Skip to main content

Abstract

Federated learning (FL) is a distributed learning method that offers medical institutes the prospect of collaboration in a global model while preserving the privacy of their patients. Although most medical centers conduct similar medical imaging tasks, their differences, such as specializations, number of patients, and devices, lead to distinctive data distributions. Data heterogeneity poses a challenge for FL and the personalization of the local models. In this work, we investigate an adaptive hierarchical clustering method for FL to produce intermediate semi-global models, so clients with similar data distribution have the chance of forming a more specialized model. Our method forms several clusters consisting of clients with the most similar data distributions; then, each cluster continues to train separately. Inside the cluster, we use meta-learning to improve the personalization of the participants’ models. We compare the clustering approach with classical FedAvg and centralized training by evaluating our proposed methods on the HAM10k dataset for skin lesion classification with extreme heterogeneous data distribution. Our experiments demonstrate significant performance gain in heterogeneous distribution compared to standard FL methods in classification accuracy. Moreover, we show that the models converge faster if applied in clusters and outperform centralized training while using only a small subset of data.

Y. Yeganeh, A. Farshad, J. Boschmann, R. Gaus and M. Frantzen—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S.: Federated learning with personalization layers. arXiv:1912.00818 (2019)

  2. Bdair, T., Navab, N., Albarqouni, S.: FedPerl: semi-supervised peer learning for skin lesion classification. In: de Bruijne, M. (ed.) MICCAI 2021. LNCS, vol. 12903, pp. 336–346. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_32

    Chapter  Google Scholar 

  3. Bdair, T., Navab, N., Albarqouni, S.: Semi-supervised federated peer learning for skin lesion classification. Machine Learning for Biomedical Imaging 1(April 2022 issue), 1–10 (2022)

    Google Scholar 

  4. Briggs, C., Fan, Z., Andras, P.: Federated learning with hierarchical clustering of local updates to improve training on non-IID data (2020)

    Google Scholar 

  5. Chen, F., Luo, M., Dong, Z., Li, Z., He, X.: Federated meta-learning with fast convergence and efficient communication (2019)

    Google Scholar 

  6. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning: a meta-learning approach (2020)

    Google Scholar 

  7. Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Learning from Imbalanced Data Sets. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98074-4

    Book  Google Scholar 

  8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1126–1135. PMLR, International Convention Centre, Sydney, Australia (2017). http://proceedings.mlr.press/v70/finn17a.html

  9. Jiang, Y., Konecny, J., Rush, K., Kannan, S.: Improving federated learning personalization via model agnostic meta learning (2019)

    Google Scholar 

  10. Khodak, M., Balcan, M.F., Talwalkar, A.: Adaptive gradient-based meta-learning methods (2019)

    Google Scholar 

  11. Li, D., Wang, J.: FedMD: heterogenous federated learning via model distillation. arXiv:1910.03581 (2019)

  12. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Proc. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  13. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on non-IID data. arXiv:1907.02189 (2020)

  14. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Medical Image Analysis 33, 170–175 (2016). https://doi.org/10.1016/j.media.2016.06.037, https://www.sciencedirect.com/science/article/pii/S1361841516301141, 20th anniversary of the Medical Image Analysis journal (MedIA)

  15. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR, Fort Lauderdale, FL, USA (2017). http://proceedings.mlr.press/v54/mcmahan17a.html

  16. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms (2018)

    Google Scholar 

  17. Reddi, S., et al.: Adaptive federated optimization. arXiv:2003.00295 (2020)

  18. Rieke, N., et al.: The future of digital health with federated learning (2021)

    Google Scholar 

  19. Sae-Lim, W., Wettayaprasit, W., Aiyarak, P.: Convolutional neural networks using MobileNet for skin lesion classification. In: 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 242–247. IEEE (2019)

    Google Scholar 

  20. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520 (2018)

    Google Scholar 

  21. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Robust and communication-efficient federated learning from non-IID data. arXiv:1903.02891 (2019)

  22. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Report. 10(1), 1–12 (2020)

    Article  Google Scholar 

  23. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.: Federated multi-task learning. arXiv:1705.10467 (2018)

  24. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  25. Vanschoren, J.: Meta-learning: a survey. arXiv preprint arXiv:1810.03548 (2018)

  26. Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays, F., Ramage, D.: Federated evaluation of on-device personalization. arXiv:1910.10252 (2019)

  27. Wynants, L., Riley, R., Timmerman, D., Van Calster, B.: Random-effects meta-analysis of the clinical utility of tests and prediction models. Stat. Med. 37(12), 2034–2052 (2018)

    Article  MathSciNet  Google Scholar 

  28. Yeganeh, Y., Farshad, A., Navab, N., Albarqouni, S.: Inverse distance aggregation for federated learning with non-IID data. arXiv:2008.07665 (2020)

  29. Yue, L., Tian, D., Chen, W., Han, X., Yin, M.: Deep learning for heterogeneous medical data analysis. World Wide Web 23(5), 2715–2737 (2020). https://doi.org/10.1007/s11280-019-00764-z

    Article  Google Scholar 

  30. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. CoRR arxiv:abs/1806.00582 (2018)

Download references

Acknowledgements

We gratefully acknowledge the Munich Center for Machine Learning (MCML) with funding from the Bundesministerium für Bildung und Forschung (BMBF) under the project 01IS18036B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Yeganeh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 105 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yeganeh, Y., Farshad, A., Boschmann, J., Gaus, R., Frantzen, M., Navab, N. (2022). FedAP: Adaptive Personalization in Federated Learning for Non-IID Data. In: Albarqouni, S., et al. Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health. DeCaF FAIR 2022 2022. Lecture Notes in Computer Science, vol 13573. Springer, Cham. https://doi.org/10.1007/978-3-031-18523-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18523-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18522-9

  • Online ISBN: 978-3-031-18523-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics