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Abstract. For a binary matrix X, the Boolean rank br(X) is the small-
est integer k for which X equals the Boolean sum of k rank-1 binary
matrices, and the isolation number i(X) is the maximum number of 1s
no two of which are in a same row, column and a 2× 2 submatrix of all
1s. In this paper, we continue Lubiw’s study of firm matrices. X is said
to be firm if i(X) = br(X) and this equality holds for all its submatrices.
We show that the stronger concept of superfirmness of X is equivalent
to having no odd holes in the rectangle cover graph of X, the graph in
which br(X) and i(X) translate to the clique cover and the independence
number, respectively. A binary matrix is minimally non-firm if it is not
firm but all of its proper submatrices are. We introduce two matrix oper-
ations that lead to generalised binary matrices and use these operations
to derive four infinite classes of minimally non-firm matrices. We hope
that our work may pave the way towards a complete characterisation of
firm matrices via forbidden submatrices.

Keywords: Boolean rank · Rectangle covering number · Firm matrices

1 Introduction

The Boolean rank of a binary matrix X, br(X), is the smallest integer k for
which X equals the sum of k rank-1 binary matrices, using Boolean arithmetic
in which 1+1 = 1 holds [10]. A rectangle of X is a submatrix of all 1s. Note that
the support of a rank-1 binary matrix is precisely a rectangle, hence br(X) is the
minimum number of rectangles needed to cover supp(X) := {(i, j) : xi,j = 1}.

An isolated set of X is a set S ⊆ supp(X) such that for any distinct (i1, j1),
(i2, j2) in S, it holds i1 6= i2, j1 6= j2 and xi1,j2 = 0 or xi2,j1 = 0. The isolation
number of X, i(X), is the maximum cardinality of an isolated set [8]. In the field
of communication complexity, quantities br(X) and i(X) are often referred to as
the rectangle covering number and the fooling set bound [11].

In the bipartite graph whose biadjacency matrix is X, br(X) is the minimum
number of bicliques (complete bipartite subgraphs) needed to cover the edge set,
while i(X) is the maximum cardinality of a matching in which no two edges are
in a 4-cycle. Both br(X) and i(X) are NP-hard to compute for general binary
[16,17] and totally balanced matrices as well [14,15].
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For any binary matrix X, it can be readily checked that i(X) ≤ br(X). This
inequality may however be strict for many matrices. In fact, the complement of
the identity matrix shows that the gap between i(X) and br(X) may be arbitrar-
ily large [3]. We say X is firm if i(X) = br(X) and this equality also holds for all
its submatrices. The concept of firmness, along with many results that form the
basis of this paper were introduced by Lubiw in [13]. A key tool in Lubiw’s work
is to define the rectangle cover graph of X (the 1’s graph in her words) in which
i(X) and br(X) translate to the independence and clique cover number, respec-
tively. Lubiw defines X to be superfirm if X’s rectangle cover graph is perfect
and demonstrates that superfirm matrices are a strict subset of firm matrices. In
addition, she shows that covering rectilinear polygons by a minimum number of
continuous rectangles is a special case of the rectangle cover problem on binary
matrices [13]. In the bipartite setting, firmness is later redefined under the name
‘edge-perfection’ [15], while superfirmness is investigated under the name ‘cross-
perfection’ from a polyhedral perspective [6]. The following important classes of
matrices have been shown to be firm. Interval matrices, matrices whose columns
can be permuted so the 1s appear consecutively in each row, are proved to be
firm by a deep result of Győri [9]. Linear matrices, matrices that have no 2× 2
submatrix of 1s, and matrices that can be decomposed into linear matrices via
the matrix equivalent of split decomposition on bipartite graphs are shown to
be superfirm by Lubiw [13]. The firmness of biadjacency matrices of domino-free
bipartite graphs is implied by a result of Amilhastre et al. [1].

In this paper, we start the investigation of minimally non-firm matrices. A
binary matrix X is minimally non-firm if i(X) < br(X) and i(X′) = br(X′) for
all proper submatrices X′ of X. Our main tool is looking at the problem through
the rectangle cover graph. First, we extend a theorem of Lubiw and show that
interestingly odd antiholes cannot appear without odd holes in rectangle cover
graphs. Then we characterise the necessary and sufficient submatrices for 5-holes
to appear. We define simplicial 1s and a procedure for their removal which leads
to generalised binary matrices. We introduce the stretching matrix operation
which then along with the simplicial 1 removal procedure are used to give a
general recipe for the construction of minimally non-firm matrices. We then prove
by using this general recipe that four infinite classes of matrices are minimally
non-firm. To the best of our knowledge, minimally non-firm matrices have not
been studied before. We believe that studying them is a natural approach to
better understand firmness, akin to the study of perfect graphs via minimally
imperfect graphs. We hope that our results may pave the way towards a complete
characterisation of firm and superfirm matrices via forbidden submatrices.

This paper is organised as follows. Section 2 gives a brief recap on the work
of Lubiw introducing the concept of rectangle cover graphs, superfirmness and
generalised binary matrices. In Section 3, simplicial 1s and the stretching opera-
tion are introduced. In Section 4, we show that a matrix is superfirm if and only
if it has no odd holes in its rectangle cover graph. In Section 5 we prove our main
theorem, which we then use to derive four infinite classes of minimally non-firm
binary matrices. We conclude in Section 6 and mention two open problems.
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D4 =


0 1 1 0
1 1 1 0
1 1 1 1
0 0 1 1


1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3 3,4

4,3 4,4

1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3 3,4

4,3 4,4

Fig. 1: D4, its rectangle cover graph G(D4) and the 5-hole in G(D4) highlighted

2 Preliminaries

Let X ∈ {0, 1}m×n. For I ⊆ [n] := {1, . . . , n} and J ⊆ [m], a submatrix of X
identified by I×J is obtained by deleting the rows not in I and the columns not
in J . If I ( [n] or J ( [m] then I×J is a proper submatrix of X. A submatrix is
a rectangle if I×J ⊆ supp(X) = {(i, j) : xi,j = 1}. As the 1s in a row or column
form a rectangle, we have br(X) ≤ min{m,n}. In addition, note that br(X) is
invariant under transposition and under duplicating rows and columns.

For an isolated set S and rectangle I × J , we have |S ∩ (I × J)| ≤ 1, hence
i(X) ≤ br(X). Recall that X is firm if i(X′) = br(X′) holds for all submatrices
X′ of X, including X. The rectangle cover graph G(X) of X is the graph on vertex
set supp(X), where two vertices are adjacent if they can be covered by a common
rectangle of X. We adopt the convention that vertices of G(X) are drawn in the
positions of the corresponding 1s’ of X. See Figure 1 for an example of G(X)
for matrix D4. Clearly, the independent sets of G(X) are just the isolated sets
of X. Lubiw shows that maximal cliques of G(X) are in direct correspondence
with maximal rectangles of X [13]. Therefore we have i(X) = α(G(X)) and
br(X) = θ(G(X)), where α(G) and θ(G) denote the independence and clique
cover number of a graph G, respectively. A graph G is perfect if α(H) = θ(H)
holds for every induced subgraph H of G. A hole is an induced chordless cycle of
length at least four. An odd hole is a hole of odd length and an odd antihole is the
complement of an odd hole. Perfect graphs are exactly those that have no odd
holes and no odd antiholes by the Strong Perfect Graph Theorem [4]. X is said
to be superfirm if G(X) is perfect [13]. Superfirm matrices are a strict subset of
firm matrices [13], as for instance D4 is an interval matrix hence firm by Győri’s
Theorem [9] but not superfirm as G(D4) contains a 5-hole as shown in Figure
1. Note that this is because not every induced subgraph of G(X) corresponds
to a submatrix of X and firmness requires α(H) = θ(H) to hold for only those
subgraphs H of G(X) where H = G(X′) for a submatrix X′ of X.

Replacing a 1 of X at (i, j) with a 0 does not necessarily correspond to the
deletion of vertex (i, j) from G(X) as edges not incident to (i, j) may get deleted.
To represent all induced subgraphs of G(X) in matrix form, Lubiw introduces a
new entry type ? which may be part of a rectangle but need not be covered in
a feasible covering. A matrix over {0, 1, ?} is called a generalised binary matrix
[13]. A rectangle of a generalised binary matrix Y is a submatrix containing no
0s, while an isolated set of Y is a subset of supp(Y) := {(i, j) : yi,j = 1} in
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which no two elements are contained in a common rectangle of Y. Then i(Y),
br(Y) and firmness are analogously defined as for standard binary matrices. For
X ∈ {0, 1}m×n and P ⊆ supp(X), let XP be the generalised binary matrix
obtained from X by replacing all 1s in P by ?s, i.e. xPi,j =? for (i, j) ∈ P and
xPi,j = xi,j otherwise. For XP define its rectangle cover graph G(XP ) to be the
subgraph of G(X) induced by supp(X)\P . Superfirmness of X is then equivalent
to the requirement that i(XP ) = br(XP ) for all P ⊆ supp(X) [13].

3 Simplicial 1s and Stretching

Let Y be a generalised binary matrix. We say (`, k) ∈ supp(Y) is a simplicial
1 of Y if I × J with I = {i : yi,k ∈ {1, ?}} and J = {j : y`,j ∈ {1, ?}} satisfies
I × J ⊆ {(i, j) : yi,j ∈ {1, ?}}, that is I × J is a rectangle of Y. Note that I × J
is a maximal rectangle and the only maximal rectangle of Y that covers the
simplicial 1 at (`, k). To remove the simplicial 1 at (`, k) of Y we delete row `
and column k and set all remaining entries that are in I × J to ?s.

Lemma 1. If Y′ is obtained by removing a simplicial 1 of a generalised binary
matrix Y, then i(Y) = i(Y′) + 1 and br(Y) = br(Y′) + 1.

Proof. Let (`, k) be the simplicial 1 and I ×J its unique maximal rectangle. For
a maximum isolated set S′ and a minimum rectangle cover R′ of Y′, S′∪{(`, k)}
and R′∪(I×J) are clearly feasible for Y. Conversely, if S is a maximum isolated
set of Y, then S∩(I×J) = {(i, j)} for some (i, j) ∈ I×J , as otherwise S∪{(`, k)}
would be a larger isolated set of Y. So S \ {(i, j)} is a feasible isolated set of Y′.
As (`, k) is a simplicial 1, we may assume that I×J is used in a minimum cover
R of Y. Then R \ {I × J} is a feasible cover of Y′. �

Our definition of simplicial 1s for a standard binary matrix X is identical to
the definition of bisimplicial edges [7] in the bipartite graph whose biadjacency
matrix is X. The key difference is how we remove a simplicial 1 and transition
into generalised binary matrices.

We have seen that not every induced subgraph of G(X) corresponds to a
submatrix of X, but by turning 1s to ?s we can consider arbitrary induced
subgraphs of G(X) in matrix form. The idea behind the next matrix operation is
to expose induced subgraphs of rectangle cover graphs without explicitly setting
matrix entries to ?s. Let X ∈ {0, 1}m×n. By stretching a 1 at (`, k) ∈ supp(X)
we get the (m+ 1)× (n+ 1) binary matrix S(`,k)(X) which satisfies

S(`,k)(X)i,j = xi,j i ∈ [m], j ∈ [n], (1)

S(`,k)(X)i,j = 1 (i, j) ∈ {(`, n+ 1), (m+ 1, k), (m+ 1, n+ 1)}, (2)

and S(`,k)(X)i,j = 0 otherwise. For instance, if (m,n) ∈ supp(X) then by stretch-
ing (m,n) we obtain

S(m,n)(X) =


x1,1 ... x1,n 0

...
. . .

...
...

xm−1,n 0
xm,1 ... xm,n−1 1 1
0 ... 0 1 1

. (3)
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Stretching (`, k) adds in a simplicial 1 at position (m + 1, n + 1) whose unique
maximal rectangle covers only (`, k) from supp(X). By Lemma 1, removing the
simplicial 1 at (m+ 1, n+ 1), we get

i(S(`,k)(X)) = i(X(`,k)) + 1, br(S(`,k)(X)) = br(X(`,k)) + 1, (4)

where X(`,k) is a shorter notation for XP with P = {(`, k)}.
For a non-empty set Q ⊆ supp(X), the matrix obtained by stretching each

1 in Q is denoted by SQ(X). We adopt the convention to stretch 1s in Q in
non-decreasing order of row and then column index, so SQ(X) may be written
in block form as

SQ(X) =

[
X U
L I|Q|

]
(5)

where U is an m× |Q| matrix with |Q| 1s exactly one in each column that have
non-decreasing row index from left to right, L is an |Q| × n matrix with |Q| 1s
exactly one in each row and It is the t× t identity matrix.

If (`, k) is a simplicial 1 of X then we say that S(`,k)(X) is obtained by
simplicial stretching. Looking at G(X) and using Lemma 1 and the Clique Cutset
Lemma [2], the following can be proved.

Lemma 2. Let X be superfirm. Then S(`,k)(X) is firm. Furthermore, if (`, k)
is a simplicial 1 of X, then S(`,k)(X) is superfirm.

This lemma is tight in two ways. First, non-simplicial stretching may de-
stroy superfirmness. Second, both simplicial and non-simplicial stretching do not
preserve firmness. In Section 5, we will exploit the superfirmness and firmness
destroying properties of stretching to create minimally non-firm matrices.

For n ≥ 3, let Cn ∈ {0, 1}n×n be the n-th cycle matrix with exactly two
1s in each row and column such that no proper submatrix has this property.
A binary matrix is totally balanced if it has no Cn submatrices for any n ≥ 3.
Totally balanced matrices are exactly those that have a Γ -free ordering [12],
where Γ = [ 1 1

1 0 ]. The following result can be verified by a Γ -free ordering.

Lemma 3. If X is totally balanced then so is SQ(X) for any Q ⊆ supp(X).

4 Superfirm Matrices and Odd Holes

The Strong Perfect Graph Theorem [4] tells us that a binary matrix X is super-
firm if and only if G(X) has no odd holes and no odd antiholes. But which are
the necessary submatrices so that odd holes or odd antiholes appear in G(X)?
In this section, we show that forbidding odd antiholes in G(X) is unnecessary.
Then we study when a 5-hole in G(X) exists.

A theorem of Lubiw in [13] states that for G(X) to have an odd antihole
of size 7 or more, X needs to have the 3 × 3 cycle matrix C3 as a submatrix.
Note that C3 is superfirm. Let 1 be the all 1s column vector of appropriate size
and define W :=

[
C3 1

1> 1

]
and I4 :=

[
C3 1

1> 0

]
in {0, 1}4×4. Considering a slight

extension of Lubiw’s proof, we show that these two larger matrices are necessary
for the appearance of odd antiholes.
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1,1 1,2 1,3

2,1 2,3 2,4

3,1 3,2 3,4

1,1 1,2 1,3

2,1 2,3 2,4

3,1 3,2 3,4

1,1 1,2 1,3

2,1 2,3 2,4

3,1 3,2 3,4

Fig. 2: The three 5-holes in G(H3)

Lemma 4. If G(X) contains an odd antihole of size 7 or more then X has W
or I4 as a submatrix.

Proof. Following the proof structure of [13, Theorem 6.3], suppose that X has
no such submatrices but G(X) contains an antihole A ⊆ supp(X) of odd size
k = |A| ≥ 7. By duplicating rows and columns of X, we may assume that no two
1s in A are in the same row or column. Note that row and column duplication
cannot introduce W or I4 submatrices into X. Then the submatrix X′ of X
that consists of the rows and columns of the 1s in A is of dimension k × k and
may be permuted so that the vertices of A appear on the main diagonal and are
non-adjacent to the two vertices that are directly above and below them. Then
X′ has the form as below where each undecided entry pair (i, j), (j, i) denoted
by ∗s satisfies | supp(X′) ∩ {(i, j), (j, i)}| ≤ 1 so that A is indeed an antihole in
G(X).

X′ =


1 ∗ 1 1 ... 1 1 ∗
∗ 1 ∗ 1 1 1 1
1 ∗ 1 ∗ 1 1 1
1 1 ∗ 1 1 1 1
...

. . .
...

1 1 1 1 1 ∗ 1
1 1 1 1 ∗ 1 ∗
∗ 1 1 1 ... 1 ∗ 1

 ⇒


1 0 1 1 ... 1 1 ∗
1 1 1 1 1 1 1
1 0 1 0 1 1 1
1 1 1 1 1 1 1
...

. . .
...

1 1 1 1 1 ∗ 1
1 1 1 1 ∗ 1 ∗
∗ 1 1 1 ... 1 ∗ 1

 (6)

Assume without loss of generality that x′1,2 = 0. Suppose that x′2,3 = 0. If x′5,6 =

x′6,5 = 0 then the submatrix I × J of X′ with I = {1, 2, 5, 6}, J = {2, 3, 5, 6} is
I4. Moreover, if x′5,6 + x′6,5 = 1 then I × J is W. Hence, x′2,3 6= 0. In general,
exactly one of (i, j) and (i+1, j+1) can be a 0 for all ∗s, so the zeros of X′ must
zigzag as shown in the right of Equation (6). But as k is odd, this is impossible.�

The importance of Lemma 4 over Lubiw’s theorem, is that both W and I4
contain the submatrix H3 := [1,C3] and G(H3) contains three 5-holes as shown
in Figure 2, whereas C3 is superfirm. This shows that a rectangle cover graph
cannot contain an odd antihole of size 7 or larger if it does not contain an odd
hole. Recalling that a 5-antihole is just a 5-hole, we obtain the following result.
Theorem 1. X is superfirm if and only if G(X) has no odd holes.

Theorem 1 motivates us to study when G(X) has odd holes. We initialise this
by characterising when a 5-hole exists in G(X). The proof is skipped but it is of
similar nature to that of Lemma 4. Let K5 ∈ {0, 1}5×5 be the circulant matrix
with exactly three 1s per row and column and recall D4 from Figure 1.
Theorem 2. G(X) contains a 5-hole if and only if X has at least one of D4,
H3, H>3 or K5 as a submatrix.
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5 Four Infinite Classes of Minimally Non-Firm Matrices

In this section we prove a theorem which shows how minimally non-firm matrices
may arise by using the stretching operation. Then using this theorem we show
that four infinite classes of matrices are minimally non-firm.

Recall that a standard binary matrix X is minimally non-firm (mnf) if it is
not firm but all proper submatrices of it are. This definition naturally extends to
generalised binary matrices Y, Y is mnf if i(Y) < br(Y) and i(Y′) = br(Y′) for
all proper submatrices Y′ of Y. Note that as br(Y) and i(Y) are invariant under
transposition, the transpose of any mnf matrix is mnf as well. The following two
simple results apply to both standard and generalised mnf matrices.

Lemma 5. Each row and column of an mnf matrix has at least two non-zeros.

Proof. Suppose Y is mnf and its i-th row only has a single nonzero at entry (i, j).
If yi,j =? then row i can clearly be dropped without changing i(Y) or br(Y). If
yi,j = 1 then (i, j) is a simplicial 1. By Lemma 1, removing it we obtain a firm
submatrix Y′ with i(Y)− 1 = i(Y′) = br(Y′) = br(Y)− 1, a contradiction. �

Lemma 6. If Y is mnf then i(Y) = br(Y)− 1.

Proof. Let Y be mnf. By deleting a single row or column of Y we get a submatrix
Y′ which by definition is firm and satisfies i(Y)−1 ≤ i(Y′) ≤ i(Y) and br(Y)−
1 ≤ br(Y′) ≤ br(Y) as a row or column forms a rectangle and may contain at
most one element of an isolated set. So, we must have br(Y′) = br(Y) − 1 as
otherwise Y is firm. But then i(Y′) = br(Y′) = br(Y)−1 ≤ i(Y) which together
with i(Y) < br(Y) implies br(Y)− 1 = i(Y). �

By Theorem 1, X is superfirm if G(X) has no odd holes, so for X to be mnf
G(X) must contain odd holes. Using Theorem 2 one can show that the smallest
mnf standard binary matrices are of dimension 4× 4 and there are exactly two
of them: I4 and I

′
4, where I

′
4 is obtained from I4 by turning a single 1 to a 0 (for

instance at (1, 4), but due to symmetry any other 1 would work).
Let X be a standard binary matrix with an odd hole C in G(X) of size

|C| = 2k + 1. Stretching all 1s at Q = supp(X) \ C of X, by Lemma 1 we get

i(SQ(X))− |Q| = i(XQ) = k < k + 1 = br(XQ) = br(SQ(X))− |Q|, (7)

so SQ(X) is non-firm. This recipe however, does not guarantee that SQ(X)
is minimally non-firm. By adding extra conditions on Q, minimality can be
enforced.

Theorem 3. Let X ∈ {0, 1}m×n. If XQ is a minimally non-firm generalised
binary matrix for some non-empty Q ⊂ supp(X) and XP is firm for all P ( Q,
then SQ(X) ∈ {0, 1}(m+|Q|)×(n+|Q|) is minimally non-firm.

Proof. SQ(X) may be written as a block matrix with four blocks X,L,U and
I|Q| as in Equation (5). By construction all 1s in block I|Q| are simplicial, hence
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removing them we obtain the mnf generalised binary matrix XQ. By Lemma 1
then i(SQ(X)) = i(XQ) + |Q| < br(XQ) + |Q| = br(SQ(X)).

Suppose that not all proper submatrices of SQ(X) are firm and let Y be the
smallest non-firm proper submatrix indexed by I×J . Then Y is mnf. Note that
the four block matrices of SQ(X) are all firm: (1) X is firm as it is just X∅. (2)
I|Q| is clearly firm. (3) U has exactly one 1 per column, so it can be obtained
from an identity matrix by duplicating columns and adding zero rows, and thus
firm. (4) Similarly, as L has exactly one 1 per row, it is firm. Hence Y cannot be
fully contained in any of the four blocks. As Y is a mnf standard binary matrix
it has at least two 1s in each row and column by Lemma 5. Since block [ L I|Q| ]
has exactly two 1s in each row, if Y has a row from this block, then Y must also
contain the columns of both 1s in this row. Similarly, if Y contains a column
from block

[
U

I|Q|

]
, it must contain the rows of both 1s in this column. Therefore,

the rows in I from block [ L I|Q| ] and the columns in J from block
[

U
I|Q|

]
come

in pairs and may be identified with their 1 in block I|Q|. Let P be the subset
of Q whose stretching created the 1s in block I|Q| which are in Y. Removing
all |P | simplicial 1s present in Y from block I|Q| we obtain a generalised binary
matrix which is fully contained in block X and is just a submatrix Z of XP . By
Lemma 1, Z satisfies i(Z) + |P | = i(Y) and br(Z) + |P | = br(Y). If P = Q,
then I contains all the rows and columns from block I|Q| so Z must be a proper
submatrix of XQ, hence firm. If P 6= Q, then Z is a submatrix of the firm matrix
XP . In both cases i(Z) = br(Z) which implies i(Y) = br(Y), a contradiction.�

One can see that a partial converse of the above theorem also holds, i.e. if
a standard binary mnf matrix has some simplicial 1s then by removing those
we obtain a generalised binary mnf matrix for which the theorem’s conditions
hold. Note however, that not all mnf matrices have simplicial 1s, e.g. I4, hence
certainly not all mnf matrices arise via Theorem 3.

Recall Cn is the n × n cycle matrix. For n ≥ 3, let Mn+1 := S(n,n)(Cn) be
the (n+ 1)× (n+ 1) matrix and Hn := [1,Cn] be the n× (n+ 1) matrix,

Mn =


1 1
1 1

. . . . . .
1 1

1 1 1
1 1

, Hn =


1 1 1
1 1 1
...

. . . . . .
1 1 1
1 1 1

. (8)

Matrices Mn appear in the work of Lubiw [13] as forbidden submatrices for a
subset of superfirm matrices that can be decomposed into linear matrices by
applying the matrix equivalent of split decomposition [5] on bipartite graphs.

Recall matrix D4 from Figure 1 and for n ≥ 5, let Dn := S(3,n−1)(Dn−1). In
addition, let T5 ∈ {0, 1}5×5 as below and for n ≥ 6 define Tn := S(4,n−1)(Tn−1),

Dn =


1 1

1 1 1
1 1 1 1 ... 1

1 1

. . . . . .
1 1

, T5 =

[
1 1

1 1
1 1 1

1 1 1 1
1 1

]
, Tn =


1 1

1 1
1 1 1

1 1 1 1 ... 1
1 1

. . . . . .
1 1

. (9)
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1,1 1,2

2,2 2,3

3,1 3,3 3,4

4,3 4,4

(a) G(M4)

1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3 3,4 3,5

4,3 4,4

5,4 5,5

(b) G(D5)

1,2 1,4

2,1 2,3

3,2 3,3 3,4

4,1 4,3 4,4 4,5 4,6

5,4 5,5

6,5 6,6

(c) G(T6)

Fig. 3: Odd holes highlighted in the rectangle cover graphs of M4, D5 and T6

All these matrices contain odd holes in their rectangle cover graph as shown in
Figure 2 for H3 and Figure 3 for M4,D5 and T6. In the remaining parts of this
section, we will prove that by choosing the set Q in Theorem 3 to be {(n, n)} for
Mn, Gn = {(n, 2), (n, n+1)} for Hn, Qn = {(1, 2), (2, 1), (n, n)} for Dn and Tn,
the conditions of Theorem 3 are satisfied and thus we get our main theorem.

Theorem 4. For n ≥ 4, S(n,n)(Mn), SGn−1(Hn−1), SQn(Dn) and SQn+1(Tn+1)
are mnf standard binary matrices. In addition, SQn(Dn) and SQn+1(Tn+1) are
totally balanced.

The claim of total balancedness is immediate by Lemma 3 as D4 is an inter-
val matrix and T5 is Γ -free [12]. Lubiw observed that SQ4(D4) and SQ5(D5)
are non-firm [13]. Her observation served as a motivation to us to define the
stretching operation and matrices Dn.

For the first two classes, Mn and Hn, the proofs that Theorem 3’s conditions
hold are similar because both are minimally non-superfirm. A standard binary
matrix is minimally non-superfirm (mnsf) if it is not superfirm but all proper
submatrices of it are. Next, we show that the conditions hold for the class Hn.

Lemma 7. For n ≥ 3, HP
n is firm for all P ( Gn = {(n, 2), (n, n + 1)} and

HGn
n is a mnf generalised binary matrix. In addition, Hn is mnsf.

Proof. For P ⊆ Gn, at least n rectangles are needed to cover HP
n as

Cn := supp(Hn) \ ({(i, 1) : i ∈ [n− 1]} ∪Gn), (10)

is a 2n− 1-hole in G(HP
n ). As HP

n only has n rows, br(HP
n ) = n.

Note that submatrix [1, n − 1] × [2, n + 1] (where [`, k] := {`, ` + 1, . . . , k})
has two isolated sets of size n− 1. For P ( Gn, (i, j) ∈ Gn \P may be added to
one of these two isolated sets to get an isolated set of size n for HP

n . For HGn
n

however, none of the 1s can be added to these two isolated sets, so we only have
i(HGn

n ) ≥ n−1. Suppose HGn
n has an isolated set Tn of size n. Then Tn needs to

contain a 1 from each row, so (n, 1) ∈ Tn. But then Tn cannot contain (1, 2) and
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(n−1, n+1), the only 1s in columns 2 and n+1, as they are in a rectangle with
(n, 1). Hence Tn has n elements from n−1 distinct columns, which is impossible.
G(Hn) has no odd antiholes of size 7 or more by Lemma 4 but it contains n

2n− 1-holes, one of which is Cn. Any other hole in G(Hn) is either contained in
the submatrix Cn and hence it is the 2n-hole, or contains at most two vertices
from column 1. Note that if (`, 1) is a vertex of a hole then the hole cannot have
another vertex from row `. If a hole contains a single vertex from column 1 then
it is easy to see that it must be one of the n 2n − 1-holes. If the hole has two
vertices from column 1, then it must contain an even number of vertices from
submatrix Cn, so it is an even hole. Therefore, the n 2n − 1-holes are the only
odd holes in G(Hn) which all have a vertex from every row and column. For
P ⊆ Gn, G(Y) for any proper submatrix Y of HP

n then has no odd holes and no
odd antiholes, so G(Y) is perfect by the Strong Perfect Graph Theorem [4]. �

Observe that G(Mn) contains a single odd-hole of size 2n − 1 as shown in
Figure 3a for m = 4. To prove that conditions of Theorem 3 are satisfied by class
Mn, the same structure of proof as for Hn may be applied to get the following.

Lemma 8. For n ≥ 4, Mn is firm and mnsf, and M(n,n)
n is a mnf generalised

binary matrix.

Although D4 and T5 are mnsf, for larger n as both Dn and Tn are defined
recursively, they have proper submatrices which are not superfirm. Hence the
argument used in the proof of the previous two classes does not work for Dn

and Tn. Next we prove that class Dn satisfies the conditions of Theorem 3.

Lemma 9. For n ≥ 4, DP
n is firm for all P ( Qn = {(1, 2), (2, 1), (n, n)} and

DQn
n is a mnf generalised binary matrix. In addition, D4 is mnsf.

Proof. I. For all P ⊆ Qn, G(DP
n ) contains the 2n− 3-hole

Cn = {(3, 1), (2, 2), (1, 3), (4, 3), . . . , (3, n)}, (11)

and thus br(DP
n ) ≥ n−1. On the other hand, Dn has a feasible cover using n−1

rectangles in which each row i 6= 3 is covered by a distinct rectangle.
II. In G(Dn), each (i, j) ∈ Qn is adjacent to two consecutive vertices of Cn,

and not adjacent to the others. For P ( Qn, let (`, k) ∈ Qn \ P and Sn be an
independent set of Cn of size n−2 which does not use the two vertices of Cn that
are adjacent to (`, k). Then Sn ∪ {(`, k)} is a feasible isolated set of DP

n .
For DQn

n , Sn is a feasible isolated set. Suppose that DQn
n has an isolated set

Tn of size n− 1. Then as DQn
n is of size n× n, there is exactly one row and one

column that does not have a 1 in Tn. Since columns 1 and n each have a single
1 which are both in row 3, exactly one of these 1s must be in Tn. (a) Suppose
that (3, 1) ∈ Tn. Then (3, j) 6∈ Tn for any j 6= 1. Observe that (2, 2) can also
not be in Tn as it is adjacent to (3, 1). But column 2 only has the 1s at (2, 2)
and (3, 2), so Tn contains no 1s from column 2 and n and it has n − 1 isolated
1s from n − 2 columns, which is a contradiction. (b) Suppose that (3, n) ∈ Tn.
Then (3, j) 6∈ Tn for any j 6= n. As (3, 2) 6∈ Tn, we must have the only available
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1 at (2, 2) from column 2 in Tn. But then as (2, 2) is in a rectangle with (1, 3),
we cannot have (1, 3) in Tn. As (1, 3) is the only 1 in row 1, Tn has no 1s from
row 1. But Tn can also not have any 1s from row n, as row n only has a 1 at
(n, n− 1) which is adjacent to (3, n) ∈ Tn. Hence Tn has n− 1 isolated 1s from
n− 2 rows, which is impossible. Therefore, i(DQn

n ) = n− 2.
III. We use induction on n. For the base case take n = 4 and observe that

G(D4) has the 5-hole C4 as an only odd hole and C4 contains a vertex from each
row and column of D4. Therefore, any proper submatrix of DP

4 is superfirm for
any P ⊆ Q4. Assume that for k < n, all proper submatrices of DP ′

k are firm for
any P ′ ⊆ Qk. Let P ⊆ Qn, and suppose that not every proper submatrix of DP

n

is firm and let Y be a smallest non-firm proper submatrix indexed by I×J . Note
that we have n ∈ I or n ∈ J , as otherwise Y is a submatrix of DP ′

k for some
k < n and P ′ ⊆ {(1, 2), (2, 1)} and firm by either the induction hypothesis or
by parts I. and II. of this proof as P ′ ( Qk. By the minimality of Y it must be
mnf. So Y has at least two non-zero entries in each row and column by Lemma
5. Hence n ∈ I implies n − 1, n ∈ J and n ∈ J implies 3, n ∈ I. Thus we must
have 3, n ∈ I and n, n− 1 ∈ J . Similarly, if i ∈ I for some i > 3 then i− 1, i ∈ J ;
if 1 ∈ I then 2, 3 ∈ J and if 1 ∈ J then 2, 3 ∈ I.

If I = [n], then by the above we must have J = [n] \ {1}. Then (3, 2) ∪ Sn

and {{1, 2, 3} × {2, 3}} ∪Rn with Sn := {(i, i− 1) : i ∈ [4, n] := {4, . . . , n}} and
Rn := {{3, i} × {i − 1, i} : i ∈ [4, n]} give a feasible isolated set and rectangle
cover of size n− 2 of Y, hence we cannot have I = [n].

So let ` be the largest row index of DP
n for which ` 6∈ I. (a) If ` = 1, then

I = [n] \ {1}. Then [4, n] ⊂ I implies [3, n] ⊆ J , and 2 ∈ I implies that column 1
or 2 are in J , so let k ∈ J∩{1, 2}. Then (3, k)∪Sn and {{2, 3}×(J∩{1, 2, 3})}∪Rn

give a feasible isolated set and rectangle cover of size n− 2 of Y, so ` 6= 1.
(b) If ` = 2, then we have 1 6∈ J . If 1 ∈ I, then 2, 3 ∈ J must hold, so we have

I = [n] \ {2} and J = [2, n]. Then (3, 2) ∪ Sn and {{1, 3} × {2, 3}} ∪ Rn give a
feasible isolated set and rectangle cover of size n− 2 of Y. If 1 6∈ I, then 2 6∈ J ,
so we have I = [3, n] and J = [3, n]. Then Sn and R give a feasible isolated set
and rectangle cover of size n− 3 of Y.

(c) If ` > 3, then (` + 1, `) is a simplicial 1 of Y and its unique maximal
rectangle is {3, `+1}×{`, `+1}. Remove this simplicial 1 at (`+1, `). But then
(`+ 2, `+ 1) becomes a simplicial 1, so it can also be removed. We may repeat
this process until at last (n, n− 1) becomes a simplicial 1 and can be removed.
Once (n, n − 1) is removed, column n only consist of 0s and a single ?, hence
can be dropped. Let the resulting matrix be Y′. As dropping a column which
does not have any 1s does not impact the isolation number and Boolean rank,
by Lemma 1 Y′ satisfies i(Y′) + n− ` = i(Y) and br(Y′) + n− ` = br(Y). But
then Y′ is just a proper submatrix of Y formed by rows (I∩ [`−1])×(J∩ [`−1]),
so firm. Hence i(Y) = br(Y) which contradicts Y being mnf. �

A proof which is very similar to the above may be applied to class Tn to get
our final lemma below and by this completing the proof of Theorem 4.
Lemma 10. For n ≥ 5, TP

n is firm for all P ( Qn = {(1, 2), (2, 1), (n, n)} and
TQn

n is a mnf generalised binary matrix. In addition, T5 is mnsf.
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6 Conclusion

In this paper, we studied firm and superfirm binary matrices. We showed that
superfirmness is equivalent to having no odd holes in the rectangle cover graph.
Then we presented four infinite classes of minimally non-firm binary matrices.

We close with two future research directions. We suspect that every minimally
non-superfirm matrix is firm and any minimally non-firm matrix X ∈ {0, 1}m×n
satisfies |m− n| ≤ 1.

Acknowledgements I am very grateful to Ahmad Abdi for helping me begin
studying firm matrices and for all the invaluable comments during our discus-
sions.
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