
Parameterized-NL Completeness of Combinatorial Problems by
Short Logarithmic-Space Reductions and Immediate

Consequences of the Linear Space Hypothesis1

Tomoyuki Yamakami2

Abstract

The concept of space-bounded computability has become significantly important in handling vast

data sets on memory-limited computing devices. To replenish the existing short list of NL-complete

problems whose instance sizes are dictated by log-space size parameters, we propose new additions

obtained directly from natural parameterizations of three typical NP-complete problems—the vertex

cover problem, the exact cover by 3-sets problem, and the 3-dimensional matching problem. With

appropriate restrictions imposed on their instances, the proposed decision problems parameterized by

appropriate size parameters are proven to be equivalent in computational complexity to either the

parameterized 3-bounded 2CNF Boolean formula satisfiability problem or the parameterized degree-3

directed s-t connectivity problem by “short” logarithmic-space reductions. Under the assumption of

the linear space hypothesis, furthermore, none of the proposed problems can be solved in polynomial

time if the memory usage is limited to sub-linear space.

Key words. parameterized decision problem, linear space hypothesis, NL-complete problem, sub-

linear space, 2SAT, vertex cover, exact cover, perfect matching

1 Background and New Challenges

1.1 Combinatorial Problems and NL-Completeness

Given a combinatorial problem, it is desirable, for practical reason, to seek for good algorithms that

consume fewer computational resources in order to solve the problem, and therefore it is of great importance

for us to identify the smallest amount of computational resources required to execute such algorithms.

Of various resources, we are focused in this exposition on the smallest “memory space” used by an

algorithm that runs within certain reasonable “time span.” The study on the minimal memory space has

attracted significant attention in real-life circumstances at which we need to manage vast data sets for

most network users who operate memory-limited computing devices. It is therefore useful in general to

concentrate on the study of space-bounded computability within reasonable execution time. In the past

literature, special attention has been paid to polynomial-time algorithms using logarithmic memory space

and two corresponding space-bounded complexity classes: L (deterministic logarithmic space) and NL

(nondeterministic logarithmic space).

In association with L and NL, various combinatorial problems have been discussed by, for instance,

Jones, Lien, and Laaser [8], Cook and McKenzie [3], Àlvarez and Greenlaw [1], and Jenner [7]. Many

graph properties, in particular, can be algorithmically checked using small memory space. Using only

logarithmic space3 (cf. [1, 10]), for instance, we can easily solve the problems of determining whether or

not a given graph is a bipartite graph, a computability graph, a chordal graph, an interval graph, and a

split graph. On the contrary, the directed s-t connectivity problem (DSTCON) and the 2CNF Boolean

formula satisfiability problem (2SAT) are known to be NL-complete [8] (together with the result of [6, 12])

and seem to be unsolvable using logarithmic space. To understand the nature of NL better, it is greatly

beneficial to study more interesting problems that fall into the category of NL-complete problems.

1.2 Parameterization of Problems and the Linear Space Hypothesis

Given a target combinatorial problem, it is quite useful from a practical viewpoint to “parameterize” the

problem by introducing an adequate “size parameter” as a unit basis of measuring the total amount

of computational resources, such as runtime and memory space needed to solve the problem. As quick

examples of size parameters, given a graph instance G, mver(G) and medg(G) respectively denote the

1A conference version will appear in the Proceedings of the Future Technologies Conference (FTC 2022), October 2022.
2Current Affiliation: Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
3Those problems were proven to be in co-SL by Reif [10] and SL-complete by Àlvarez and Greenlaw [1], where SL is the

symmetric version of NL. Since SL = co-SL = L by Reingold [11], nonetheless, all the problems are in L.

1

ar
X

iv
:2

20
6.

10
38

9v
1

 [
cs

.C
C

]
 2

1
Ju

n
20

22

total number of the vertices of G and the total number of the edges in G. For a CNF Boolean formula

φ, in addition, mvbl(φ) and mcls(φ) respectively express the total number of distinct variables in φ and

the total number of clauses in φ. Decision problems coupled with appropriately chosen size parameters

are generally referred to as parameterized decision problems. In this exposition, we are particularly

interested in NL problems L parameterized by log-space (computable) size parameters m(x) of input x.

Those parameterized decision problems are succinctly denoted (L,m), in particular, to emphasize the size

parameter m(x). Their precise definition will be given in Section 2.2.

Among all parameterized decision problems with log-space size parameters m, we are focused on

combinatorial problems L that can be solvable by appropriately designed polynomial-time algorithms

using only sub-linear space, where the informal term “sub-linear” means O(m(x)1−εpolylog(|x|)) for an

appropriately chosen constant ε ∈ (0, 1] independent of x. All such parameterized decision problems

(L,m) form the complexity class PsubLIN [13] (see Section 2.2 for more details). It is natural to ask if

all NL problems parameterized by log-space size parameters (or briefly, parameterized-NL problems) are

solvable in polynomial time using sub-linear space. To tackle this important question, we zero in on the

most difficult (or “complete”) parameterized-NL problems. As a typical example, let us consider the

3-bounded 2SAT, denoted 2SAT3, for which every variable in a 2CNF Boolean formula φ appears at most

3 times in the form of literals, parameterized by mvbl(φ) (succinctly, (2SAT3,mvbl)). It was proven in [14]

that (2SAT3,mvbl) is complete for the class of all parameterized-NL problems.

Lately, a practical working hypothesis, known as the linear space hypothesis [13], was proposed in

connection to the computational hardness of parameterized-NL problems. This linear space hypothesis

(LSH) asserts that (2SAT3,mvbl) cannot be solved by any polynomial-time algorithm using sub-linear space.

From the NL-completeness of 2SAT3, LSH immediately derives long-awaited complexity-class separations,

including L 6= NL and LOGDCFL 6= LOGCFL, where LOGDCFL and LOGCFL are respectively the

log-space many-one closure of DCFL (deterministic context-free language class) and CFL (context-free

language class) [13]. Moreover, under the assumption of LSH, it follows that 2-way nondeterministic finite

automata are simulated by “narrow” alternating finite automata [16].

Notice that the completeness notion requires “reductions” between two problems. The standard

NL-completeness notion uses logarithmic-space (or log-space) reductions. Those standard reductions,

however, seem to be too powerful to use in many real-life circumstances. Furthermore, PsubLIN is not even

known to be close under the standard log-space reductions. Therefore, much weaker reductions may be

more suitable to discuss the computational hardness of various real-life problems. A weaker notion, called

“short” log-space reductions, was in fact invented and studied extensively in [14, 13]. The importance of

such reductions is exemplified by the fact that PsubLIN is indeed closed under short log-space reductions.

1.3 New Challenges in This Exposition

The key question of whether LSH is true may hinge at the intensive study of parameterized-NL “complete”

problems. It is however unfortunate that a very few parameterized decision problems have been proven

to be equivalent in computational complexity to (2SAT3,mvbl) by short log-space reductions, and this

fact drives us to seek out new parameterized decision problems in this exposition in hope that we will

eventually come to the point of proving the validity of LSH. This exposition is therefore devoted to

proposing a new set of problems and proving their equivalence to (2SAT3,mvbl) by appropriate short

log-space reductions.

To replenish the existing short list of parameterized-NL complete problems, after reviewing fundamental

notions and notation in Section 2, we will propose three new decision problems in NL, which are obtained

by placing “natural” restrictions on instances of the following three typical NP-complete combinatorial

problems: the vertex cover problem (VC), the exact cover by 3-sets problem (3XC), and the 3-dimensional

matching problem (3DM) (refer to, e.g., [5] for their properties). We will then set up their corresponding

natural log-space size parameters to form the desired parameterized decision problems.

In Sections 3–5, we will prove that those new parameterized decision problems are equivalent in

computational complexity to (2SAT3,mvbl) by constructing appropriate short log-space reductions. Since

(2SAT3,mvbl) is parameterized-NL complete, so are all the three new problems. This completeness result

immediately implies that, under the assumption of LSH, those problems cannot be solved in polynomial

time using only sub-linear space.

2

2 Fundamental Notions and Notation

We briefly describe basic notions and notation necessary to read through the rest of this exposition.

2.1 Numbers, Sets, Graphs, Languages, and Machines

We denote by N the set of all natural numbers including 0, and denote by Z the set of all integers. Let

N+ = N − {0}. Given two numbers m,n ∈ Z with m ≤ n, the notation [m,n]Z expresses the integer

interval {m,m + 1, . . . , n}. We further abbreviate [1, n]Z as [n] whenever n ≥ 1. All polynomials are

assumed to take nonnegative coefficients and all logarithms are taken to the base 2. The informal notion

polylog(n) refers to an arbitrary polynomial in log n. Given a (column) vector v = (a1, a2, . . . , ak)T (where

“T” is a transpose operator) and a number i ∈ [k], the notation v(i) indicates the ith entry ai of v. For two

(column) vectors u and v of dimension n, the notation u ≥ v means that the inequality u(i) ≥ v(i) holds

for every index i ∈ [n]. A k-set refers to a set that consists of exactly k distinct elements.

An alphabet is a finite nonempty set of “symbols” or “letters”. Given an alphabet Σ, a string over Σ

is a finite sequence of symbols in Σ. The length of a string x, denoted |x|, is the total number of symbols

in x. The notation Σ∗ denotes the set of all strings over Σ. A language over Σ is a subset of Σ∗.

In this exposition, we will consider directed and undirected graphs and each graph is expressed as

(V,E) with a set V of vertices and a set E of edges. An edge between two vertices u and v in a directed

graph is denoted by (u, v), whereas the same edge in an undirected graph is denoted by {u, v}. Two

vertices are called adjacent if there is an edge between them. When there is a path from vertex u to

vertex v, we succinctly write u; v. An edge of G is said to be a grip if its both endpoints have degree at

most 2. Given a graph G = (V,E), we set mver(G) = |V | and medg(G) = |E|. The following property is

immediate.

Lemma 2.1 For any connected graph G whose degree is at most k, it follows that mver(G) ≤ 2medg(G)

and medg(G) ≤ kmver(G)/2.

If a Boolean formula φ in the conjunctive normal form (CNF) contains n variables and m clauses,

then we set mvbl(φ) = n and mcls(φ) = m as two natural size parameters. For later convenience, we call a

literal x in φ removable if no clause in φ contains x (i.e., the negation of x). We say that φ is in a clean

shape if each clause of φ consists of literals whose variables are all different. An exact 2CNF Boolean

formula has exactly two literals in each clause.

As a model of computation, we use the notions of multi-tape deterministic and nondeterministic Turing

machines (or DTMs and NTMs, for short), each of which is equipped with one read-only input tape,

multiple rewritable work tapes, and (possibly) a write-once4 output tape such that, initially, each input is

written on the input tape surrounded by two endmarkers, |c (left endmarker) and $ (right endmarker),

and all the tape heads are stationed on the designated “start cells.” Given two alphabets Σ1 and Σ2,

a function f from Σ∗1 to Σ∗2 (resp., from Σ∗1 to N) is computable in time t(n) using s(n) space if there

exists a DTM M such that, on each input x, M produces f(x) (resp., 1f(x)) on the output tape before it

halts within t(|x|) steps with accesses to at most s(|x|) work-tape cells (not counting the input-tape cells

as well as the output-tape cells). We freely identify a decision problem with its corresponding language.

A decision problem is defined to be computable within time t(n) using at most s(n) space in a similar

manner.

2.2 Parameterized Decision Problems and Short Reductions

Throughout this exposition, we target decision problems (equivalently, languages) that are parameterized

by size parameters, which specify “sizes” (i.e., positive integers) of instances given to target problems

and those sizes are used as a basis to measuring computational complexities (such as execution time

and memory usage) of the problems. More formally, for any input alphabet Σ, a size parameter is a

map from Σ∗ to N+. The information on the instance size is frequently used in solving problems, and

thus it is natural to assume the easy “computability” of the size. A size parameter m : Σ∗ → N is said

to be log-space computable if it is computable using O(log |x|) space, where x is a symbolic input. A

4A tape is write-once if its tape head never moves to the left and it must move to the right whenever it writes a non-blank
symbol.

3

parameterized decision problem is a pair (A,m) with a language A over a certain alphabet Σ and a size

parameter m mapping Σ∗ to N+.

For any parameterized decision problem (A,m), we say that (A,m) is computable in polynomial

time using sub-linear space if there exists a DTM that solves A in time polynomial in |x|m(x) using

O(m(x)1−εpolylog(|x|)) space, where ε is a certain fixed constant in the real interval (0, 1]. A parameterized

decision problem (A,m) with log-space size parameter m is in PsubLIN if (A,m) is computable in

polynomial time using sub-linear space.

To discuss sub-linear-space computability, however, the standard log-space many-one reductions (or

L-m-reductions, for short) are no longer useful. For instance, it is unknown that all NL-complete problems

parameterized by natural log-space size parameters are equally difficult to solve in polynomial time using

sub-linear space. This is because PsubLIN is not yet known to be closed under standard L-m-reductions.

Fortunately, PsubLIN is proven to be closed under slightly weaker reductions, called “short” reductions

[13, 14].

The short L-m-reducibility between two parameterized decision problems (P1,m1) and (P2,m2) is

given as follows: (P1,m1) is short L-m-reducible to (P2,m2), denoted by (P1,m1) ≤sL
m (P2,m2), if there

is a polynomial-time, logarithmic-space computable function f (which is called a reduction function)

and two constants k1, k2 > 0 such that, for any input string x, (i) x ∈ P1 iff f(x) ∈ P2 and (ii)

m2(f(x)) ≤ k1m1(x) + k2. Instead of using f , if we use a polynomial-time logarithmic-space oracle Turing

machine M to reduce (P1,m1) to (P2,m2) with the extra requirement of m2(z) ≤ k1m1(x) + k2 for any

query word z made by M on input x for oracle P2, then (P1,m1) is said to be short L-T-reducible to

(P2,m2), denoted by (P1,m1) ≤sL
T (P2,m2).

For any reduction ≤ in {≤sL
m ,≤sL

T }, we say that two parameterized decision problems (P1,m1) and

(P2,m2) are inter-reducible (to each other) by ≤-reductions if both (P1,m1) ≤ (P2,m2) and (P2,m2) ≤
(P1,m1) hold; in this case, we briefly write (P1,m1) ≡ (P2,m2).

Lemma 2.2 [13] Let (L1,m1) and (L2,m2) be two arbitrary parameterized decision problems. (1) If

(L1,m1) ≤sL
m (L2,m2), then (L1,m1) ≤sL

T (L2,m2). (2) If (L1,m1) ≤sL
T (L2,m2) and (L2,m2) ∈ PsubLIN,

then (L1,m1) ∈ PsubLIN.

2.3 The Linear Space Hypothesis or LSH

One of the first problems that were proven to be NP-complete in the past literature is the 3CNF Boolean

formula satisfiability problem (3SAT), which asks whether or not a given 3CNF Boolean formula φ is

satisfiable [2]. In sharp comparison, its natural variant, called the 2CNF Boolean formula satisfiability

problem (2SAT), was proven to be NL-complete [8] (together with the results of [6, 12]). Let us further

consider its natural restriction introduced in [13]. Let k ≥ 2.

k-Bounded 2CNF Boolean Formula Satisfiability Problem (2SATk):

◦ Instance: a 2CNF Boolean formula φ whose variables occur at most k times each in the form of

literals.

◦ Question: is φ satisfiable?

As natural log-space size parameters for the decision problem 2SATk, we use the aforementioned size

parameters mvbl(φ) and mcls(φ).

Unfortunately, not all NL-complete problems are proven to be inter-reducible to one another by

short log-space reductions. An example of NL-complete problems that are known to be inter-reducible

to (2SAT3,mvbl) is a variant of the directed s-t-connectivity problem whose instance graphs have only

vertices of degree at most k (kDSTCON) for any number k ≥ 3.

Degree-k Directed s-t Connectivity Problem (kDSTCON):

◦ Instance: a directed graph G = (V,E) of degree at most k and two vertices s, t ∈ V
◦ Question: is there any simple path in G from s to t?

Given a graph G with n vertices and m edges, we set mver(〈G, s, t〉) = n and medg(〈G, s, t〉) = m as

natural log-space size parameters.

Lemma 2.3 [13] Let k ≥ 3 be any integer. (1) (2SATk,mvbl) is inter-reducible to (2SATk,mcls) and also

to (2SAT3,mvbl) by short L-m-reductions. (2) (kDSTCON,mver) is inter-reducible to (kDSTCON,medg)

4

and further to (3DSTCON,mver) by short L-m-reductions. (3) (3DSTCON,mver) is inter-reducible to

(2SAT3,mvbl) by short L-T-reductions.

Notice that we do not know whether we can replace short L-T-reductions in Lemma 2.3(3) by short

L-m-reductions. This exemplifies a subtle difference between ≤sL
T and ≤sL

m .

Definition 2.4 The linear space hypothesis (LSH) asserts, as noted in Section 1.2, the insolvability of

the specific parameterized decision problem (2SAT3,mvbl) within polynomial time using only sub-linear

space.

In other words, LSH asserts that (2SAT3,mvbl) /∈ PsubLIN. Note that, since PsubLIN is closed

under short L-T-reductions by Lemma 2.2(2), if a parameterized decision problem (A,m) satisfies

(A,m) ≡sL
T (2SAT3,mvbl), we can freely replace (2SAT3,mvbl) in the definition of LSH by (A,m). The

use of short L-T-reduction can be relaxed to a much weaker notion of short SLRF-T-reduction [14, 13].

2.4 Linear Programming and Linear Equations

As a basis of later NL-completeness proofs, we recall a combinatorial problem of Jones, Lien, and Laaser

[8], who studied a problem of determining whether or not there exists a {0, 1}-solution to a given set

of linear programs, provided that each linear program (i.e., a linear inequality) has at most 2 nonzero

coefficients. When each variable further has at most k nonzero coefficients in all the linear programs, the

corresponding problem is called the (2, k)-entry {0, 1}-linear programming problem [13], which is formally

described as below.

(2, k)-Entry {0, 1}-Linear Programming Problem (LP2,k):

◦ Instance: a rational m× n matrix A, and a rational (column) vector b of dimension n, where each

row of A has at most 2 nonzero entries and each column has at most k nonzero entries.

◦ Question: is there any {0, 1}-vector x for which Ax ≥ b?

For practicality, all entries in A are assumed to be expressed in binary using O(log n) bits. For any

instance x of the form 〈A, b〉 given to LP2,k, we use two log-space size parameters defined as mrow(x) = n

and mcol(x) = m.

It is known that, for any index k ≥ 3, the parameterized decision problem (LP2,k,mrow) is inter-

reducible to (LP2,k,mcol) and further to (2SAT3,mvbl) by short L-m-reductions [13].

Lemma 2.5 [13] The following parameterized decision problems are all inter-reducible to one another by

short L-m-reductions: (LP2,k,mrow), (LP2,k,mcol), and (2SAT3,mvbl) for every index k ≥ 3.

We can strengthen the requirement of the form Ax ≥ b in LP2,k as follows. Consider another variant

of LP2,k, in which we ask whether or not b1 ≥ Ax ≥ b2 holds for a certain {0, 1}-vector x for any given

matrix A and two (column) vectors b1 and b2.

Bidirectional (2, k)-Entry {0, 1}-Linear Programming Problem (2LP2,k):

◦ Instance: a rational m× n matrix A, and two rational vectors b1 and b2 of dimension n, where

each row of A has at most 2 nonzero entries and each column has at most k nonzero entries.

◦ Question: is there any {0, 1}-vector x for which b1 ≥ Ax ≥ b2?

Proposition 2.6 For any index k ≥ 3, (2LP2,k,mcol) ≡sL
m (LP2,k,mcol).

Proof. The reduction (LP2,k,mcol) ≤sL
m (2LP2,k,mcol) is easy to verify by setting b2 = b and b1 = (b′i)i

with b′i = max{|aij1 |+ |aij2 | : j1, j2 ∈ [m], j1 < j2} for any instance pair A = (aij)ij and b = (bj)j given

to LP2,k. Since the description size of (A, b1, b2) is proportional to that of (A, b), the reduction is indeed

“short.”

To verify the opposite reducibility (2LP2,k,mcol) ≤sL
m (LP2,k+2,mcol), it suffices to prove that

(2LP2,k,mcol) ≤sL
m (LP2,k,mcol) since (LP2,l,mcol) ≡sL

m (LP2,3,mcol) for any l ≥ 3 by Lemma 2.5. Take an

arbitrary instance (A, b, b′) given to 2LP2,k and assume that A = (aij)ij is an m× n matrix and b = (bi)i
and b′ = (b′i)i are two (column) vectors of dimension m. We wish to reduce (A, b, b′) to an appropriate

instance (D, c) for LP2,k, where D = (dij)ij is a 4m× 2n matrix and c = (ci)i is a 4m-dimensional vector.

5

For all index pairs i ∈ [m] and j ∈ [n], let dij = aij , dm+i,n+j = −aij , and di,n+j = dm+i,j = 0. For all

indices i ∈ [m], let ci = bi and cm+i = −b′i. Moreover, for any pair (i, j) ∈ [m]× [n], we set d2m+i,j = 1,

d2m+i,n+j = −1, and c2m+i = 0. In addition, we set d3m+i,j = −1, d3m+i,n+j = 1, and c3m+i = 0. Notice

that each column of N has at most k+ 2 nonzero entries and each row of D has at most 2 nonzero entries.

Let x = (xj)j denote a {0, 1}-vector of dimension n for A and let y = (yj)j denote a {0, 1}-vector of

dimension 2n for D satisfying yj = xj and yn+j = xj for any j ∈ [n]. It then follows that the inequality∑n
j=1 dijyj ≥ ci is equivalent to

∑n
j=1 aijxj ≥ bj . Furthermore,

∑n
j=1 dn+i,jyn+j ≥ cn+i is equivalent to

−
∑n
j=1 aijxj ≥ −b′j , which is the same as

∑n
j=1 aijxj ≤ b′i. Therefore, we conclude that b′ ≥ Ax ≥ b iff

Dy ≥ c. In other words, it follows that (A, b, b′) ∈ 2LP2,k, iff (D, c) ∈ LP2,k. 2

As a special case of 2LP2,k by restricting its instances on the form (A, b1, b2) with b1 = b2, it is possible

to consider the decision problem of asking whether or not Ax = b holds for an appropriately chosen

{0, 1}-vector x. We call this new problem the (2, k)-entry {0, 1}-linear equation problem (LE2,k). As

shown in Lemma 2.7, LE2,k falls into L, and thus this fact signifies how narrow the gap between NL and

L is. For the proof of the lemma, we define the exclusive-or clause (or the ⊕-clause) of two literals x and

y to be the formula x⊕ y. The problem ⊕2SAT asks whether, for a given collection C of ⊕-clauses, there

exists a truth assignment σ that forces all ⊕-clauses in C to be true. It is known that ⊕2SAT is in L [8].

Lemma 2.7 For any index k ≥ 3, LE2,k belongs to L.

Proof. Consider any instance (A, b) given to LE2,k. Since ⊕2SAT ∈ L, it suffices to reduce LE2,k to

⊕2SAT by standard L-m-reductions. Note that the equation Ax = b is equivalent to aij1xj1 + aij2xj2 = bi
for all i ∈ [m], where aij1 and aij2 are nonzero entries of A with j1, j2 ∈ [n]. Fix an index i ∈ [m] and

consider the first case where j1 = j2. In this case, we translate aij1xj1 = bi into a ⊕-clause vj1⊕0 if xij1 = 1,

and vj1 ⊕ 1 otherwise. In the other case of j1 6= j2, on the contrary, we translate aij1xj1 + aij2xj2 = bi into

two ⊕-clauses {xj1 ⊕ 0, xj2 ⊕ 1} if (xj1 , xj2) = (1, 0), and the other values of (xj1 , xj2) are similarly treated.

Finally, we define C to be the collection of all ⊕-clauses obtained by the aforementioned translations. It

then follows that Ax = b iff C is satisfiable. This implies that (A, b) ∈ LE2,k iff C ∈ ⊕2SAT. 2

3 2-Checkered Vertex Covers

The vertex cover problem (VC) is a typical NP-complete problem, which has been used as a basis of the

completeness proofs of many other NP problems, including the clique problem and the independent set

problem (see, e.g., [9, 5]). For a given undirected graph G = (V,E), a vertex cover for G is a subset V ′ of

V such that, for each edge {u, v} ∈ E, at least one of the endpoints u and v belongs to V ′.

The problem VC remains NP-complete even if its instances are limited to planar graphs. Similarly,

the vertex cover problem restricted to graphs of degree at least 3 is also NP-complete; however, the same

problem falls into L if we require graphs to have degree at most 2. We wish to seek out a reasonable

setting situated between those two special cases. For this purpose, we intend to partition all edges into

two categories: grips and non-grips (where “grips” are defined in Section 2.1). Since grips have a simpler

structure than non-grips, the grips need to be treated slight differently from the others. In particular, we

request an additional condition, called 2-checkeredness, which is described as follows. A subset V ′ of V is

called 2-checkered exactly when, for any edge e ∈ E, if both endpoints of e are in V ′, then e must be a

grip. The 2-checkered vertex cover problem is introduced in the following way.

2-Checkered Vertex Cover Problem (2CVC):

◦ Instance: an undirected graph G = (V,E).

◦ Question: is there a 2-checkered vertex cover for G?

Associated with the decision problem 2CVC, we set up the log-space size parameters: mver(G) and

medg(G), which respectively express the total number of the vertices of G and that of the edges of G.

Given an instance of graph G = (V,E) to 2CVC, if we further demand that every vertex in V should

have degree at most k for any fixed constant k ≥ 3, then we denote by 2CVCk (Degree-k 2CVC) the

problem obtained from 2CVC. There exists a close connection between the parameterizations of 2CVC3

and 2SAT3.

6

u1
(1) u1

(2) u2
(1) u2

(2) u3
(1) u3

(2)

c1[1] c1[2] c2[1] c2[2] c3[1] c3[2] c4[1] c4[2]

Figure 1: The graph G obtained from φ ≡ c1 ∧ c2 ∧ c3 ∧ c4 with c1 ≡ u1 ∨ u2, c2 ≡ u2 ∨ u1, c3 ≡ u1 ∨ u3,

and c4 ≡ u2 ∨ u3. For the truth assignment σ satisfying σ(x1) = σ(x2) = σ(x3) = T , the 2-checkered

vertex cover Cσ consists of all vertices marked by dotted circles.

Theorem 3.1 (2CVC3,mver) ≡sL
m (2CVC3,medg) ≡sL

m (2SAT3,mvbl).

Proof. Firstly, it is not difficult to show that (2CVC3,mver) ≡sL
m (2CVC3,medg) by Lemma 2.1.

Next, we intend to prove that (2SAT3,mvbl) ≤sL
m (2CVC3,mver). Let φ be any instance to 2SAT3

made up of a set U = {u1, u2, . . . , un} of variables and a set C = {c1, c2, . . . , cm} of 2CNF Boolean clauses.

For convenience, we write U for the set {u1, u2, . . . , un} of negated variables and define Û = U ∪ U . In

the case where a clause contains any removable literal x, it is possible to delete all clauses that contain

x, because we can freely assign T (true) to x. Without loss of generality, we assume that there is no

removable literal in φ. We further assume that φ is an exact 2CNF formula in a clean shape (explained

in Section 2.1). Since every clause has exactly two literals, each clause cj is assumed to have the form

cj [1] ∨ cj [2] for any index j ∈ [m], where cj [1] and cj [2] are treated as “labels” that represent two literals

in the clause cj .

Let us construct an undirected graph G = (V,E) as follows. We define V = {u(1)i , u
(2)
i , cj [1], cj [2] |

i ∈ [n], j ∈ [m]} and we set Ũ to be {u(1)i , u
(2)
i | i ∈ [n]} by writing u

(1)
i for ui and u

(2)
i for

ui. We further set E as the union of {{u(1)i , u
(2)
i }, {cj [1], cj [2]} | i ∈ [n], j ∈ [m]} and {{z, cj [l]} |

z ∈ Ũ , l ∈ [2], and cj [l] represents z }. Since each clause contains exactly two literals, it follows that

deg(cj [1]) = deg(cj [2]) = 2. Thus, the edge {cj [1], cj [2]} for each index j is a grip. Moreover, since

each variable ui appears at most 3 times in the form of literals (because of the condition of 2SAT3),

deg(u
(1)
i) + deg(u

(2)
i) ≤ 5. Since no removable literal exists in φ, we obtain max{deg(u

(1)
i), deg(u

(2)
i)} ≤ 3.

It follows by the definition that mver(G) = 2(|U |+ |C|) ≤ 8|U | = 8mvbl(φ) since |C| ≤ 3|U |.
Here, we want to verify that φ ∈ 2SAT3 iff G ∈ 2CVC3. Assume that φ ∈ 2SAT3. Let σ : U → {T, F}

be any truth assignment that makes φ satisfiable. We naturally extend σ to a map from Û to {T, F} by

setting σ(ū) to be the opposite of σ(u). Its corresponding vertex cover Cσ is defined in two steps. Initially,

Cσ contains all elements z ∈ Û satisfying σ(z) = F . For each index j ∈ [m], let Aj = {i ∈ [2] | ∃z ∈
Û [cj [i] represents z and σ(z) = T]}. Notice that Aj ⊆ {1, 2}. If Aj = {i} for a certain i ∈ [2], then we

append to Cσ the vertex cj [i]; however, if Aj = {1, 2}, then we append to Cσ the two vertices cj [1] and

cj [2] instead.

To illustrate our construction, let us consider a simple example: φ ≡ c1 ∧ c2 ∧ c3 ∧ c4 with c1 ≡
u1 ∨ u2, c2 ≡ u2 ∨ u1, c3 ≡ u1 ∨ u3, and c4 ≡ u2 ∨ u3. The corresponding graph G is drawn in

Fig. 1. Take the truth assignment σ that satisfies σ(u1) = σ(u2) = σ(x3) = T . We then obtain

A1 = {1}, A2 = {1, 2}, and A3 = {2}. Therefore, the resulting 2-checkered vertex cover Cσ is the set

{u(2)1 , u
(2)
2 , u

(2)
3 , c1[1], c2[1], c2[2], c3[2], c4[1]}.

By the definition of Cσ’s, we conclude that G belongs to 2CVC3. Conversely, we assume that φ /∈ 2SAT3.

Consider any truth assignment σ for φ and construct Cσ as before. By the construction of Cσ, if Cσ is a

2-checkered vertex cover, then σ should force φ to be true, a contradiction. Hence, G /∈ 2CVC3 follows.

Overall, it follows that φ ∈ 2SAT3 iff G ∈ 2CVC3. Therefore, we obtain (2SAT3,mvbl) ≤sL
m (2CVC3,mver).

Conversely, we need to prove that (2CVC3,mver) ≤sL
m (2SAT3,mvbl). Given an undirected graph

G = (V,E), we want to define a 2CNF Boolean formula φ to which G reduces. Let V = {v1, v2, . . . , vn}
and E = {e1, e2, . . . , em} for certain numbers m,n ∈ N+.

Hereafter, we use the following abbreviation: u→ v for u∨ v, u↔ v for (u→ v)∧ (v → u), and u 6↔ v

for (u ∨ v) ∧ (u ∨ v). Notice that, as the notation 6↔ itself suggests, u 6↔ v is logically equivalent to the

negation of u↔ v.

We first define a set U of variables to be V . For each edge e = {u, v} ∈ E, we define Ce as follows. If

one of u and v has degree more than 2, then we set Ce to be u 6↔ v; otherwise, we set Ce to be u ∨ v.

7

Finally, we define C to be the set of all clauses, namely, {Ce | e ∈ E}. Let φ denote the 2CNF Boolean

formula made up of all clauses in C.

Next, we intend to verify that G has a 2-checkered vertex cover iff φ is satisfiable. Assume that G has

a 2-checkered vertex cover, say, V ′. Consider C obtained from G. We define a truth assignment σ by

setting σ(v) = T iff v ∈ V ′. Take any edge e = {u, v}. If one of u and v has degree more than 2, then

either (u ∈ V ′ and v /∈ V ′) or (u /∈ V ′ and v ∈ V ′) hold, and thus σ forces u 6↔ v to be true. Otherwise,

since either u ∈ V ′ or v ∈ V ′, σ forces u ∨ v to be true. This concludes that φ is satisfiable. On the

contrary, we assume that φ is satisfiable by a certain truth assignment, say, σ; that is, for any edge e ∈ E,

σ forces Ce to be true. We define a subset V ′ of V as V ′ = {v ∈ V | σ(v) = T}. Let e = {u, v} be any

edge. If Ce has the form u ∨ v for u, v ∈ V , then either u or v should belong to V ′. If σ forces u 6↔ v in

C to be true, then either (u ∈ V ′ and v /∈ V ′) or (u /∈ V ′ and v ∈ V ′) hold. Hence, V ′ is a 2-checkered

vertex cover. 2

The NL-completeness of 2CVC3 follows from Theorem 3.1 since 2SAT (and also 2SAT3) is NL-complete

by standard L-m-reductions [8] (based on the fact NL = co-NL [6, 12]).

As an immediate corollary of Theorem 3.1, we obtain the following hardness result regarding the

computational complexity of (2CVC,mver) under the assumption of LSH.

Corollary 3.2 Under LSH, letting ε be any constant in (0, 1], there is no polynomial-time algorithm that

solves (2CVC,mver) using O(mver(x)1−ε) space, where x is a symbolic input.

Proof. Assume that LSH is true. If (2CVC,mver) is solvable in polynomial time using O(mver(x)1−ε)

space for a certain constant ε ∈ (0, 1), since 2CVC3 is a “natural” subproblem of 2CVC, Theorem 3.1

implies the existence of a polynomial-time algorithm that solves (2SAT3,mvbl) using O(mrow(x)1−ε) space

as well. This implies that LSH is false, a contradiction. 2

4 Exact Covers with Exemption

The exact cover by 3-sets problem (3XC) was shown to be NP-complete [9]. Fixing a universe X, let

us choose a collection C of subsets of X. We say that C is a set cover for X if every element in X is

contained in a certain set in C. Furthermore, given a subset R ⊆ X, C is said to be an exact cover for X

exempt from R if (i) every element in X −R is contained in a unique member of C and (ii) every element

in R appears in at most one member of C. When R = ∅, we say that C is an exact cover for X. Notice

that any exact cover with exemption is a special case of a set cover.

To obtain a decision problem in NL, we need one more restriction. Given a collection C ⊆ P(X), we

introduce a measure, called “overlapping cost,” of an element of any set in C as follows. For any element

u ∈ X, the overlapping cost of u with respect to (w..r.t.) C is the cardinality |{A ∈ C | u ∈ A}|. With the

use of this special measure, we define the notion of k-overlappingness for any k ≥ 2 as follows. We say

that C is k-overlapping if the overlapping cost of every element u in X w.r.t. C is at most k.

2-Overlapping Exact Cover by k-Sets with Exemption Problem (kXCE2):

◦ Instance: a finite set X, a subset R of X, and a 2-overlapping collection C of subsets of X such

that each set in C has at most k elements.

◦ Question: does C contain an exact cover for X exempt from R?

The use of an exemption set R in the above definition is crucial. If we are given a 2-overlapping

family C of subsets of X as an input and then ask for the existence of an exact cover for X, then the

corresponding problem is rather easy to solve in log space [1].

The size parameter mset for kXCE2 satisfies mset(〈X,R,C〉) = |C|, provided that all elements of

X are expressed in O(log |X|) binary symbols. Obviously, mset is a log-space size parameter. In what

follows, we consider 3XCE2 parameterized by mset, (3XCE2,mset), and prove its inter-reducibility to

(2SAT3,mvbl)..

Theorem 4.1 (3XCE2,mset) ≡sL
m (2SAT3,mvbl).

8

x1[1] x1[2]

t1[1] t1[2] s1

x1͞[4] x2͞[1] x2[3] x3[2] x3͞[3] x3͞[4]

s2 t2[1] s4 s3 t3[1] t3[2]

Figure 2: The graph G obtained from φ ≡ C1 ∧ C2 ∧ C3 ∧ C4 with clauses C1 = {x1, x2}, C2 = {x1, x3},
C3 = {x2, x3}, and C4 = {x1, x3}. The truth assignment σ satisfies σ(x1) = σ(x2) = T and σ(x3) = F .

The exact cover X ′σ exempt from R, obtained from σ, consists of vertex pairs and triplets linked respectively

by dotted lines and dotted boxes. Here, t1[3], t2[2], t2[3], and t3[3] are omitted for simplicity.

Theorem 4.1 immediately implies the NL-completeness of 3XCE. To simplify the following proof, we

recall from Section 2.4 the NL-problem 2LP2,k and the fact that, for any index k ≥ 3, (2LP2,k,mcol) ≡sL
m

(2SAT3,mvbl), obtained from Lemma 2.5 and Proposition 2.6.

Proof. We begin our proof with verifying that (2SAT3,mvbl) ≤sL
m (3XCE2,mset). Let φ denote a 2CNF

Boolean formula with n variables and m clauses, given as an instance to 2SAT3. Let V denote the set

{x1, x2, . . . , xn} of all distinct variables in φ and let C denote the set {C1, C2, . . . , Cm} of all (distinct)

clauses in φ. With no loss of generality, we assume that there is no removable literal in φ and that φ is

an exact formula in a clean shape. We write V for the set {x1, x2, . . . , xn} and define V̂ = V ∪ V . We

freely identify a clause of the form zi1 ∨ zi2 for literals zi1 and zi2 with the set {zi1 , zi2}, which is clearly a

subset of V̂ . By our assumption, each variable xi should appear at most 3 times in different clauses in the

form of literals.

We want to reduce φ to an appropriately constructed instance (X,R,D) of 3XCE2. To construct such

an instance, we first define the following three sets X1, X2, and X3: X1 = {xi[j] | i ∈ [n], j ∈ [m], xi ∈
Cj} ∪ {xi[j] | i ∈ [n], j ∈ [m], xi ∈ Cj}, X2 = {sj | j ∈ [m]}, and X3 = {ti[j] | i ∈ [n], j ∈ [3]}. The

universe X is made up from those three sets (i.e., X = X1 ∪X2 ∪X3).

To understand the following construction better, we here illustrate a simple example of φ, which is of

the form C1 ∧ C2 ∧ C3 ∧ C4 with clauses C1 = {x1, x2}, C2 = {x1, x3}, C3 = {x2, x3}, and C4 = {x1, x3}.
We define the set D as drawn in Fig. 2. Take a truth assignment σ defined by σ(x1) = σ(x2) = T and

σ(x3) = F . The exact cover X ′σ for X exempt from R consists of {x1[1], s1}, {x1[2], s2}, {x2[3], s3},
{x3[4], s4}, {x1[2], t1[1], t1[2]}, and {x3[2], t3[1], t3[2]}.

Returning to the proof, let us define two groups of sets. For each index j ∈ [m], Aj is composed of

the following 2-sets: Aj = {{zi1 [j], sj}, {zi2 [j], sj} | i1, i2 ∈ [n], Cj = {zi1 , zi2} ⊆ V̂ }. Associated with V ,

we set V (+) to be composed of all variables xi such that xi appears in two clauses and xi appears in

one clause. Similarly, let V (−) be composed of all variables xi such that xi appears in one clause and xi
appears in two clauses. In addition, let V (∗) consist of all other variables. Note that, since there is no

removable literal in φ, any variable xi in V (∗) appears in one clause and its negation xi appears also in

one clause. Our assumption guarantees that V = V (+) ∪ V (−) ∪ V (∗). For each variable xi ∈ V (+), we set

B
(+)
i = {{xi[j1], ti[1]}, {xi[j2], ti[2]}, {xi[j3], ti[1], ti[2]}}, provided that Cj1 and Cj2 both contain xi and

Cj3 contains xi for certain indices j1, j2, and j3 with j1 < j2. Similarly, for each variable xi ∈ V (−), we set

B
(−)
i = {{xi[j1], ti[1]}, {xi[j2], ti[2]}, {xi[j3], ti[1], ti[2]}}, provided that Cj1 and Cj2 both contain xi and

Cj3 contains xi. In contrast, given any variable xi ∈ V (∗), we define B
(∗)
i = {{xi[j1], ti[1]}, {xi[j2], ti[1]}}.

Finally, we set D = (
⋃
j∈[m]Aj)∪ (

⋃
i∈[n](B

(+)
i ∪B(−)

i ∪B(∗)
i)). Notice that every element in X is covered

by exactly two sets in D. To complete our construction, an exemption set R is defined to be X1.

Hereafter, we intend to verify that φ is satisfiable iff there exists an exact cover for X exempt from

R. Given a truth assignment σ : V → {T, F}, we define a set X ′σ as follows. We first define X ′1 to be

the set {z[j], sj | j ∈ [m], σ(z) = T, z ∈ V̂ }. For each element xi ∈ V (+), if σ(xi) = F , then we set X ′2,i =

{{xi[j1], ti[1]}, {xi[j2], ti[2]}} ⊆ B
(+)
i , and if σ(xi) = F , then we set X ′2,i = {{xi[j3], ti[1], ti[2]}} ⊆ B

(+)
i .

Similarly, for each element xi ∈ V (−), we can define X ′2,i. For any element xi ∈ V (∗), however, if σ(z) = F

for a literal z ∈ {xi, xi}, then we define X ′2,i = {{z[j1], ti[1]}} ⊆ B
(∗)
i . In the end, X ′σ is set to be the

union X ′1 ∪ (
⋃
i∈[n]X

′
2,i). Assume that φ is true by σ. Since all clauses Cj are true by σ, each sj in X2 has

9

overlapping cost of 1 in X ′σ. Moreover, each ti[j] in X3 has overlapping cost of 1 in X ′σ. Either xi[j] or

xi[j] in X1 has overlapping cost of at most 1. Thus, X ′σ is an exact cover for X exempt from R (= X1).

On the contrary, we assume thatX ′ is an exact cover forX exempt fromR. We define a truth assignment

σ as follows. For each 2-set Aj , if {zid [j], sj} ∈ X ′ for a certain index d ∈ [2], then we set σ(zid) = T . For

each B
(+)
i , if {xi[j1], ti[1]}, {xi[j2], ti[2]} ∈ X ′, then we set σ(xi) = F . If {xi[j3], ti[1], ti[2]} ∈ X ′, then

we set σ(xi) = F . The case of B
(−)
i is similarly handled. In the case of B

(∗)
i , if {z[j1], ti[1]} ∈ X ′ for a

certain z ∈ {xi, xi}, then we set σ(z) = F . Since X ′ is an exact cover for X −R, for any clause Cj , there

exists exactly one z in Cj satisfying σ(z) = T .

Conversely, we intend to verify that (3XCE2,mset) ≤sL
m (2SAT3,mvbl). Since (2SAT3,mvbl) ≡sL

m

(2LP2,3,mrow) by Lemma 2.5 and Proposition 2.6, if we show that (3XCE2,mset) ≤sL
m (2LP2,3,mrow),

then we immediately obtain the desired consequence of (3XCE2,mset) ≤sL
m (2SAT3,mvbl). Toward the

claim of (3XCE2,mset) ≤sL
m (2LP2,3,mrow), let us take an arbitrary instance (X,R,C) given to 3XCE2

with X = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm}. Notice that R ⊆ X and |Ci| ≤ 3 for all i ∈ [m].

As the desired instance to 2LP2,3, we define an n×m matrix A = (aij)ij and two (column) vectors

b = (bi)i and b′ = (b′i)i as follows. Since each ui has overlapping cost of 2, if ui is in Cj1 ∩ Cj2 for

two distinct indices j1 and j2, then we set aij1 = aij2 = 1. Let bi = b′i = 1 for all i ∈ [n] satisfying

ui ∈ X − R, and let bi = 0 and b′i = 1 for all i ∈ [n] satisfying ui ∈ R. If D is a set cover, then we

define xD = (xj)j as follows: if Cj /∈ D, then we set xj = 1; otherwise, we set xj = 0. We then want to

show that D is an exact cover for X exempt from R iff xD satisfies b′ ≥ AxD ≥ b. Assume that D is an

exact cover for X exempt from R. Note that, if ui ∈ Cj1 ∩ Cj2 for two distinct indices j1 and j2, then∑n
j=1 aijxj = aij1xj1 + aij2xj2 = xj1 + xj2 . Since D contains exactly one set containing ui, we obtain

xj1 + xj2 = 1. If ui ∈ R, then we obtain
∑n
j=1 aijxj ∈ {0, 1}. Thus, we conclude that b′ ≥ AxD ≥ b. On

the contrary, assume that b′ ≥ AxD ≥ b. We obtain
∑n
j=1 aijxj = aij1xj1 + aij2xj2 = xj1 + xj2 for two

indices j1 and j2 satisfying aj1 6= 0 and aj2 6= 0. If ui /∈ R, then xj1 + xj2 = 1 holds because of bi = b′i = 1,

and thus exactly one of Cj1 and Cj2 must be in D. If ui ∈ R, then 1 ≥ xj1 + xj2 ≥ 0 holds, and thus at

most one of Cj1 and Cj2 belongs to D. Therefore, D is an exact cover for X exempt from R. 2

Similarly to Corollary 3.2, we obtain the following statement concerning 3XCE.

Corollary 4.2 Under LSH, no polynomial-time algorithm solves (3XCE,mver) using O(mver(x)1−ε)

space for a certain constant ε ∈ (0, 1), where x is a symbolic input.

5 Almost All Pairs 2-Dimensional Matching

The 3-dimensional matching problem (3DM) is well-known to be NP-complete [9] while the 2-dimensional

matching problem (2DM), which is seen as a bipartite perfect matching problem, falls into P. In fact,

2DM has been proven to be NL-hard [4] but it is not yet known to be in NL. In this exposition, we wish

to place our interest on a natural variant of 2DM, which turns to be NL-complete. Let us take a finite

set X and consider the Cartesian product X ×X. For any two elements (u, v), (w, z) ∈ X ×X, we say

that (u, v) agrees with (w, z), denoted (u, v) u (w, z) 6= ∅, if either u = w or v = z. A matching over

X ×X is a subset M of X ×X such that no two distinct elements in M agree with each other. Given a

subset M ⊆ X ×X, we define M(1) = {u ∈ X | ∃v[(u, v) ∈M]} and M(2) = {v ∈ X | ∃u[(u, v) ∈M]}. A

matching M is called perfect if M(1) = M(2) = X.

We call (v, v) a trivial pair and we first include all trivial pairs to M . We then eliminate the trivial

perfect matching M ′ = {(u, u) | u ∈ X} from our consideration by introducing the following restriction.

Given any subset M ′ ⊆M and two elements x, y ∈ X, we say that x is linked to y in M ′ if there exists a

series z1, z2, . . . , zt ∈ X with a certain odd number t ≥ 1 such that (x, z1), (zt, y) ∈M ′ and (zi, zi+1) ∈M ′
for any index i ∈ [t− 1]. For any subset R of X, we say that R is uniquely connected to X −R in M if,

for any element v ∈ R, there exist two unique elements u1, u2 ∈ X −R such that (v, u1), (u2, v) ∈M .

As the desired variant of 2DM, we introduce the following decision problem and study its computational

complexity.

Almost All Pairs 2-Dimensional Matching Problem with Trivial Pairs (AP2DM):

◦ Instance: a finite set X, a subset R of X, and a subset M ⊆ X ×X including all trivial pairs such

that R is uniquely connected to X −R in M .

10

[v1,1] [v2,1] [v3,1] [v4,1] [v2,0] [v3,0] [v4,0] [v1,2] [v2,2] [v3,2] [v4,2] s t [v1,0]

[v1,1] [v2,1] [v3,1] [v4,1] [v2,0] [v3,0] [v4,0] [v1,2] [v2,2] [v3,2] [v4,2] s t [v1,0]

Figure 3: The subset M of X × X with X = {s, t, vi[j] | i ∈ [4], j ∈ [0, 2]Z} (seen here

as a bipartite graph) constructed from G = (V,E) with V = {v1, v2, v3, v4, s, t} and E =

{(s, v2), (v3, v2), (v2, v4), (v4, v3), (v3, t)}. Every pair of two adjacent vertices forms a single element

in X. The edges expressing trivial pairs are all omitted for simplicity. Every vertex has degree at most 4

(including one omitted edge).

◦ Question: is it true that, for any distinct pair v, w ∈ X, if either v /∈ R or w /∈ R, then there exists

a perfect matching Mvw in M for which v is linked to w in Mvw?

For technicality, all entries of X are assumed to be expressed using O(log |X|) binary symbols. A

natural size parameter mset is then defined as mset(〈X,R,M〉) = |X|.
Let k ≥ 2. An instance (X,R,M) to AP2DM is said to be k-overlapping if (i) for any v ∈ X,

|{u ∈ X | (u, v) ∈ M}| ≤ k and (ii) for any u ∈ X, |{v ∈ X | (u, v) ∈ M}| ≤ k. When all instances

(X,R,M) given to AP2DM are limited to those that are k-overlapping, we call the resulting problem

from AP2DM by AP2DMk.

We intend to show that AP2DM4 parameterized by mset, (AP2DM4,mset), is inter-reducible to

(2SAT3,mvbl) by short L-T-reductions.

Theorem 5.1 (AP2DM4,mset) ≡sL
T (2SAT3,mvbl).

Proof. For the easy of the description of the proof, we use (3DSTCON,mver) instead of (2SAT3,mvbl)

because (2SAT3,mvbl) ≡sL
T (3DSTCON,mver) by Lemma 2.3(3).

As the first step, we wish to verify that (3DSTCON,mver) ≤sL
m (AP2DM4,mset) although this is a

stronger statement than what is actually needed for our claim (since ≤sL
m implies ≤sL

T). Let (G, s, t) be

any instance given to 3DSTCON with G = (V,E). Notice that G has degree at most 3. To simplify

our argument, we slightly modify G so that G has no vertex whose indegree is 3 or outdegree is 3. For

convenience, we further assume that s and t are of degree 1. Notationally, we write V (−) for V − {s, t}
and assume that V (−) is of the form {v1, v2, . . . , vn} with |V (−)| = n.

Let us construct a target instance (X,R,M) to which we can reduce (G, s, t) by an appropriately

chosen short L-m-reduction. For any index i ∈ {0, 1, 2}, we prepare a new element of the form [v, i] for

each v ∈ V and define Xi to be {[v, i] | v ∈ V (−)}. The desired universe X is set to be {s, t}∪X0∪X1∪X2.

As subsets of X ×X, we define the following seven sets: M0 = {([v, 0], [w, 0]) | u,w ∈ V (−), (v, w) ∈ E},
M1 = {([vi, 1], [vi+1, 1]), ([vi+1, 1], [vi, 1]) | i ∈ [n − 1]}, M2 = {([vi+1, 2], [vi, 2]), ([vi, 2], [vi+1, 2]) | i ∈
[n− 1]}, M3 = {([v, 2], [v, 0]), ([v, 0], [v, 1]) | v ∈ V (−)}, M4 = {([v1, 1], s), ([vn, 1], s), (t, [v1, 2]), (t, [vn, 2])},
M5 = {(s, [u, 0]), ([v, 0], t) | (s, u), (v, t) ∈ E}, and M6 = {(ũ, ũ) | ũ ∈ X}. Finally, M is defined to be the

union
⋃6
i=0Mi and R is set to be {[v, 0] | v ∈ V (−)}. Note that R is uniquely connected to X −R because

of M3.

To illustrate the aforementioned construction, let us consider a simple example of G = (V,E) with

V = {v1, v2, v3, v4, s, t} and E = {(s, v2), (v3, v2), (v2, v4), (v4, v3), (v3, t)}. The universe X is the set

{s, t, vi[j] | i ∈ [4], j ∈ [3]}. The constructed M from G is illustrated in Fig. 3.

In what follows, we claim that there is a simple path from s to t in G iff, for any two distinct elements

ũ, ṽ ∈ X, there is a perfect matching, say, Mũṽ for which ũ is linked to ṽ. To verify this claim, we

first assume that there is a simple path γst = (w1, w2, . . . , wk) in G with w1 = s and wk = t. Let

T = {([v, 0], [w, 0]) | v, w ∈ γst − {s, t}, (v, w) ∈ E} and S = {(s, [w2, 0]), ([wk−1, 0], t)}. We remark that s

and t are linked to each other in M because there exists a path s; t in G. Hereafter, ũ and ṽ denote

two arbitrary distinct elements in X with either ũ /∈ R or ṽ /∈ R.

(1) Let us consider the case where ũ, ṽ /∈ {s, t}. In this case, let ũ = [vi0 , l] and ṽ = [vj0 , l
′] for

l, l′ ∈ [0, 2]Z and i0, j0 ∈ [n]. It follows that (l, i0) 6= (l′, j0). We then define the desired perfect matching

Mũṽ as follows, depending on the choice of ũ and ṽ.

11

(Case 1) Consider the case of l, l′ ∈ {1, 2}. Let M ′0 = T , M ′1 = {([vi, 1], [vi+1, 1]) | i ∈ [n − 1]},
M ′2 = {[vi+1, 2], [vi, 2]) | i ∈ [n− 1]}, M ′3 = {([v1, 2], [v1, 0]), ([v1, 0], [v1, 1])}, M ′4 = {([vn, 1], s), (t, [vn, 2])},
M ′5 = S, and let M ′6 contain (z, z) for all other elements z. Finally, we set Mũṽ =

⋃6
i=0M

′
i . It then

follows by the definition that Mũṽ is a perfect matching. Since s is linked to t in Mũṽ, ũ and ṽ are also

linked to each other.

(Case 2) In the case where l = 0, l′ ∈ {1, 2}, and vi0 /∈ γst, there are three separate cases (a)–(c) to

examine. The symmetric case of Case 2 can be similarly handled and is omitted here.

(a) If i0 ≤ j0, then we define M ′0 = T , M ′1 = {([vi, 1], [vi+1, 1]) | i ∈ [i0, n − 1]Z}, M ′2 =

{([vi+1, 2], [vi, 2]) | i ∈ [i0, n−1]Z}, M ′3 = {([vi0 , 2], [vi0 , 0]), ([vi0 , 0], [vi0 , 1])}, M ′4 = {([vn, 1], s), (t, [vn, 2])},
and M ′5 = S. We further define M ′6 to be composed of (z, z) for all the other elements z. Finally, Mũṽ is

set to be the union
⋃6
i=0M

′
i . Clearly, ũ is linked to ṽ in Mũṽ.

(b) In the next case of i0 > j0 and l′ = 1, we define M ′0 = T , M ′1 = {([vi, 1], [vi+1, 1]) | i ∈ [i0]}, M ′2 =

{([vi+1, 2], [vi, 2]) | i ∈ [i0, n−1]Z}, M ′3 = {([vi0 , 2], [vi0 , 0]), ([vi0 , 0], [vi0 , 1])}, M ′4 = {([v1, 1], s), (t, [vn, 2])},
and M ′5 = S. For all the other elements z, we include (z, z) into M ′6. Setting Mũṽ =

⋃6
i=0M

′
i makes ũ be

linked to ṽ in it.

(c) In the last case of i0 > j0 and l′ = 2, we define M ′0 = T , M ′1 = {([vi, 1], [vi+1, 1]) | i ∈ [i0, n− 1]Z},
M ′2 = {([vi, 2], [vi+1, 2]) | i ∈ [i0]}, M ′3 = {([vi0 , 2], [vi0 , 0]), ([vi0 , 0], [vi0 , 1])}, M ′4 = {([vn, 1], s), (t, [v1, 2])},
and M ′5 = S. The set M ′6 consists of (z, z) for all the other elements z. We then set Mũṽ =

⋃6
i=0M

′
i .

(Case 3) Consider the case where l = 0, l′ ∈ {1, 2}, and vi0 ∈ γst. This case is the same as Case 1. In

symmetry, the case of l ∈ {1, 2}, l′ = 0, and vj0 ∈ γst can be similarly dealt with.

(Case 4) Consider the case of l = l′ = 0. Assuming that vi0 ∈ γst, we define M ′0 = T ,

M ′1 = {([vi, 1], [vi+1, 1]) | i ∈ [j0, n − 1]Z}, M ′2 = {([vi+1, 2], [vi, 2]) | i ∈ [j0, n − 1]Z}, M ′3 =

{([vj0 , 2], [vj0 , 0]), ([vj0 , 0], [vj0 , 1])}, M ′4 = {([vn, 1], s), (t, [vn, 2])}, and M ′5 = S. As before, we form

M ′6 by collecting (z, z) for all the other elements z. Obviously, ũ and ṽ are linked in Mũṽ =
⋃6
i=0M

′
i .

(2) Consider the second case where either ũ ∈ {s, t} or ṽ ∈ {s, t}. We remark that all the cases

discussed in (1) make s (as well as t) be linked to any element of the form [vi0 , l] and [vj0 , l
′] in the

obtained matching. Therefore, we can cope with this case by modifying the construction given (1).

In conclusion, for any ũ, ṽ ∈ V , from (1)–(2), if either ũ /∈ R or ṽ /∈ R, then there is a perfect matching

Mũṽ in which ũ is linked to ṽ.

On the contrary, assume that, for any distinct pair ũ, ṽ ∈ X, there is a perfect matching M ′ũṽ in

which ũ is linked to ṽ. As a special case, we choose ũ = s and ṽ = t. By the definition of M , there is a

sequence (s, [w1, 0], [w2, 0], . . . , [wk, 0], t) such that (s, [w1, 0]), ([wi, 0], [wi+1, 0]), ([wk, 0], t) ∈M ′st for any

index i ∈ [k − 1]. This implies that (s, w1, w2, . . . , wk, t) is a path in G.

As the second step, it suffices to verify that (AP2DM4,mset) ≤sL
T (4DSTCON,mver). This is because

(3DSTCON,mver) ≡sL
m (kDSTCON,mver) holds for any k ≥ 3 [13] by Lemma 2.3(2), and thus the desired

reduction of the theorem instantly follows. We start with an arbitrary instance (X,R,M) to AP2DM3.

Remember that M contains all trivial pairs. We then define a graph G = (V,E) by setting V = X and

E = {(u, v) | u 6= v, (u, v) ∈ M}. Clearly, each vertex in G has degree at most 4. Assuming that Muv

is a perfect matching, if u is linked to v, then v is also linked to u. For any distinct pair u, v ∈ X, if

either u /∈ R or v /∈ R, then it follows that there is a perfect matching Muv for which u is linked to v iff

there exist one simple path from u to v and another simple path from v to u in G. Thus, to check the

existence of the desired perfect matching Muv, it suffices to make two queries of the forms (G, u, v) and

(G, v, u) to 4DSTCON and output YES if the oracle answers affirmatively to the both queries. We then

recursively check the existence of Muv for all distinct pairs u, v ∈ X satisfying either u /∈ R or v /∈ R.

Note that the size mver(G, u, v) = mver(G, v, u) = |V | is equal to mset(X,M) = |X|. Therefore, we can

reduce (AP2DM3,mset) to (4DSTCON,mver) by short L-T-reductions. 2

Theorem 5.1 further yields the NL-completeness of AP2DM. Another direct consequence of Theorem

5.1 is the following hardness result for the parameterized decision problem (AP2DM,mset).

Corollary 5.2 Under LSH, there is no polynomial-time algorithm that solves (AP2DM,mset) using

O(mset(x)1−ε) space for a certain constant ε ∈ (0, 1), where x is a symbolic input.

12

6 A Brief Summary of This Exposition

Since its first proposal in [13], the linear space hypothesis (LSH) has been expected to play a key

role in showing the computational hardness of numerous combinatorial parameterized-NL problems.

However, there are few problems that have been proven to be equivalent in computational complexity

to (2SAT3,mvbl). This situation has motivated us to look for natural, practical problems equivalent

to (2SAT3,mvbl). Along this line of study, the current exposition has introduced three parameterized

decision problems (2CVC3,mver), (3XCE2,mset), and (AP2DM4,mset), and demonstrated that those

problems are all equivalent in power to (2SAT3,mvbl) by “short” log-space reductions.5 The use of such

short reductions is crucial in the equivalence proofs of these parameterized decision problems presented in

Sections 3–5 because PsubLIN is unlikely to be closed under “standard” log-space reductions, and short

reductions may be more suitable for the discussion on various real-life problems. Under the assumption of

LSH, therefore, all those parameterized decision problems that are equivalent to (2SAT3,mvbl) by short

log-space reductions turn out to be unsolvable in polynomial time using sub-linear space.

In the end, we remind the reader that the question of whether LSH is true still remains open.

Nevertheless, we hope to resolve this key question in the future.

References

[1] C. Àlvarez and R. Greenlaw. A compendium of problems complete for symmetric logarithmic space. Com-

pututational Complexity 9 (2000) 123–145.

[2] S. A. Cook. The complexity of theorem-proving procedures. In the Proceedings of the 3rd Annual ACM

Symposium on Theory of Computing, pp.151–158, 1971.

[3] S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space. Journal of Algorithms 8

(1987) 385–394.

[4] A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM Journal on Computing 13

(1984) 423–439.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness,

W. H. Freeman and Company, 1979.

[6] N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on Compuing 17

(1988) 935–938.

[7] B. Jenner. Knapsack problems for NL. Information Processing Letters 54 (1995) 169–174.

[8] N. D. Jones, Y. E. Lien, and W. T. Laaser. New problems complete for nondeterministic log space. Mathe-

matical Systems Theory 10 (1976) 1–17.

[9] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher (eds.), Complexity

of Computer Computations. Plenum Press, New York, (1972) pp. 85–103.

[10] J. H. Reif. Symmetric complementation. Journal of the ACM 31 (1984) 401–421.

[11] O. Reingold. Undirected connectivity in log-space. Journal of the ACM 55 (2008) article 17.

[12] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Informatica 26

(1988) 279–284.

[13] T. Yamakami. The 2CNF Boolean formula satisfiability problem and the linear space hypothesis. In the

Proceedings of the 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS

2017), Leibniz International Proceedings in Informatics (LIPIcs), Leibniz-Zentrum für Informatik 2017, vol.

83, 62:1–62:14, 2017. A complete and corrected version is available at arXiv:1709.10453.

[14] T. Yamakami. Parameterized graph connectivity and polynomial-time sub-linear-space short reductions

(preliminary report). In the Proceedings of the 11th International Workshop on Reachability Problems (RP

2017), Lecture Notes in Computer Science, Springer, vol. 10506, pp. 176–191, 2017.

[15] T. Yamakami. Supportive oracles for parameterized polynomial-time sub-linear-space computations in relation

to L, NL, and P. In the Proceedings of the 15th Annual Conference on Theory and Applications of Models of

Computation (TAMC 2019), Lecture Notes in Computer Science, Springer, vol. 11436, pp. 659–673, 2019.

Available also at arXiv:1901.05854.

[16] T. Yamakami. State complexity characterizations of parameterized degree-bounded graph connectivity, sub-

linear space computation, and the linear space hypothesis. Theor. Comput. Sci. 798 (2019) 2–22. A preliminary

version appeared in the Proc. of the 20th IFIP WG 1.02 International Conference on Descriptional Complexity

of Formal Systems (DCFS 2018), Lecture Notes in Computer Science, Springer, vol. 10952, pp. 237–249, 2018.

5We remark that it is unknown that (AP2DM4,mset) ≡sL
m (2SAT3,mvbl) holds.

13

http://arxiv.org/abs/1709.10453
http://arxiv.org/abs/1901.05854

	1 Background and New Challenges
	1.1 Combinatorial Problems and NL-Completeness
	1.2 Parameterization of Problems and the Linear Space Hypothesis
	1.3 New Challenges in This Exposition

	2 Fundamental Notions and Notation
	2.1 Numbers, Sets, Graphs, Languages, and Machines
	2.2 Parameterized Decision Problems and Short Reductions
	2.3 The Linear Space Hypothesis or LSH
	2.4 Linear Programming and Linear Equations

	3 2-Checkered Vertex Covers
	4 Exact Covers with Exemption
	5 Almost All Pairs 2-Dimensional Matching
	6 A Brief Summary of This Exposition

