balanced Data
Distribution
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Figure 7: Upper Left Zoom-In of ROC Curves of Stage Two
with Balanced Data Distribution

number of epochs local models are trained. The results of our ex-
periments showed that the performance in terms of accuracy of the
proposed framework is surprisingly good compared to the centralized
learning.

7 Future Direction

In our current work, due to hardware limitations, the simulation experi-
ments of our proposed framework were only run on the LeNet model.
Future endeavors may be focusing on running the proposed framework
on other much more complicated CNNs, such as AlexNet [69], VGG
[76], and ResNet [77]. In the future, we may further explore the time or
other resources consumed when increasing the number of local training
epochs at the client-side and focus on achieving high accuracy in a
resource-constrained environment.
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Table 5: Confusion Matrix Values of All Models

Stage Training
Setting

Data
Dist.

Fed. Averaging
Interval TP TN FP FN

stage one centralized N/A N/A 1423 1925 159 110
stage two centralized N/A N/A 700 858 7 13

1 1260 1964 120 273
2 1316 2005 79 217
3 1381 1980 104 152
4 1359 2005 79 174

stage one federated balanced 5 1377 2010 74 156
6 1436 1959 125 97
7 1383 2006 78 150
8 1402 1992 92 131
9 1388 1978 106 145
10 1412 1976 108 121
1 698 850 15 15
2 701 857 8 12
3 699 857 8 14
4 696 859 6 17

stage two federated balanced 5 697 861 4 16
6 703 853 12 10
7 698 857 8 15
8 700 858 7 13
9 700 854 11 13
10 700 861 4 13
1 1287 1972 112 246
2 1335 2002 82 198
3 1409 1989 95 124
4 1397 1978 106 136

stage one federated unbalanced 5 1393 1989 95 140
6 1385 1974 110 148
7 1400 1980 104 133
8 1425 1981 103 108
9 1413 1976 108 120
10 1419 1986 98 114
1 689 857 8 24
2 697 857 8 16
3 704 861 4 9
4 699 859 6 14

stage two federated unbalanced 5 698 858 7 15
6 697 861 4 16
7 695 859 6 18
8 697 860 5 16
9 702 859 6 11
10 702 858 7 11
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Figure 8: ROC Curves of Stage One with Unbalanced Data
Distribution
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Table 6: AUC, Pre. (Precision), Sen. (Sensitivity) and Spe. (Specificity) Values of All Models

Stage Training
Setting

Data
Dist.

Fed. Averaging
Interval AUC Pre. Sen. Spe.

stage one centralized N/A N/A 0.9801 0.8995 0.9282 0.9237
stage two centralized N/A N/A 0.9992 0.9901 0.9818 0.9919

1 0.9626 0.9130 0.8219 0.9424
2 0.9761 0.9434 0.8584 0.9621
3 0.9790 0.9300 0.9008 0.9501
4 0.9812 0.9451 0.8865 0.9621

stage one federated balanced 5 0.9829 0.9490 0.8982 0.9645
6 0.9807 0.9199 0.9367 0.9400
7 0.9836 0.9466 0.9022 0.9626
8 0.9818 0.9384 0.9145 0.9559
9 0.9793 0.9290 0.9054 0.9491

10 0.9820 0.9289 0.9211 0.9482
1 0.9986 0.9790 0.9790 0.9827
2 0.9987 0.9887 0.9832 0.9908
3 0.9980 0.9887 0.9804 0.9908
4 0.9972 0.9915 0.9762 0.9931

stage two federated balanced 5 0.9977 0.9943 0.9776 0.9954
6 0.9981 0.9832 0.9860 0.9861
7 0.9987 0.9887 0.9790 0.9908
8 0.9987 0.9901 0.9818 0.9919
9 0.9992 0.9845 0.9818 0.9873

10 0.9986 0.9943 0.9818 0.9954
1 0.9655 0.9199 0.8395 0.9463
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Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan
McMahan, et al. Towards federated learning at scale: Sys-
tem design. Proceedings of Machine Learning and Systems,
1:374–388, 2019.

[43] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ra-
maswamy, Françoise Beaufays, Sean Augenstein, Hubert
Eichner, Chloé Kiddon, and Daniel Ramage. Federated
learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

[44] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K
Leung, Christian Makaya, Ting He, and Kevin Chan.
When edge meets learning: Adaptive control for resource-
constrained distributed machine learning. In IEEE INFO-
COM 2018-IEEE Conference on Computer Communica-
tions, pages 63–71. IEEE, 2018.

[45] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang.
A survey of transfer learning. Journal of Big data, 3(1):
1–40, 2016.

[46] Lisa Torrey and Jude Shavlik. Transfer learning. In Hand-
book of research on machine learning applications and
trends: algorithms, methods, and techniques, pages 242–
264. IGI global, 2010.

[47] Sinno Jialin Pan and Qiang Yang. A survey on transfer
learning. IEEE Transactions on knowledge and data engi-
neering, 22(10):1345–1359, 2009.

[48] Yadunath Pathak, Prashant Kumar Shukla, Akhilesh Ti-
wari, Shalini Stalin, and Saurabh Singh. Deep transfer
learning based classification model for covid-19 disease.
Irbm, 2020.

[49] Muhammet Fatih Aslan, Muhammed Fahri Unlersen,
Kadir Sabanci, and Akif Durdu. Cnn-based transfer
learning–bilstm network: A novel approach for covid-19
infection detection. Applied Soft Computing, 98:106912,
2021.

[50] Aayush Jaiswal, Neha Gianchandani, Dilbag Singh, Vijay
Kumar, and Manjit Kaur. Classification of the covid-19
infected patients using densenet201 based deep transfer
learning. Journal of Biomolecular Structure and Dynamics,
39(15):5682–5689, 2021.

[51] Fouzia Altaf, Syed Islam, and Naeem Khalid Janjua. A
novel augmented deep transfer learning for classification of
covid-19 and other thoracic diseases from x-rays. Neural
Computing and Applications, 33(20):14037–14048, 2021.

[52] Ariyo Oluwasanmi, Muhammad Umar Aftab, Zhiguang
Qin, Son Tung Ngo, Thang Van Doan, Son Ba Nguyen, and
Son Hoang Nguyen. Transfer learning and semisupervised
adversarial detection and classification of covid-19 in ct
images. Complexity, 2021, 2021.

[53] Michael J Horry, Subrata Chakraborty, Manoranjan Paul,
Anwaar Ulhaq, Biswajeet Pradhan, Manas Saha, and
Nagesh Shukla. Covid-19 detection through transfer learn-
ing using multimodal imaging data. Ieee Access, 8:149808–
149824, 2020.

[54] Shui-Hua Wang, Deepak Ranjan Nayak, David S Guttery,
Xin Zhang, and Yu-Dong Zhang. Covid-19 classification
by ccshnet with deep fusion using transfer learning and
discriminant correlation analysis. Information Fusion, 68:
131–148, 2021.

[55] Chun Li, Yunyun Yang, Hui Liang, and Boying Wu. Trans-
fer learning for establishment of recognition of covid-19 on
ct imaging using small-sized training datasets. Knowledge-
Based Systems, 218:106849, 2021.

[56] Oussama El Gannour, Soufiane Hamida, Bouchaib Cher-
radi, Abdelhadi Raihani, and Hicham Moujahid. Perfor-
mance evaluation of transfer learning technique for auto-
matic detection of patients with covid-19 on x-ray images.
In 2020 IEEE 2nd International Conference on Electronics,
Control, Optimization and Computer Science (ICECOCS),
pages 1–6. IEEE, 2020.

[57] N Narayan Das, Naresh Kumar, Manjit Kaur, Vijay Kumar,
and Dilbag Singh. Automated deep transfer learning-based
approach for detection of covid-19 infection in chest x-rays.
Irbm, 2020.



Preprint – A Two-Stage Federated Transfer Learning Framework inMedical Images Classification on Limited Data: A
COVID-19 Case Study 10
[58] Iason Katsamenis, Eftychios Protopapadakis, Athana-

sios Voulodimos, Anastasios Doulamis, and Nikolaos
Doulamis. Transfer learning for covid-19 pneumonia de-
tection and classification in chest x-ray images. In 24th
Pan-Hellenic Conference on Informatics, pages 170–174,
2020.

[59] Ruochi Zhang, Zhehao Guo, Yue Sun, Qi Lu, Zijian Xu,
Zhaomin Yao, Meiyu Duan, Shuai Liu, Yanjiao Ren, Lan
Huang, et al. Covid19xraynet: a two-step transfer learn-
ing model for the covid-19 detecting problem based on a
limited number of chest x-ray images. Interdisciplinary
Sciences: Computational Life Sciences, 12(4):555–565,
2020.

[60] Muhammad EH Chowdhury, Tawsifur Rahman, Amith
Khandakar, Rashid Mazhar, Muhammad Abdul Kadir,
Zaid Bin Mahbub, Khandakar Reajul Islam, Muham-
mad Salman Khan, Atif Iqbal, Nasser Al Emadi, et al.
Can ai help in screening viral and covid-19 pneumonia?
IEEE Access, 8:132665–132676, 2020.

[61] Tawsifur Rahman, Amith Khandakar, Yazan Qiblawey,
Anas Tahir, Serkan Kiranyaz, Saad Bin Abul Kashem,
Mohammad Tariqul Islam, Somaya Al Maadeed, Susu M
Zughaier, Muhammad Salman Khan, et al. Exploring
the effect of image enhancement techniques on covid-19
detection using chest x-ray images. Computers in biology
and medicine, 132:104319, 2021.

[62] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Car-
olina CS Valentim, Huiying Liang, Sally L Baxter, Alex
McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al.
Identifying medical diagnoses and treatable diseases by
image-based deep learning. Cell, 172(5):1122–1131, 2018.

[63] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[64] Quan Zhang. Convolutional neural networks. In Proceed-
ings of the 3rd International Conference on Electrome-
chanical Control Technology and Transportation, pages
434–439, 2018.

[65] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun
Zhou. A survey of convolutional neural networks: analysis,
applications, and prospects. IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[66] Warren S McCulloch and Walter Pitts. A logical calculus
of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5(4):115–133, 1943.

[67] Ji He, Hongwei Yang, Lei He, and Lina Zhao. Neural
networks based on vectorized neurons. Neurocomputing,
465:63–70, 2021.

[68] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Ac-
tivation functions in neural networks. towards data science,
6(12):310–316, 2017.

[69] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 2012.

[70] Ernst Kussul and Tatiana Baidyk. Improved method of
handwritten digit recognition tested on mnist database.
Image and Vision Computing, 22(12):971–981, 2004.

[71] Meiyin Wu and Li Chen. Image recognition based on deep
learning. In 2015 Chinese Automation Congress (CAC),
pages 542–546. IEEE, 2015.

[72] Rasim Caner Çalik and M Fatih Demirci. Cifar-10 im-
age classification with convolutional neural networks for
embedded systems. In 2018 IEEE/ACS 15th Interna-
tional Conference on Computer Systems and Applications
(AICCSA), pages 1–2. IEEE, 2018.

[73] John Bridle. Training stochastic model recognition al-
gorithms as networks can lead to maximum mutual in-
formation estimation of parameters. Advances in neural
information processing systems, 2, 1989.

[74] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available
from tensorflow.org.

[75] François Chollet et al. Keras. https://keras.io, 2015.
[76] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

https://www.tensorflow.org/
https://keras.io

	1 Introduction
	2 Our Contributions
	3 Paper Organization
	4 Theory and Methodology
	4.1 Deep Learning, CNNs and Transfer Learning
	4.2 Federated Learning
	4.3 Two-Stage Federated Transfer Learning Framework

	5 Experiments and Results
	5.1 Dataset Preparation
	5.2 CNN model: LeNet
	5.3 Experiment Results
	5.4 Discussion

	6 Conclusion
	7 Future Direction

