Skip to main content

An Image Feature Mapping Model for Continuous Longitudinal Data Completion and Generation of Synthetic Patient Trajectories

  • Conference paper
  • First Online:
  • 1041 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13609))

Abstract

Longitudinal medical image data are becoming increasingly important for monitoring patient progression. However, such datasets are often small, incomplete, or have inconsistencies between observations. Thus, we propose a generative model that not only produces continuous trajectories of fully synthetic patient images, but also imputes missing data in existing trajectories, by estimating realistic progression over time. Our generative model is trained directly on features extracted from images and maps these into a linear trajectory in a Euclidean space defined with velocity, delay, and spatial parameters that are learned directly from the data. We evaluated our method on toy data and face images, both showing simulated trajectories mimicking progression in longitudinal data. Furthermore, we applied the proposed model on a complex neuroimaging database extracted from ADNI. All datasets show that the model is able to learn overall (disease) progression over time.

C. Chadebec and E. M. C. Huijben—Equal contribution.

S. Allassonnière and M. A. J. M. van Eijnatten—Equal contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Code and dataset details are available at https://github.com/evihuijben/longVAE.

  2. 2.

    Downloaded from https://doi.org/10.5281/zenodo.5081988.

  3. 3.

    Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

References

  1. Aghili, M., Tabarestani, S., Adjouadi, M., Adeli, E.: Predictive modeling of longitudinal data for Alzheimer’s disease diagnosis using RNNs. In: Rekik, I., Unal, G., Adeli, E., Park, S.H. (eds.) PRIME 2018. LNCS, vol. 11121, pp. 112–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00320-3_14

    Chapter  Google Scholar 

  2. Bi, L., Kim, J., Kumar, A., Feng, D., Fulham, M.: Synthesis of positron emission tomography (PET) images via multi-channel generative adversarial networks (GANs). In: Cardoso, M.J., et al. (eds.) CMMI/SWITCH/RAMBO 2017. LNCS, vol. 10555, pp. 43–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67564-0_5

    Chapter  Google Scholar 

  3. Blackledge, M.D., et al.: Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS ONE 9(4), e91779 (2014)

    Google Scholar 

  4. Bône, A., Colliot, O., Durrleman, S.: Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9271–9280 (2018)

    Google Scholar 

  5. Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using generative adversarial neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 626–634. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_71

    Chapter  Google Scholar 

  6. Chadebec, C., Thibeau-Sutre, E., Burgos, N., Allassonnière, S.: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  7. Couronné, R., Vernhet, P., Durrleman, S.: Longitudinal self-supervision to disentangle inter-patient variability from disease progression. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 231–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_22

    Chapter  Google Scholar 

  8. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)

    Article  Google Scholar 

  9. Ghosh, P., Sajjadi, M.S., Vergari, A., Black, M., Schölkopf, B.: From variational to deterministic autoencoders. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  11. Hussain, Z., Gimenez, F., Yi, D., Rubin, D.: Differential data augmentation techniques for medical imaging classification tasks. In: AMIA Annual Symposium Proceedings, vol. 2017, p. 979. American Medical Informatics Association (2017)

    Google Scholar 

  12. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. In: Jordan, M.I. (ed.) Machine Learning. NATO ASI Series, pp. 105–161. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5014-9_5

    Chapter  Google Scholar 

  13. Kim, S.T., Küçükaslan, U., Navab, N.: Longitudinal brain MR image modeling using personalized memory for Alzheimer’s disease. IEEE Access 9, 143212–143221 (2021)

    Article  Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Liu, X., Song, L., Liu, S., Zhang, Y.: A review of deep-learning-based medical image segmentation methods. Sustainability 13(3), 1224 (2021)

    Article  Google Scholar 

  16. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  17. Louis, M., Couronné, R., Koval, I., Charlier, B., Durrleman, S.: Riemannian geometry learning for disease progression modelling. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 542–553. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_42

    Chapter  Google Scholar 

  18. Madani, A., Moradi, M., Karargyris, A., Syeda-Mahmood, T.: Chest X-ray generation and data augmentation for cardiovascular abnormality classification. In: Medical Imaging 2018: Image Processing, vol. 10574, pp. 415–420. International Society for Optics and Photonics, SPIE (2018)

    Google Scholar 

  19. Nestor, S.M., et al.: Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain 131(9), 2443–2454 (2008)

    Article  Google Scholar 

  20. Ramchandran, S., Tikhonov, G., Kujanpää, K., Koskinen, M., Lähdesmäki, H.: Longitudinal variational autoencoder. In: Proceedings of The 24th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 130, pp. 3898–3906. PMLR (2021)

    Google Scholar 

  21. Salehinejad, H., Valaee, S., Dowdell, T., Colak, E., Barfett, J.: Generalization of deep neural networks for chest pathology classification in X-rays using generative adversarial networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 990–994 (2018)

    Google Scholar 

  22. Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M.: Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. 9(1), 16884 (2019)

    Article  Google Scholar 

  23. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  24. Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  25. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)

    Article  Google Scholar 

  26. Wen, J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image Anal. 63, 101694 (2020)

    Google Scholar 

  27. Zhao, Q., Liu, Z., Adeli, E., Pohl, K.M.: Longitudinal self-supervised learning. Med. Image Anal. 71, 102051 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evi M. C. Huijben .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 721 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chadebec, C., Huijben, E.M.C., Pluim, J.P.W., Allassonnière, S., van Eijnatten, M.A.J.M. (2022). An Image Feature Mapping Model for Continuous Longitudinal Data Completion and Generation of Synthetic Patient Trajectories. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2022. Lecture Notes in Computer Science, vol 13609. Springer, Cham. https://doi.org/10.1007/978-3-031-18576-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18576-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18575-5

  • Online ISBN: 978-3-031-18576-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics