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Abstract. Split learning (SL) has been proposed to train deep learning
models in a decentralized manner. For decentralized healthcare applica-
tions with vertical data partitioning, SL can be beneficial as it allows insti-
tutes with complementary features or images for a shared set of patients
to jointly develop more robust and generalizable models. In this work, we
propose “Split-U-Net” and successfully apply SL for collaborative biomed-
ical image segmentation. Nonetheless, SL requires the exchanging of in-
termediate activation maps and gradients to allow training models across
different feature spaces, which might leak data and raise privacy concerns.
Therefore, we also quantify the amount of data leakage in common SL sce-
narios for biomedical image segmentation and provide ways to counteract
such leakage by applying appropriate defense strategies.

Keywords: Split learning · Vertical federated learning · Multi-modal
brain tumor segmentation · Data inversion.

1 Introduction

Collaborative and decentralized techniques to train artificial intelligence (AI)
models have been gaining popularity, especially in healthcare applications where
data sharing to build centralized datasets is particularly challenging due to pa-
tient privacy and regulatory concerns [20]. Federated learning (FL) [16] and split
learning (SL) [7] are two approaches that can be useful depending on the nature
of the data partitioning [32]. In the healthcare and biomedical imaging sector,
data is often “horizontally” partitioned such that each participating site, i.e., a
hospital, possesses some data/features and optionally corresponding labels for
their set of patients. Horizontal FL (HFL) algorithms like federated averaging [16]
typically train models initialized from a current “global” model independently on
each participant and frequently update the global model with the model gradients
sent by each site. In contrast, so-called “vertical” data partitioning allows sites
with complementary features but from an overlapping set of patients to collab-
orate [32]. This vertical FL (VFL) scenario could be useful where different sites
possess features that need to be securely combined in order to train a joined AI
model, e.g., one hospital has imaging while the other one has lab results or the

http://arxiv.org/abs/2208.10553v2
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diagnoses for the same set of patients. Here, SL can be used to train models when
using deep learning (DL) methods for VFL. During training, SL splits the forward
pass of a DL model into two or more parts and exchanges intermediate features or
activation maps and gradients between participating sites to complete a training
step. Therefore features from different sites can be combined in later parts of the
network and the model can be trained across institutional boarders [28].

In biomedical image segmentation, VFL could be useful to combine different
image modalities of the same patient in order to train joined segmentation models
collaboratively. This scenario is what we explore in this work by studying SL as a
collaborative technique to learn a tumor segmentationmodel for multi-modelMRI
images. For this purpose, we propose “Split-U-Net”, a modification to the popular
U-Net [21] architecture, to allow its use in a VFL setup. Figure 1 illustrates the
situation where four sites would like to jointly train a multi-modal segmentation
model given their corresponding images. Only one site possesses the label mask
and computes the loss to be optimized. Previous works on SL in healthcare appli-
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Fig. 1: Split learning set up with Split-U-Net.

cations have focused on classification and regression tasks [28,19,8]. One example
of splitting U-Net for single modality semantic segmentationwas described in [18],
but to the best of our knowledge, our work is the first to apply SL in a multi-modal
vertical data partitioning scenario for biomedical image segmentation across mul-
tiple parties.

We show that SL can be used successfully for this task and also investigate po-
tential security implications that arise from sharing intermediate features between
collaborating sites by implementing an effective inversion attack. Prior works on
inversion attacks in SL were mainly focused on images of small sizes (MNIST or
CIFAR-10) [17,5,11,12] and are theoretical in nature. However, it is important for
the medical imaging community to understand the potential benefits and security
considerations for applying SL in healthcare applications. Our inversion attack
not only shows the potential risks but can be used to quantify and inform appro-
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priate defense strategies against it. In this work, we explore both dropout [25] and
differential privacy (DP) [4] to prevent data leakage during SL. Our contributions
can be summarized as follows.

– We propose “Split-U-Net” and successfully apply SL for biomedical image
segmentation for multi-institutional collaboration.

– We develop a successful inversion attack to measure and quantify data leakage
in SL.

– We propose and evaluate defense measures (dropout and DP) to prevent data
leakage.

2 Methods

2.1 Split-U-Net

The basis of our network is a common implementation of U-Net [21] with L= 4
down- and up-sampling levels. The default number of output features at each level
are configured as shown in Table 1. To turn this network F (x) into Split-U-Net
F (x)= g(f(x)) used for multi-modal collaborative SL, we divided the number of
encoder features by the number of sites/modalities K involved in training. The
number of features in the decoder stays the same as in the default network. Fig. 1
shows an example setup with K = 4. In this example, the “split” is done at the
bottleneck. All encoder layers participate in SL, and only the site with label im-
ages has the decoder for segmentation. During training, each site k computes the
forward pass

{

xk
0 ,x

k
1 ,...,x

k
L

}

= fk(Ik) where Ik is a mini-batch of size B of input
images with modality k and xk

i is the feature map of layer i of L. Corresponding
batch indices are communicated to each site before each training step. The site
k with label images then takes the activation maps from all other participating
sites and concatenates them at the appropriate feature levels (see Fig. 1). It then
computes the loss and backward pass to obtain a gradient

∇←Lseg

(

g(
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x
k
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k
1 ,...,x

k
L

}

),labels
)

(1)

and performs an optimizer update on its part of the network g(x). The gradient∇
at the split level is then communicated back to all fk(x) to complete the backward
pass and update their parts of the model (the encoder branches fk(x)), and the
process is iterated until convergence. Note that in SL, a larger batch size can be
used to reduce the total number of communication steps needed [24]. We assume
that at each iteration, a random set of batch indices bi is selected such that each

Table 1: U-Net and Split-U-Net features for brain tumor segmentation.

Level i In 0 1 2 3 4 5 6 7 8 Out
U-Net (default) F (x) 4 32 32 64 128 256 128 64 32 32 4

Split-U-Net Encoder (per site) fk(x) 1 8 8 16 32 64 - - - - -
Split-U-Net Decoder g(x) - - - - - - 128 64 32 32 4
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client uses the same patients’ data and augmentation to build their mini-batch Ik.
Furthermore, each site might apply additional spatial normalization steps, e.g.,
using non-linear image registration to bring their images from different modalities
into a common data space to help the network better encode common anatomical
features across modalities [3,30].

2.2 Measuring data leakage by inversion attack

In SL, activation maps are shared to complete each iteration step [7]. Therefore, a
potential malicious actor, e.g., Site-1 in Fig. 1, receiving the activation maps from
other sites may invert them to recover the underlying private data. Such attacks
used to recover the data are called “inversion attacks” [27]. In the following, we
explain how our inversion attack is executed and how its result can be used to
measure the data leakage in order to inform an appropriate defense strategy. Our
attack tries to optimize a randomly initialized C-channel input Ĩi such that the
activations x̃i at the forward layer of the attacker model f̃i(x) become the same
as the intercepted activations xi. In this work, we assume the attacker has access
to the current state of the model used by the client to generate the forward pass.
Therefore f̃k

i (x)≡fk
i (x) given the same input x. This setting is typically referred to

as a “white-box” attack [11]. In practical implementations of SL, this could be the
case if a common network is used to initialize fk(x) on each participating client.
The main loss used to align both activation maps is a L2-norm. Furthermore,
we employ two common image prior losses often used in inversion attacks [6,33],
namely total variation [22] (TV) and L2-norm of the recovered image Ĩ. The main
loss for the inversion attack hence becomes

Linv

(

x
k
i ,x̃

k
i ,Ĩ

k
i

)

= αact||x
k
i −x̃

k
i ||2 + αtvTV (Ĩk

i ) + αl2
||Ĩk

i ||2. (2)

Therefore, the final inversion attack to recover an image Ĩi from activation xi at
level i of Split-U-Net can be formulated as

Ĩi=argmin
Ĩ

Linv

(

x
k
i ,x̃

k
i ,Ĩ

k
i

)

, (3)

where Ĩi ∈RB,C,H,W with B,C,H,W being the batch size, number of channels,
height and width of the image, respectively. Note that the inversion can be run on
large batch sizesB or independently for each activation in amini-batch, depending
on the compute resources of the attacker. The data inversions from intercepted ac-
tivationmaps canbe seen inFig. 2.Tomeasure the amount of data leakage,we com-
pute a common similarity metric between the recovered image Ĩi and the original
image I used to produce the activation xi. Structural Similarity index (SSIM) [29]
aims to provide a more intuitive and interpretable metric compared to other com-
monly usedmetrics like root-mean-squared error or peak signal-to-noise ratio.We,
therefore, use SSIM in our analysis, but including other metrics would be possible.

2.3 Defenses

A straightforward defense strategy is to not send feature activation maps from
early layers (x0, x1, and x2) which are likely to leak more data (see Fig. 2 and
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Fig. 4). We also investigate dropout [25] as an effective tool against inversion at-
tacks. Each layer of the encoder can randomly drop the activations from neurons
of the network with a probability of pdropout. Another effective tool often used
in the FL literature [15,13,10,31], is differential privacy (DP). DP in its simplest
form adds some calibrated random noise to any shared values in order to preserve
the privacy of individual data entries. Here, we use a Gaussian mechanism [31] to
add random noise sampled from a normal distributionN

(

0, σ2
)

to each activation
mask xk

i before sharing it with the next participant.

3 Experiments & Results

Data: In our study, we assume a collaborative model training setup where four
institutes, here referred to as “sites”, jointly train a multi-modal image segmen-
tation model using split learning. We use the Medical Segmentation Decathlon

MSD1 brain tumor segmentation dataset (Task 1) to simulate this setup. Each
3D volume in the dataset contains four MRI modalities, namely T1-weighted,
post-Gadolinium contrast T1-weighted, T2-weighted, and T2 Fluid-Attenuated
Inversion Recovery volumes [23]. For the purpose of this study, we extract one ax-
ial slice from each volume through the center of the tumor and formulate the task
as a 2D semantic segmentation problem, resulting in a total of 484 images with
ground truth annotation masks. We randomly split the data into 338 training, 49
validation, and 97 testing images, corresponding to 70%, 10%, 20% of the data,
respectively. The segmentation task is to predict the brain tumor sub-regions, i.e.,
edema, enhancing, and non-enhancing tumor. Therefore, our network predicts
four output classes, including the background, using a final softmax activation.
Given the K=4 MRI input modalities, we simulate the Split-U-Net to be trained
collaboratively among four sites, as shown in Fig. 1. Each site possesses the images
for all patients but for just one modality. Site-1 is assumed to also have the anno-
tation masks and can therefore compute the objective function using a combined
Dice loss and cross-entropy loss.

Data leakage of shared activation maps: First, we investigate howmuchdata
the activation map at each layer can leak when sharing them during Split-U-Net
training. We invert all activation maps of a mini-batch from layers x0,x1,x2,x3,x4,
respectively. One can observe that the amount of data leakage reduces with the
depth of the network and the resolution of the share activationmap. The first level
x0 with a resolution similar to the input image is practically non-distinguishable
from the original augmented images fed to the encoder networks during train-
ing. All inversions computed in this work used αact = 1e− 3, αtv = 1e− 4, and
αl2 =1e−5 (see Eq. 2). We used the Adam optimizer to solve Eq. 3 using a cosine
learning rate decay with an initial rate of 0.12.

1 http://medicaldecathlon.com
2 Implementation: We utilize components from MONAI3 and NVIDIA FLARE4 to
implement our SL simulation. In particular,weutilizeMONAI’sBasicUNet as basis for
Split-U-Net. All experiments were run on NVIDIA V100 GPUs with 16 GB memory.

http://medicaldecathlon.com
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(a) originals [1, 192, 192]

(b) activations x0 [8, 192, 192]

(c) activations x1 [8, 96, 96]

(e) activations x2 [16, 48, 48]

(f) activations x3 [32, 24, 24]

(g) activations x4 [64, 12, 12]

Fig. 2: Inversions from activations sent from different layers of the Split-U-Net en-
coder of Site-4 possessing one MRI modality when training with a mini-batch size
of 8. Activations from earlier layers from the encoder are more likely to leak data,
i.e., x0∼x2. The inversions from other sites andmodalities are of the same quality.

Collaborative multi-modal image segmentation: To evaluate the effective-
ness of Split-U-Net, we compare it to a baseline U-Net model taking the four MRI
modalities directly as input (see the default setup in Table 1). In Table 2, we
show Split-U-Net performs on par with its centralized counterpart (U-Net). The
performance is comparable5 to the MSD challenge results reported for 3D tumor
segmentation [2].

Table 2: Comparison of a centralized U-Net and different Split-U-Net settings
with different privacy-preserving measures (dropout and differential privacy
(DP)). The setting “w” and “w/o” indicates the performance of Split U-Net
with and without skip connections, respectively; “x3, x4 only” indicates the
performances when only activations from later layers are being shared. The best
Dice score achieved with Split-U-Net for each data subset is highlighted in bold.

Dice Training (n=338) Validation (n=49) Testing (n=97)
U-Net 0.732 0.701 0.698

Split-U-Net (w/o skip) 0.743 0.619 0.599
Split-U-Net (w skip) 0.882 0.663 0.693
Split-U-Net (x3, x4 only) 0.821 0.675 0.650
Split-U-Net (pdropout=0.1) 0.818 0.648 0.681
Split-U-Net (pdropout=0.2) 0.843 0.658 0.683
Split-U-Net (pdropout=0.5) 0.766 0.637 0.665
Split-U-Net (pdropout=0.8) 0.719 0.643 0.650
Split-U-Net (DP σ=1) 0.865 0.671 0.691
Split-U-Net (DP σ=2) 0.797 0.669 0.695
Split-U-Net (DP σ=3) 0.821 0.658 0.666
Split-U-Net (DP σ=5) 0.811 0.684 0.687
Split-U-Net (DP σ=50) 0.543 0.394 0.393

Effectiveness of defenses: Adding dropout and Gaussian noise during train-
ing can be an effective defense (Fig. 3). The SSIM scores between originals and

5 The current leading entry - Swin UNETR [9] achieves an average Dice score of 0.647 for
the three foreground tumor classes.

https://decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard
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inversions go down with higher pdropout or σ as shown in Fig. 4. The model perfor-
mance is less affected when adding DP and even benefits from it during training,
as seen in Table 1 for σ=2.0 in contrast to using dropout as a defense.

(a) activations x0 (pdropout =0.1)

(b) activations x0 (pdropout =0.2)

(c) activations x0 (pdropout =0.5)

(d) activations x0 (pdropout =0.8)

(e) activations x0 (σ=1)

(f) activations x0 (σ=2)

(g) activations x0 (σ=3)

(h) activations x0 (σ=5)

Fig. 3: Dropout (a-d) and differential
privacy (e-h) as a defense against
inversion attacks.
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Fig. 4: Structural SIMilarity index
(SSIM) [29] between the original im-
ages and inversions of each activation.

4 Discussion

To the best of our knowledge, our work was the first to apply SL to a multi-modal
image segmentation task. We showed competitive results of Split-U-Net for 2D
brain tumor segmentation on a relatively small dataset (only one slice per original
volume). Further hyperparameter tuning and data augmentation might improve
the performance. It should be investigated if weight sharing between the encoder
branches could allow for further performance boosts [26]. An extension of Split-
U-Net to 3D semantic segmentation tasks would be straightforward.

A major focus of this work is on the security aspect when applying SL. As
shown in our results, depending on the depth of activation layers inside Split-U-
Net, the data inversion attack can be successful, generating inversions that are
visually indistinguishable from the original images (SSIM close to 1.0). This is the



8 H. Roth et al.

case, especially for the first layer (x0). Finding an appropriate defense strategy
against such inversion attacks is very important. It can be assumed that the same
defense settings are effective for eachmodality used in Split-U-Net training. There-
fore, a recommendation would be for the site possessing both images and labels
to study the data leakage vulnerabilities using our proposed data inversion and
data leakage metrics to establish a secure setting that each collaborator can use.
Of course, this assumes a level of trust in this site but might help protect against a
potentially malicious server that coordinates the split learning. At the same time,
each site could utilize public datasets with images and labels, as we have done
in this study, to measure the data leakage risks of the network architecture they
would like to train in real-world SL. Our results indicate that the dangers come
from the architecture itself rather than the particular dataset used for training
(see Fig. 2 where the inversion quality is not affected by different samples in the
batch). This is in contrast to other studies in horizontal FL, where certain images
in the batch are more likely to leak data [33,10].

Our study also has some limitations. For example, the inversion attack assumes
to have access to the current state of the model that the data site uses to compute
its forward pass (fk(X)). This setting is typically referred to as a “white-box”
attack [11] and assumes the attacker has knowledge about the state of the model
during training. This could be true in some implementations of SLwhere one of the
participants sends an initialization for all participants. As the training continues,
this initial model will become less and less useful to the attacker. At the same time,
our finding shows that a potential avenue for more secure implementations of SL
is to not use a common initialization but let each participant randomly initialize
their part of the model. A “black-box” attack [11] where the inversion needs to op-
timize for both the inputs and the current state of the model could be implemented
next to better measure the data leakage risks in such a scenario. Furthermore, we
assumed the participating sites to have a common anonymous identifier used to
build mini-batches with images of corresponding patients. In real-world scenarios,
a pre-processing step to securely compute the intersecting set of patients between
sites has to be performed [1]. Also, some synchronization of data augmentation
across differentmodalities should be incorporated in the communicationprotocols.
An additional privacy risk in SL is the inversion of label sets from the sharedmodel
gradients. A similar attack to the one presented in this work could be applied to
match gradients during SL to recover the label masks. However, we assumed that
tumor segmentation masks are less likely to leak patient-identifiable information
and therefore focused on the data/image recovery in this work. In this work, we
simulated a multi-site FL study using pre-registered multi-modal MRI scans. In
reality, more variations that are potentially critical to model performance would
need to be considered before performing similar collaborative model training, in-
cluding temporal and spatial misalignment across images of the same patient and
mismatch between image and annotationmasks. Finally, cryptographic techniques
like homomorphic encryption [34] or secure multi-party computation [14] could
be employed to reduce the risk of data leakage in SL. Those techniques typically
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come with higher computation costs but should be explored, especially for medical
image analysis tasks where patient privacy is of utmost concern.

In conclusion, we provided strong evidence that SL can be useful for biomedi-
cal image segmentation tasks when taking the appropriate security considerations
into account. A real-world implementation of SL will provide clinical collabora-
tors the chance to jointly leverage all available data to train more robust and
generalizable AI models.
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