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Abstract. Federated learning (FL) is a decentralized method enabling
hospitals to collaboratively learn a model without sharing private pa-
tient data for training. In FL, participant hospitals periodically exchange
training results rather than training samples with a central server. How-
ever, having access to model parameters or gradients can expose private
training data samples. To address this challenge, we adopt secure mul-
tiparty computation (SMC) to establish a privacy-preserving federated
learning framework. In our proposed method, the hospitals are divided
into clusters. After local training, each hospital splits its model weights
among other hospitals in the same cluster such that no single hospital
can retrieve other hospitals’ weights on its own. Then, all hospitals sum
up the received weights, sending the results to the central server. Fi-
nally, the central server aggregates the results, retrieving the average of
models’ weights and updating the model without having access to indi-
vidual hospitals’ weights. We conduct experiments on a publicly available
repository, The Cancer Genome Atlas (TCGA). We compare the perfor-
mance of the proposed framework with differential privacy and federated
averaging as the baseline. The results reveal that compared to differen-
tial privacy, our framework can achieve higher accuracy with no privacy
leakage risk at a cost of higher communication overhead.

Keywords: Federated learning - Decentralized learning - Secure multi-
party computation - Privacy preservation - Histopathology imaging.

1 Introduction

Machine learning methods rely on a large number of data collected in a central-
ized location for training purposes. However, most data owners such as medical
centers are not willing to share their private data with others because of privacy
regulations . To address the data privacy concern, decentralized methods such
as Federated learning (FL) are emerging. FL enables learning a model while all
participants keep data private, sharing training results with the central server.
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However, authors in [17] have shown that sharing the model’s parameters or gra-
dients is not safe. They demonstrate that having access to the model’s weight
or gradients can expose training samples. Therefore, privacy-preserving methods
in FL have recently been introduced to protect training samples from leakage.
There are three different strategies for privacy-preserving FL in the literature to
securely share the training results [8l[15].

— Differential Privacy (DF) [2] protects privacy by adding noise to the
training results before sharing with the central server. Although perturbing
the training results improves the privacy of the training samples, it adversely
impacts accuracy.

— Secure Multiparty Computation (SMC) [11] is a privacy-preserving
method, enabling hospitals to jointly compute a function on their model’s
weight without revealing the actual weights values. Although SMC does not
perturb the training results, it has communication overhead since hospitals
communicate with each other to compute the average weights.

— Homomorphic Encryption (HE) [4] relies on encoding/decoding gra-
dients and uses encrypted data for training. It allows computation on en-
crypted gradients and decryption of the results is equivalent to performing
the same operations on gradients without any encryption. This method is
efficient in terms of communication cost, however, it is computationally ex-
pensive.

The effectiveness of DP in decentralized learning has been investigated in the
healthcare domain [3}/9]. Authors in [9] preserve accuracy by adding Gaussian
noise to the trained model weights, providing extensive experiments on MRI
images. In [3], the authors conduct the feasibility study of DP in federated
learning. Also, the impact of the design factors of DP in decentralized learning
has been investigated on histopathology images.

SMC has played a successful role in cloud computing and the Internet of
Things (IOT) [16]. Recently, SMC has been adopted as a privacy-preserving
method in federated learning. For example, authors in |10] applied chained SMC
in FL to protect model weights from disclosure. In their framework, first, the
central server sends one of the participants a random number. Then partici-
pants sequentially communicate with each other to compute the average of the
local models. This framework imposes extreme latency and cannot be scaled
since all the participant has to communicate sequentially. However, in our pro-
posed method, communications happen in parallel within clusters. In this paper,
we address the privacy challenges of federated learning by introducing a novel
framework based on SMC. Unlike DP, SMC does not compromise the model
accuracy since it does not perturb training results. In our proposed method, we
divide the hospitals into small clusters. Hospitals within each cluster collaborate
to learn the summation of the local weights without having access to individual
hospitals’ trained weights. We perform experiments on the histopathology lung
cancer dataset, comparing the performance of the proposed method with DP
and baseline.
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Fig. 1: Cluster-based secure multi-party computation for federated learning.

In this section, we introduce our proposed SMC-based FL method in de-
tail. Figure [I| represents our proposed framework for cluster-based SMC. Be-
fore training, hospitals need to be divided into multiple groups. Clustering can
be performed in different ways depending on three factors: the geographical
distance between hospitals, hardware resources in each hospital, and network
communication types deployed in each hospital. For instance, if hospitals are
geographically far from each other, hospitals closer to each other can form a
cluster. Another real-world scenario is that hospitals may indeed have different
hardware resources to train the model causing latency and leading to asyn-
chronous schedules. In these situations, one way to cluster hospitals is to group
them into clusters of different sizes to improve total communication overhead
between hospitals and the central server. Finally, network communication type
is another important factor that impacts clustering in real-world scenarios. Dif-
ferent hospitals may have deployed different communication protocols and APIs
to send/receive updates to/from other hospitals. We can group hospitals with
the same communication protocols in the same cluster.

In this work, we assume that all hospitals are placed geographically at the
same distance from each other, have the same hardware resource and commu-
nication prototype. As such, we randomly select hospitals and form clusters of
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the same size. More specifically, given K hospitals, which will be equally divided
into M clusters with size N = K/M. Each hospital belongs to one cluster which
is denoted by ¢ = {1,..., M }. Hospital k in cluster c is represented by Hf. The
set n. with length NV represents indexes of all hospitals in cluster c.

Model training in our proposed approach is performed in three steps.

Stepl: Local Training. All hospitals train the model with their local data,
updating the model. We denote model parameters trained by the kth hospital

Algorithm 1 Proposed method. There are K hospitals, M clusters, T is the
number of epochs, E is the number of local epochs, 7 is learning rate, n. index
of all hospitals in cluster c.

Input: M,C,T,w° n,n.

Output: wT !
1: fort=0,...,7T—1do
2:  Server sends w’ to all hospitals

% Stepl: Local Training
3: fork=1,2,...,K do

4: wi™! + LocalTraining(k, w’,n) % update weights
5:  end for
% SMC
Rj + 0
6: forc=1,2,...,M do
7 for k € n. do
8: for i € n. do
9: it = B pwi
10: end for
11: Hospital k feedbacks Ry, to the central server.
12: end for
13:  end for
% Step3: Aggregation
14:  Server updates w't?! as

15: end for

16: return w? !

LocalTraining(i, w¢,n) :

1: B <« (split dataset of ith hospital into batches of size B)

2: for local epoch j =1,2,..., F do

3: for batch b € B do

4: w < w — NV Fi(we; b) % Fi(.) is the loss function for hospital k
5: end for

6: end for

7

return w
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Step2: SMC. Hospital Hf generates N random numbers {3} ;|0 < f; ; <
1,7 € n.} that sum up to one.

> Bii=1 (1)
JEne
Then, each hospital k in cluster ¢, Hj,, sends portions of its own locally trained
model parameters to each of N — 1 neighbours in cluster ¢. Mathematically,
Hf sends ﬂ,‘;’jwk to hospital j for all j € n.. In the end, the kth hospital will
have some portion of its own, and some portion of its N — 1 neighbor’s model
parameters as follows:
Mi: Ri = Biywi ()
iE’nc
Step3: Aggregation. Finally, each hospital sends R to the central server,
and the central server takes the average of Rj of all the hospitals in all clusters
as follows:

1 ¢ 1
“’ZEZZRC:EZZ > B (3)

c=1ken, c=1keEn.i€n,
If we exchange the position of the two summations in Eq. [3] we will get

1 M
23 3Pt

c=1li€n; k€En,
1
1 M 1 K
S I IIEES
c=11i€n, =1

As shown above, the central server can receive the exact average weights
without having access to the weights of each individual hospital. These steps
have been summarized in Algorithm

Table 1: The summary of the dataset ﬂgﬂ

Client # Slides # Patches

C1: Int. Gen. Cons. 267 66,483

C2: Indivumed 211 52,539

C3: Asterand 207 51,543

C4: Johns Hopkins 199 49,551

C5: Christiana H. 223 55,527 o py P p pn p
C6: Roswell Park 110 27,390 Hospitals

Fig. 2: Label distribution in dataset.
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3 Experiments and Results

3.1 Datasets

We evaluate our proposed privacy-preserving FL. on The Cancer Genome Atlas
(TCGA) |1L|14] dataset, the largest publicly available archive of the histopathol-
ogy whole slide images (WSIs). This annotated dataset has more than 30,000
H&E stained WSIs that have been collected from various medical centers all over
the world. To validate the proposed method, we select TCGA WSIs diagnosed
with non-small cell lung cancer (NSCLC) to construct a dataset of multiple
institutions. This cancer has two frequent subtypes, namely

— Lung Adenocarcinoma (LUAD)
— Lung Squamous Cell Carcinoma (LUSC).

This study includes hospitals that have WSIs from both LUAD and LUSC sub-
types. In TCGA, only six hospitals met this requirement. Therefore, we collected
WHSIs diagnosed with NSCLC from those six hospitals to create the dataset with
six participants. WSIs are extremely large images of size up to 50,000 x 50, 000
pixels. Therefore, they cannot directly be fed into any neural network. The com-
mon approach to deal with these images is to divide them into patches of smaller
sizes for further analysis [5]. We divide the selected WSIs into patches of size
1000 x 1000 pixels. Due to space limitation, we refer readers to [3] for more de-
tails on patch extraction and selection of the lung dataset that has been used in
our experiments. The statistics of this dataset for each hospital are presented in
Table [I]and Figure [2] The dataset of each hospital has been randomly divided
into 80% and 20% groups for training and testing purposes, respectively.

3.2 Experimental Details

Figure [3]illustrates WSI preprocessing as well as the model used to classify lung
samples into LUAD and LUSC subtypes. As shown in this figure, for the classifi-
cation of lung histopathology WSIs, we first employ pretrained DenseNet121 [6]
to extract features of length 1024 for each patch. Next, We employ attention-
gated multiple instance learning (MIL) to combine feature vectors of patches of
each WSI, creating a feature of size 1024 for each WSI classification [7]. The rea-
son why we use MIL is that when we divide a WSI into multiple patches, we are
dealing with instances for which only a single WSI level label, medical diagnosis,
is provided. Therefore, we require multiple instance learning (MIL) architec-
ture to learn a model that can predict the WSI label given a bag of instances
(patches). The attention-based MIL architecture enables the model to combine
the features of patches to create one feature vector of length 1024 that will be
used for the classification of WSI. This architecture aggregates feature vectors of
those patches such that key patches are assigned relatively higher weights. The
high-level structure of the MIL classifier has been visualized in Figure [3| The
MIL gated attention classifier is the network that we learn in a decentralized
federated learning fashion. Due to space limitations, we refer readers to |7] for
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Fig.3: The illustration of the end to end training procedure. First WSIs are
divided into patches of size 1000 x 1000. Next the features of patches are extracted
using DensNet121. Finally, those features of patches are fed into MIL gated
attention classifier.

more detail on this MIL network. The histopathology lung dataset includes data
from six hospitals. We divide those K = 6 hospitals into M = 2 clusters of size
N = 3. We deploy DP according to ﬂgﬂ with additive Gaussian noise standard
deviation of 0.03. The standard deviation has been selected to have the high-
est possible privacy while the classification performance is still acceptable. For
all these three methods, we use an Adam optimizer with the following hyper-
parameter values, epochs=300, batch size=32, number of local epochs=1, and
learning rate=0.009.

3.3 Results and Discussions

In this section, we present our experimental results on the lung histopathol-
ogy dataset. We compare our proposed SMC based method with the baseline
which is FedAVG without any privacy-preserving consideration. We also
compare our method with DP which has been implemented on top of FedAvg.
An ideal privacy-preserving method has to have a closed performance to the
baseline while preserving privacy of training results. Table [2| shows the perfor-
mance of each method for each hospital in terms of accuracy and F1 Score. As
represented, in each hospital, the proposed method has a closed performance to
the baseline and outperforms DP. Additionally, the average performance of our
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method surpasses DP. Figure [4 and [5] compare methods in terms of the average
testing accuracy and average training loss of participant hospitals for 300 rounds
of training communication between hospitals and the central server. As can be
seen, the proposed method performs close to the baseline, surpassing DP. To
eliminate the impact of random parameters in our experiments, we repeated all
the experiments five times and all the results have been provided by taking the
average over these five realizations.

0.75 AN, "ﬁi‘PWW*‘WVR'M.’L!Mb
Table 2: Experimental results. > LA
Client Method|ACC F1-Score %m
FedAvg [76.38  82.51 8’
C1 DP [66.12  69.89 Zoe
Proposed|75.01  81.08 D oss —— FedAVG
= Proposed
FedAvg [85.46  87.63 050 —— DP
C2 DP 79~06 81.12 o 50 ]UD#R]SD d 200 250 300
ounas
Proposed|87.20  89.03 Fig. 4: The average testing accuracy
FedAvg |81.54  80.96 for 300 rounds of training over all
c3 DP |74.40 70.27 hospitals.
Proposed|80.95  80.47
FedAvg |75.01 82.74 .
C4 DP 69.37 73.84
Proposed|75.62  83.12 " o
%]
FedAvg [73.33  82.31 i“ i A [
C5 DP |64.87 68.54 o b
Proposed| 68.88  78.58 ® i, “-»,‘f‘lnl'uﬂl\m,
F o3l Fedave kg N'.UM]
FedAvg 68.18 66.74 Proposed & il L
C6 DP 68.18 63.34 — bP
PI‘OpOSGd 69.31 66.78 0 50 100 150 200 250 300
#Rounds
FedAvg |76.65  80.48 Fig.5: The average training loss for
Avg DP 17033 71.16 300 rounds of training over all hos-
Proposed|76.16  79.84 pitals.

4 Conclusions

In this paper, we addressed the privacy-preserving challenge of the federated
learning. We have proposed cluster-based SMC to protect individual hospitals’
model parameters from disclosure. In the proposed method, neither participant
hospitals nor the central server has access to model weights of individual hos-
pitals; however, weights average can be recovered at the central server. Our
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experimental results suggested that the proposed method outperforms DP in
terms of accuracy and F1 Score at the expense of more communication over-
head. However, we believe that having slight communication overhead to get
higher accuracy is most likely acceptable in the medical domain. Additionally,
each hospital needs to perform preprocessing to find suitable additive noise stan-
dard deviation in DP method. However, our proposed method does not require
any preprocessing since it does not have any hyper-parameter. Therefore, de-
pending on the application, applying cluster-based SMC for privacy-preserving
purposes might be preferable compared to other privacy-preserving method such
as DP.
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