
DIPARTIMENTO DI INFORMATICA
CORSO DI LAUREA IN DATA SCIENCE AND BUSINESS INFORMATICS

TESI DI LAUREA

Explaining Siamese Networks in
Few-Shot Learning for Audio Data

Relatore
Dott. Riccardo Guidotti
Controrelatore
Prof. Giorgio Ghelli

Candidato

Andrea Fedele

Anno Accademico 2020/2021

Abstract

Traditional Machine Learning models are not able to generalize correctly when
queried on samples belonging to class distributions that were never seen during
training. This is a critical issue, since real world application might need to quickly
adapt without the necessity of re-training. To overcome these limitations, few-shot
learning frameworks have been proposed and their applicability has been studied
widely for computer vision tasks. Siamese Networks learn pairs similarity in form
of a metric that can be easily extended on new unseen classes. Unfortunately, the
biggest downside of such systems is the lack of explainability. In this thesis we verify
the applicability of Siamese Networks in the context of few-shot learning for audio
inputs and we propose a novel method to explain their outcomes and assess their
robustness. This objective is pursued through a perturbation-based method that
quantifies how each input feature contributes to the final outcome by measuring the
changes in the mean prediction when such feature is perturbed. We conduct several
experiments on two distinct dataset to assess the method ability to explain Siamese
Networks outcomes in a C-way one-shot framework. Qualitative and quantitative
results demonstrate that our method is able to show common intra-class character-
istics and erroneous reliance on silent sections. Classification weaknesses get also
uncovered when audio clips are generated from heterogeneous sources and recorded
in different environments.

Keywords: One-shot Learning; Siamese Neural Networks; Explainable Artificial
Intelligence; Perturbation Technique; Audio; Sound Classification

Contents

1 Introduction . 1

2 Related Work . 5

2.1 Siamese Networks in Few-shot Learning 5

2.2 Audio and Time Series Explainability 7

2.3 Siamese Networks Explainability . 10

3 Background . 14

3.1 Siamese Networks . 14

3.2 C-way k-shot Learning . 17

3.3 Explainable Artificial Intelligence . 18

4 Problem Formulation . 24

5 Methodology . 26

5.1 C-way one-shot Learning . 26

5.2 Explanation Method . 31

5.2.1 Segmentation technique . 32

5.2.2 Perturbation procedure . 33

6 Experiments . 39

6.1 Datasets . 39

6.2 Network architectures . 42

6.3 5-way one-shot learning performance 45

6.4 Explainability . 48

6.4.1 AudioMNIST Results and Discussion 49

6.4.2 ESC-50 Results and Discussion 52

6.4.3 Insertion and Deletion . 56

7 Conclusions . 60

References . 69

Acknowledgements . 70

1 Introduction

In recent years, Artificial Intelligence significantly sped up its pace thanks to the
availability of large datasets, the emergence of powerful computing devices and the
development of sophisticated algorithms (Haenlein and Kaplan 2019). Deep Learn-
ing models have been widely employed achieving powerful results in different fields.
In computer vision, for example, convolution based architectures have been utilized
for document recognition (Lecun et al. 1998), image classification (Cireşan, Meier,
and Schmidhuber 2012) and many other tasks. Despite their thriving achievements,
these systems rely on learning from big and large-scale dataset while real world
applications typically involve constraints that might lead to a limited fuel of sam-
ples. In some cases the availability of training data might be limited by technical
issues, while ethical or privacy issue might restrict the data collection in other cir-
cumstances. But more importantly, current techniques fail when asked to rapidly
generalize from only few samples: a traditional deep learning system cannot broaden
its knowledge outside the scope of the data it was trained on. On the contrary, hu-
mans are capable of learning by quickly generalizing on their prior knowledge. For
example, if a child is presented with few pictures of a person he has never seen before,
he will still be able to match and identify the right individual among a reasonable
number of pictures portraying different subjects.

To overcome these limitations, recent studies proposed few-shot learning frame-
works where a classifier must learn unseen classes given only few samples of each
(Yaqing Wang et al. 2020). Traditionally, few-shot methods consider a C-way k-shot
classification task where C is fixed and represents the unique class labels the model
is asked to learn from while k is the number of labeled samples per each of these
classes. Such parameters define the support set dimension, which is an auxiliary set
of data the classifier is provided with to be guided in its decision. Few-shot learning
aims to predict the correct class of an instance when a small number of examples
of that specific class are available in the training dataset. One-shot learning is a

1

special case of few-shot learning where exactly one example of the class is present in
the training set, while zero-shot learning aims to predict the correct class without
being previously exposed to any instances belonging to that class. The idea behind
zero-shot learning with k = 1 support sets is learning to classify an unseen sample by
using only a single labelled sample of that specific class. Different algorithms have
been proposed to tackle few-shot metric-learning including Siamese Networks (Koch,
Zemel, Salakhutdinov, et al. 2015), Matching Networks (Vinyals et al. 2016), Rela-
tion Networks (Sung et al. 2018) and Prototypical Networks (Snell, Swersky, and
Zemel 2017). These algorithms compare inputs similarity by learning a metric dur-
ing the training phase. Such metric is later extended to measure similarity between
samples that were not present in the training set. Siamese Neural Networks learn a
similarity measure between two inputs feeding them into two identical sub-networks
that work as encoders. The inputs embedded representation are later compared by
means of a distance function, which then produces a similarity metric output. Such
approach to one-shot learning, with the usage of Convolutional Neural Network,
has been introduced by Koch, Zemel, Salakhutdinov, et al. 2015. The capability of
such networks, intrigued scientists to verify its robustness on audio inputs. Vélez,
Rascon, and Fuentes-Pineda 2018 developed a Siamese Network system paired with
a database which has proven to be powerful in verifying and learning new speakers
by updating the database so not to retrain the network. More recently, Honka 2019
showed that a Siamese Network architecture can be employed in the context of C-
way one-shot learning using environmental audio as network inputs. These works
demonstrated that Siamese Networks work well with audio inputs, producing good
results when asked to generalize on classes they have never seen before.

Unfortunately, the biggest downside of such systems is the lack of explainabil-
ity. It is hard to explain and interpret how these architectures can mimic human
behaviour when they correctly scale up on unseen samples. The need of explain-
ability has become more and more important as Deep Learning network became
popular and widely deployed. Understanding the reason why a models take a spe-
cific decision is crucial to developers, organizations and moreover to the end users
on which such decisions fall upon. While traditional Artificial Intelligence systems
might need less effort to be explained, Deep Learning models are often compared to

black boxes where it is unclear how and why a given input triggers a specific output.
In recent years, different researches examined the reason behind the need of expla-
nations and the social impact of how people select, evaluate and communicate them
(Miller 2017), while other studies targeted the problem of explaining black-box mod-
els (Guidotti et al. 2018, Adadi and Berrada 2018). One of the possible partitions
of these techniques considers gradient-based and perturbation-based methods. While
both partitions aim to understand the role that each input feature plays on a specific
output, they solve the problem differently. The former are faster, given that they
estimate feature attribution values by means of forward and backward propagation
passes throughout the network. On the other hand, occlusion-based methodologies
perturb the input and measure how the output changes with respect to the original
input. Techniques belonging to the latter family require to test sequentially each
feature (or group of features) resulting in longer computational times. Different
explanation methods have found a very good feedback in the research community
for black-boxes, but few techniques have been presented to interpret and explain
Siamese Networks. Moreover, to the best of our knowledge, none of the available
techniques has ever been tested on audio inputs processed by such neural networks
in the context of C-way one-shot learning.

In this thesis we propose a novel perturbation-based method to explain Siamese
Networks in the context of C-way one-shot learning on audio input data. Our pro-
posal seeks to understand what are the discriminative feature for a machine learning
model that is asked to quickly learn and generalize as humans do. We want our
method to answer the informal question that asks What is the model listening to
when it correctly matches the class of two audio it has never heard before? But also
why a given recording is more similar to a specific audio more than it is to oth-
ers? And finally why is the model miss-classifying a given audio? The method we
introduce uses a perturbation approach evaluating segment-weighted-average contri-
bution values to the final outcome considering the interplay between different areas
of the input as a whole. The contribution values can then be visualized as heatmaps
to have a quick and easy-to-understand idea of the network classification behaviour.
Combining the visual communicative effect of such heatmaps and the soundification
of the most important segments, our method is able to guide us in understanding

both correct and incorrect classification outcomes. Experiments demonstrate that
Siamese Networks reach state-of-the-art performance on both short and longer clips
in the context of 5-way one-shot learning. Moreover, experimental results of the
proposed explanation method illustrate that the robustness of such networks is very
much tied to the recordings domain. Class-homogeneous dataset seem to lead to
robust networks, while class-heterogeneous ones result in more inaccurate classifica-
tion behaviours. Our method also brings to light an erroneous reliance on silenced
areas that, in some cases, is the cause of miss-classification errors.

This thesis is divided as follows: in Chapter 2 we review the state-of-the-art
literature about the usual employment of Siamese Networks, the explainability tech-
niques used on audio data and the available approaches to explain Siamese Networks.
We then provide background information on the central topics of Siamese Networks
and C-way k-shot learning in Chapter 3, concluding with an exhaustive discussion
of Explainable Artificial Intelligence (XAI). In Chapter 4 we formalize the prob-
lem we seek to address, while in Chapter 5 we give an in-depth description of the
perturbation-based explanation method we propose. Finally, in Chapter 6 we report
the experiments we conducted to validate the tool and we conclude summarizing the
experimental results and future research directions in Chapter 7.

2 Related Work

In this chapter, we present the state-of-the-art researches in which our project sets
the ground. In Section 2.1 we start by introducing the employment of Siamese Neural
Networks in the context of few-shot learning. We continue in section 2.2 presenting
latest explainaiblity approaches on traditional neural network architectures for audio
and time-series inputs. In Section 2.3, we conclude illustrating recent methods
proposed to specifically explain Siamese Neural Networks.

2.1 Siamese Networks in Few-shot Learning

Koch, Zemel, Salakhutdinov, et al. 2015 introduced the use of Siamese Networks for
Image Recognition in the one-shot learning framework. In this work, the network is
implemented as a convolutional neural network and it is trained to rank similarity
between inputs. After training, the tuned similarity function is used to predict on
new classes from unknown distributions. The Ominglot Dataset1 is used to train
the architecture: it is composed of 50 alphabets, containing from about 15 to 40
different characters each. 20 different drawers produced an instance of each of these
character across all alphabets. 40 of the 50 alphabets are referred as a background
set, which is used to train the network similarity function in measuring the distance
between character-pairs. The remaining 10 alphabets are referred as evaluation set,
which is only used to measure the one-shot classification performance. These terms
are carefully chosen by the authors and they differ from the traditional so called
training, validation and test set. During the training phase, the background set is
exclusively used to train the feature similarity function, while the evaluation set is
used to establish forty 10-way one-shot classification task per each of its alphabet,
resulting in a total of 400 one-shot validating trials. In each task, standard classifi-
cation accuracy is computed considering correct a classification which indicates as
most similar two instances of the same character. The authors showed that such

1https://github.com/brendenlake/omniglot

5

https://github.com/brendenlake/omniglot

framework could reach human-level accuracy, opening the usage of this approach to
other domain.

Such suggestion was well welcomed by Honka 2019, where a Siamese Network was
framed in a C-way one-shot framework using environmental audio as inputs. The
authors used the ESC-50 dataset2 containing a collection of 2000 annotated 5 seconds
audio clips belonging to 50 different classes. In this work, a convolutional neural
network architecture was trained on 40 classes to learn a similarity function, while 5
separate classes were used to evaluate 400 randomized 5-way one-shot tasks accuracy.
An interesting difference was introduced in this research since the 5 remaining classes
were used in order to test the one-shot model performance. The validation and test
set were kept separate in order to ensure that the training process would not only
lead to hyperparameter optimization on the validation set, but to unseen samples as
well. A final mean accuracy of 79.1% was obtained, showing that such framework
can be used on audio inputs with reasonably good results.

The ESC-50 dataset was also used by Chou et al. 2019 in the C-way k-shot
framework to compare different metric-based algorithms. The authors propose a
novel attention similarity function that computes the attentional weighted average
of segment-by-segment similarity between vectors. The concept of attention is in-
troduced to guide the model in paying attention to specific segment of actual sound
events in longer recordings clips. Experiments show that the tested algorithms per-
formance increase when using such attention function indeed. Recalling that C is
the number of different classes on which the model is queried on and k represents
the number of samples for each of these classes, it is worth summarising some other
findings. Learning tasks on k = 1 perform worse than k = 5 for both C = 5 and
C = 10, suggesting that having more samples per each class smooths the model cor-
rect classifications. Finally, it is illustrated that C = 5 perform worse than C = 10,
suggesting that choosing the right class among a higher number of overall labels is
a harder task.

In a recent research Vélez, Rascon, and Fuentes-Pineda 2018 used a Siamese
2https://github.com/karolpiczak/ESC-50

https://github.com/karolpiczak/ESC-50

Network architecture for a speaker recognition task, introducing a database where
known speakers’ sample are stored. Every time somebody speaks to an input micro-
phone, such sample is matched with every of the current stored labels. The speaker
resulting in higher similarity is considered to be the same of the one that produced
the input but, if no stored speaker matches the input, a new entry is added to the
database for further uses. Validation and test phases are carried out in a traditional
manner: the authors do not monitor the mean accuracy of a C-way k-shot learning
task. Experimental results show Accuracy, Precision and F1 scores ranging from
89% to 98% for the three proposed models when queried on 500 samples belong-
ing to the same speaker and 500 belonging to different ones. Moreover, the article
shows how the model performances improve when the number of stored samples per
each speaker is increased from 1 to 10. Such finding is nothing new: it suggest that
a higher value of k samples to be compared with a new query helps the model in
matching them correctly.

Our project follows the general approach proposed by Koch, Zemel, Salakhut-
dinov, et al. 2015 and Honka 2019, where Siamese Networks are trained to learn
pairs similarity and later queried in a C-way one-shot learning framework on sam-
ples belonging to unseen class distributions. Differently from the last research we
described, we measure the models training performances by means of classical Accu-
racy, Precision and F1 scores on training batches and we test them in terms of mean
accuracy on several random one-shot tasks. We also study such mean accuracy be-
haviour by increasing C similarly to what Chou et al. 2019 and Vélez, Rascon, and
Fuentes-Pineda 2018 do.

2.2 Audio and Time Series Explainability

Becker et al. 2018 approached the problem of explaining a black-box convolutional
based architecture which classifies audio signals. The authors introduce a novel
audio dataset of English spoken digits, which they refer to as AudioMNIST3, con-
taining 30000 recordings of spoken digits (from 0 to 9) with 50 repetitions per digit
for each of the 60 different speakers. Two different architectures are trained on

3https://github.com/soerenab/AudioMNIST

https://github.com/soerenab/AudioMNIST

audio’s spectrograms and waveforms respectively. Both networks, with the obvious
changes in the last layer dimension, are deployed in the digit and speakers’ gender
recognition tasks reaching a mean accuracy that range from 91.74% to 95.87% with
a standard deviation of ±8.6% and ±2.85% respectively. The Layer-wise Relevance
Propagation (LRP) technique introduced by Bach et al. 2015 was employed to back-
propagate the hidden layers’ neurons relevance score from the output towards the
input. Visualizing the relevance score obtained, the authors show how the network
would focus on different areas when asked to recognize digits. Such visualization
technique lacks unfortunately of interpretability: it is almost impossible to map
such features to higher concepts like, for example, phonemes. The relevance score
obtained in the speaker’ gender recognition task lead to the hypothesis that the
network is looking at the fundamental frequencies and their immediate harmonics,
which are known to be in fact discriminant features in genders (Traunmüller and
Eriksson 1995). Finally, the authors assess that for both tasks the network indeed
relies on those samples found to be relevant by LRP: the accuracy decrease drasti-
cally to 25% and 50% when 20% of those features are set to zero in digit classification
and gender recognition respectively.

A local interpretable model-agnostic explanation method for music content anal-
ysis was introduced by Mishra, Sturm, and Dixon 2017. The authors propose SLIME
(Sound-LIME), which is based on the most famous LIME (Ribeiro, Singh, and
Guestrin 2016) and offers 3 different explanations based on the prior audio seg-
mentation granularity: temporal, frequency and time-frequency segmentation. The
explainer goal is to find those super-samples that influence the classification the most
when turned on/off. Similarly to LIME, synthetic samples close to each of the 3
segmented representations are generated, by turning on/off specific super-samples.
Each generated sample is then weighted according to its proximity to the original
audio. Finally, a linear model is employed to approximate the black box classi-
fication based on the synthetic samples and their weights. The article compares
SLIME explanations both on a Decision Tree and a Random Forest that classify
whether or not an audio contains a singing voice. Despite a good overall accuracy
of 71% the SLIME technique highlights that the super-sample considered to be im-
portant for the Decision Tree are mainly instrumental, proving that such method

can indeed display when a model is not reliable. The article finally studies a con-
volution based architecture by means of the gradient-based Saliency Map technique
(Simonyan, Vedaldi, and Zisserman 2013) obtained back-propagating the output to-
wards the input using leaky ReLU functions so to prevent vanishing gradient. The
super-sample obtained by such technique are compared to those considered to be
important by SLIME and a match of 46,5% is described on 1349 randomly selected
audio.

An interesting study on Time-Series was presented by Tang, Liu, and Long 2020,
where the authors introduce the Dual Prototypical Shapelet Network (DPSN) few-
shot classification framework that opens to two different level of interprenability:
a global overview by means of representative shapelets, and local highlights using
discriminative shapelet. While the former pools together common aspects of sam-
ples belonging to the same class, the latter show discriminative aspects between
different classes. The presented framework consists of 3 main components: the
feature extraction, which transforms the input time-series into a Symbolic Fourier
Approximation (SPA), the classifier that builds up classes prototypes by means of
a metric-learning neural network and finally the shapelet feature extraction from
the initial time-series. By construction the classifier is able to find representative
shapelet, while the combination of shapelet and prototype’s feature recovers discrim-
inative shapelet. The prototype network is a KNN based classifier, which classifies
samples of the class with the nearest prototype. The authors compare the proposed
DPSN on 18 different dataset, outperforming the state-of-the-art algorithms in al-
most all of them. The article concludes by showing some graphic examples of class
discriminative shapelets for some of these datasets.

Our research tend to emulate the way input are pre-processed similarly to what
Becker et al. 2018 and Mishra, Sturm, and Dixon 2017 do by treating audio data via
their spectrogram representation, with the due differences in terms of parameters
configuration. Differently from the first research we do not employ any gradient-
based explanation method, but a perturbation-based one. Moreover, we do not make
use of any additional model like Mishra, Sturm, and Dixon 2017 do, and we propose
to use a different approach to segment spectrograms. Finally, it is important to

notice that we do not treat inputs as time series like Tang, Liu, and Long 2020 do
due to much higher sample-rate of the audio recordings.

2.3 Siamese Networks Explainability

The first research worth mentioning explores Siamese Convolutional Neural Net-
work in a query-by-vocal-imitation sound retrieval system (Zhang, Pardo, and Duan
2019). The architecture compares a vocal imitation to the actual sound recordings
stored in a database to find the most similar one. In addition to standard architec-
tures, the authors propose Semi-Siamese Networks where sub-networks architectures
and weights are partially shared between the two network branches. Experiments
consider also the possibility of pre-training each network’s branch on different tasks,
resulting in the outperformance of current state-of-the-art. The last section of the
article focus on visualizing and sonifying the input patterns that maximize the ac-
tivation of certain neurons, using the activation maximization approach (Erhan,
Courville, and Bengio 2010). Such approach keeps the network trained weights un-
changed by gradient ascent a specific neuron’s activation with respect to the input
from different random initialization. After convergence, the updated input spectro-
gram can be considered as what the neuron learns. The avoid the vanishing gradient
trap, ReLU function are replaced by leaky ReLU ones with a slope of 0.3 for nega-
tive inputs. The recovered areas get later sonified recovering the phase information
thanks to the Griffin-Lim algorithm (Griffin and Lim 1984). Visualizing the pat-
terns that maximally activate random neurons from each convolutional layer, it is
possible to have a glimpse of what is believed to be important and its overall magni-
tude. While top layers’ neurons seem to learn local features, deeper layer’s neurons
are likely to capture spectrogram-like patterns of different frequency ranges. Simi-
larly, the soundification of top layers’ neurons seem to focus on low frequencies that
progressively capture spectral components until grasping birds chirping and water
flowing like sounds in deeper layers. Unfortunately, this technique considers random
neurons living room for the isolated effect it might cause to the network overall job.
In addition, it is not possible to comprehend whether the return features have a
positive or negative impact on the similarity prediction. Moreover, the encoders are

considered as stand-alone and their effect on the Siamese Network’s core distance
layer is bypassed.

A similar approach to explain Siamese Networks is briefly described by Ac-
concjaioco and Ntalampiras 2021, where the system is developed in the context of
one-shot learning to identify bird species in non-stationary environments. The main
goal is to build a system able to identify an unseen sample of a known class and
to store new classes when received. The mean accuracy of a C-way one-shot task
is not measured neither during training nor during evaluation, but experimental
results show that the network reaches 70.7% accuracy with a standard deviation of
±8.09% when tested on 5 unknown classes (free-from-noise dataset4) and 72.36%
accuracy with a standard deviation of ±0.67% on 3 unknown classes (non-stationary
environment dataset5). While the former result seems to be aligned on usual 5-way
one-shot tasks, the latter seems to under-perform if compared to usual 3-way one-
shot learning tasks. Finally the authors visualize how spectrograms are decomposed
by each convolutional layer, observing that they each simplify the input and focus
on specific regions. Among all layers, they tend to consider the last one as the
explainer concluding with the hypothesis that the most distinctive feature is the
distribution of the signal’s energy in species-dependend frequency bands. It is im-
portant to notice that the explanation is derived only from the network’s encoders,
without considering the Siamese merging distance layer.

The current only proposal to explain Siamese Neural Network is introduced by
Utkin, Kovalev, and Kasimov 2020, where a special auto-encoder is proposed as
core to the explaination. First, the encoder-part is trained to reconstruct the input
instances of the training set starting from the embedded representation given by the
Siamese Network’s embedder. The loss function used during this training procedure
takes into account proximity of the network’s embedded vectors and the encoder-part
hidden representation. Then, the decoder-part is trained to reconstruct the original
input given the hidden representation resulting from the encoder-part. Both encoder
and decoder can be further trained on samples that don’t belong to the training set.

4https://xeno-canto.org/about/xeno-canto
5https://zenodo.org/record/1250690

https://xeno-canto.org/about/xeno-canto
https://zenodo.org/record/1250690

Once the auto-encoder is trained, a pair of input to explain is given as input both
to the Siamese Network and the auto-encoder itself. The vectors resulting from
the Siamese Network’s encoders, gets perturbated on what the authors refer to
as important features. Such features are chosen considering the smallest distance
if the two input are semantically close, while the biggest distance is considered
otherwise. The resulting perturbed vectors are passed to the decoder-part, that
map them back to the original input space. The mean attribution value of each
feature is measured by randomly perturbating the embedded vectors considering the
difference between that feature value in the reconstructed input after perturbation
and its value in the reconstructed input without perturbation. Empirical results
on the MNIST dataset6 show that this technique is indeed able to bring to life
features that highlight input semantic similarities/dissimilarities. Limitations of
this approach are the large number of tuning parameters, including the substantial
choice of the important features’ number, and the need of a large number of data to
train the auto-encoder on. Moreover, this algorithm requires to train an additional
model that needs to have access to the training set. It is important to observe
that the Siamese Network’s distance function and its associated similarity score
are bypassed. The embedded vectors are subjected to a perturbation approach,
which later computes the difference between the input that the external decoder
reconstructs with and without perturbation.

The explanation methodology we propose in this thesis differs from the ones
employed by Zhang, Pardo, and Duan 2019 and Acconcjaioco and Ntalampiras 2021
since they use gradient-based methods that tend to focus only on the encoder part
of the system. Both these researches limit their exploration to the last convolutional
layer of the network not considering the architecture as a whole. In addition to this,
the first research only considers random neurons at random layers of such encoders.
Differently from what Utkin, Kovalev, and Kasimov 2020 propose, we do not train
any external model. Moreover, our explanation method does not need access to
the training data and can be deployed directly at prediction time. The main goal
of our project is to explain Siamese Networks in their entirety, focusing on every
layer of the architecture and especially the ones responsible for the final similarity

6http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

score prediction. Moreover, our proposal wants to address the problem of explaining
siamese networks in the context of C-way one-shot learning which is not tackled by
any of these works.

3 Background

This chapter provides background information on topics considered to be essentials
in the context of our project. In Section 3.1 we introduce Siamese Networks, while
Section 3.2 describes the project framework of C-way k-shot learning. Finally, in
Section 3.3 we describe the importance of Explainability and the most renowned
techniques employed for black-box models.

3.1 Siamese Networks

A Siamese Neural Network is a neural network composed of two identical sub-
networks, which have the same architecture and share the same weights and param-
eters configuration. The weights updating process is mirrored across the branches,
so to have two identical encoding networks. The main idea is to input two samples,
one per each twin branch, and train a pairwise similarity function that will out-
put 1 if the two samples are somehow similar (e.g. belong to the same class) and
0 otherwise. The sub-networks function as encoding layers, mapping inputs into
an embedding space where a distance function is later employed to calculate the
distance between the embedded vectors. Based on the distance, a similarity score
in the range of [0, 1] is finally computed. This paradigm was first introduced by
Bromley et al. 1993, where a Siamese Network is used to compare known signature
to unknown ones. The applicability range of this kind of network is broad consid-
ering that it learns semantic similarities between the inputs, and it may vary from
face recognition to spam detection. The overall training phase considers input pairs
(xi, xj) where xi and xj belong to the input domain (e.g., images), and assignes a
a binary label kij ∈ {0, 1} with value 1 if xi and xj are semantically similar, and
0 otherwise. A non-linear embedding function f is applied to each input by the
respective branch taking the input to some n-dimensional Euclidean space such that
f(xi) → hi, f(xj) → hj where hi and hj ∈ Rn. The distance d(hi, hj) between
embedded vectors should be as small as possible for a pair of instances with kij = 1,

14

Figure 3.1 Example of a Siamese Network that process images and uses the sigmoid
activation function to compute the final similarity score.

while it should be as large as possible otherwise. The distance vector zij = d(hi, hj)

can be further processed and finally passed into an activation function to output
a similarity score sij ∈ [0, 1]. Considering the target label kij and the predicted
similarity score sij , a loss function is used to measure their difference and to back-
propagate the gradients to update the model weights. An example of a Siamese
Network is depicted in Figure 3.1.

The actual implementation of these network may vary in different aspects ac-
cording to the goal. First of, the dataset split could be approached in a traditional
way: train, test and validation set are composed of samples belonging to disjoint
sets, but from a known distribution. A different approach would imply a split where
the validation, the test, or both sets contain samples of unknown classes since the
similarity function does not care about the data distribution but mostly their simi-
larity. Another implementation difference might be in the distance function used to
compute the distance between the embedded vectors like, for example, Manhattan
or Euclidean distance. The loss functions used to optimize the weights while train-
ing may vary as well. Our project focuses on three functions, the first one being
binary cross-entropy defined as

LBCE = −ylog(p) + (1− y)log(1− p)) (3.1)

where p is the predicted value and y the input pair label. This loss function is
widely used for classification tasks and it can be integrated in Siamese Networks
since the output can be read as a similarity score. The second loss function is the
mean squared error (MSE) defined as follow for a single binary output

LMSE = (y − p)2 (3.2)

where p and y are again the predicted value and the input pair label respectively.
The last loss function is Contrastive Loss (Khosla et al. 2020), which gets commonly
employed in Siamese Networks since it forces similar samples in having smaller
distances, while dissimilar data points result in larger distances and it is defined as

L(W,X, y) = (1− y)
1

2
(Dw)

2 + (y)
1

2
{max(0,m−Dw)}2 (3.3)

where X = (x1, x2) is the pair of inputs x1 and x2 and W is the set of parameters
to be learnt. Here again y is the pair label (1 if similar, 0 otherwise). This formula
introduces m as a margin for dissimilarity, and the euclidean distance Dw between
the output of the encoding sub-networks. These three loss functions were tested
in different configuration and a description of such experiments will be detailed in
Chapter 6. For the sake of completeness, we want to mention the more recent Triplet
loss, where an anchor input is compared to both a positive and a negative one. Such
function minimizes the distance between the anchor and the positive example, while
maximizing the distance between the anchor and the negative input (Hoffer and
Ailon 2014). This function has to be incorporated in a three-branched network, one
per each of the input1.

A crucial aspect of training a Siamese Network is the criteria used to select train-
ing positive and negative examples. Positive examples represent those elements that
are similar (e.g. belong to the same class), while negative examples contain dissimi-
lar elements (e.g. belong to different classes). The number of pairs to learn from is
quadratic: each instance of a specific class can be paired with each other instance
of the same class and marked as positive, and paired with each instance of every

1https://keras.io/examples/vision/siamese_network/

https://keras.io/examples/vision/siamese_network/

other class and marked as negative. One could decide to use every possible pair
resulting in longer computational times, or set the exact number of positive and
negative pairs to be used per each class. Another limitation could be introduced by
excluding pairs reuse in different train iteration. Moreover, the ratio between posi-
tive and negative pairs might vary leading to balanced or unbalanced training sets.
Finally, the network inner architecture could vary. Convolution-based architectures
are often employed due to their ability to extract different semantic information in
each filtering layer, but LSTM-architectures are quite used as well in many tasks
like, for example, text categorization (Shih et al. 2017) and disease detection (Bhati
et al. 2019).

3.2 C-way k-shot Learning

The zero-shot learning framework consist of training the model on specific classes,
and later query the same model with samples of unknown classes that were never
seen by the model while training. To back up the model decisions, a support set is
introduced: this set contains C-way classes and k-shot samples per each of class.
One approach to few-shot learning is metric learning, which implicates learning an
embedding space to compare classes. The goal is to learn a similarity function that
given two similar input returns 1, and 0 otherwise. Once the similarity function
is trained, it is used for prediction: the query sample is compared with each ele-
ment of the support set. The support sample returning the highest similarity score
is considered to be closer to the embedding space of the query sample, therefore
classified as similar to some criteria (e.g. belonging to the same class). Figure 3.2
shows an example of a 6-way 1-shot support set and a query image. State-of-the-art
researches show that the performances tend to get worse as the number of ways (C)
gets higher, while they get better as the number of shots (k) gets higher (Wolters
et al. 2020, Yu Wang et al. 2020). This suggests that it is easier to find the right
element from the support set, when the number of overall classes to pick from is
limited and it gets progressively harder when such number increases. On the other
hand, if more samples per class are provided the model is better guided to the right
similarity match. It is important to notice that C-way k-shot learning tends to

Figure 3.2 Example of a 6-way 1-shot support set containing 6 classes and 1 samples per
each class and a query sample. We expect the rabbit support sample to return the highest
value of similarity when compared to the query sample.

mimic human behaviours, overcoming some real-word scenario limitations. Having
few training samples becomes less problematic, since the only thing that matters is
the model ability of measuring similarities and this might not directly depend on
the number of samples the model is trained on. On top of that, once the model has
learned how to compare similarities between inputs it can be queried on samples
belonging to unknown classes as long as a support set is exhibited. It is easy to
see how the Siamese Networks architecture can easily be employed in this learning
framework.

3.3 Explainable Artificial Intelligence

Explainable AI, namely XAI, is Artificial Intelligence of which results can be ex-
plained and interpreted by humans. The need of knowing the whys and hows behind
a model results could be beneficial for different users and for different reasons. The
end-user of an AI application, might find insightful the explanation of an outcome
more than the outcome itself. On the other hand, developers could use explanations
to better understand if the model is miss behaving for some reason and if there is
the need of repeat some procedures in a controlled environment. Last but not least,
stakeholders might want to understand why a model is taking specific decisions,
before letting that model impact on real people’s life. The right to know (Dimitrova
2020), is the right of having an explanation for a specific outcome of an algorithm

and the rise of the data-driven society led to a large social discussion of why such
right must be considered as an individual right. The discussion on explainable al-
gorithms demonstrated that such information are not primarily useful to those who
develop them, but to the people and the society where such algorithms are deployed
in. The European Union enacted in 2016 the General Data Protection Regulation2,
which in Recital 713 define and characterize such right to know. In 2018 Google
announced the What-if Tool (Wexler et al. 2020), a tool that visually probe the
behavior of trained Machine Learning models to test performance in hypothetical
situations and to analyze the importance of different data features for different fair-
ness metrics. It goes without saying, given that tech-giants realised how important
is to develop and deploy responsible Machine Learning models, that the effort of the
research community has been major in the field especially when facing the black-box
models transparency challenge.

LIME (Ribeiro, Singh, and Guestrin 2016) has become one of the most popular
methods since it is model-agnostic and works on text, image and tabular data. It
generates local explanation by creating a set of synthetic instances in the neighbor-
hood of the instance to be explained and weights them according to their proximity.
Then, a linear model is used to approximate the model in the vicinity of the instance
to be explained. The main intuition behind this technique is to use a linear model
to approximate and explain a more complex one. Users of different expertise can
rely on this explainer because it produces interpretable representation and easy-
to-understand explanations. This method is widely employed in text and image
analysis as well, generating explanations in form of fragments of texts or superpixels
of an image. Figure 3.3 shows an example of explanation in form of important su-
perpixels. The success of LIME has inspired many adaptations that build up from
the ground of its main idea and propose improvements on different levels like, for
example, ALIME (Shankaranarayana and Runje 2019), DLIME (Zafar and Khan
2019) and LIME-SUP (Hu et al. 2018).

Another very popular method is SHapley Additive exPlanations, namely SHAP
2https://www.privacy-regulation.eu/
3https://www.privacy-regulation.eu/en/r71.htm

https://www.privacy-regulation.eu/
https://www.privacy-regulation.eu/en/r71.htm

(a) Input image (b) LIME Explanation towards the dog class

Figure 3.3 LIME explanation of a black-box model classifying the left picture as contain-
ing a dog. The explanation highlights in green the top 5 super-pixels that are most positive
towards the class, while the red 5 top super-pixels are the most negative ones.

(Lundberg and Lee 2017), which is model-agnostic and aims to explain a model
prediction by computing the contribution values of each feature to that specific
prediction. To achieve this, it optimizes a regression loss function based on the
concept derived from game theory of Shapely Values. The idea behind SHAP is to
assess which of the features has the greatest contribution to the overall prediction.
The technique considers the average marginal contribution of a feature value across
all possible coalitions, where each coalition vector assigns a value of 0 or 1 to each
feature defining whether or not it is present in the coalition itself. SHAP generates
easy-to-understand explanations that are able to highlight which features contribute
the most and if their influence is positive or negative to the final outcome. Figure
3.4 shows an example of this method’s explanation on image input data.

Another different group of methods goes under the umbrella of gradient-based
techniques, which estimate features attribution values to the final outcome with for-
ward and backward propagation iterations through the network. On the the most
known technique is Grad-CAM (Selvaraju et al. 2019), which stands for Gradient-
weighted Class Activation and it is a technique for producing visual explanations of
CNN-based models. This method uses the gradients of any target concept obtained
during the back propagation phase, flowing them into the final convolutional layer
so to produce a coarse localization map that highlights regions believed to be im-
portant by the model. Epsilon-LRP (Bach et al. 2015) is another gradient based
method, which computes layer-wise relevance propagation and it is able to high-

Figure 3.4 SHAP explanation on a multi-class classification task. While for the Amer-
ican egret class the explanation finds both positive and negative influence in the body and
beak areas respectively, only a positive influence is found for the speedboat class on the
image features portraying the actual boat.

light positive contributions to the network classification. It produces a heatmap in
the input space indicating the attribution relevance of each feature to the outcome.
Another technique is the one known as Integrated Gradients (IG) which computes
the gradient of the model’s prediction output to its input feature by establishing
a baseline and a sequence of samples interpolated from the baseline to the actual
input. DeepLIFT introduced by Shrikumar, Greenside, and Kundaje 2017 is also
a member of the gradient-based family, and it is a method for decomposing black-
boxes output prediction on specific inputs by back-propagating the contributions of
all neurons to every feature of the input. The activation of each neuron is compared
to its reference activation and a contribution score is assigned according to this
difference. In Figure 3.5 a comparison of the described gradient-based methods is
presented on various inputs from different datasets.

On the other hand, Perturbation-based methods assume that the features con-
tribution can be determined by measuring how outcome scores changes when the
input feature is altered. These methodologies might be slower than the gradient-

Figure 3.5 Portion of a figure exhibited in Bodria et al. 2021 showing saliency maps
obtained with different gradient-based methods on different datasets. The first row contains
the original input image and the model predicted class.

based ones, since the overall number of features (or group of features) to perturb
might be large. The Occlusion method introduced by Zeiler and Fergus 2013 pro-
duces changes in a classifier’s output by perturbing input images by sliding an empty
window over them. Such window might be of different dimension, therefore result-
ing in different attribution values. The above-mentioned LIME (Ribeiro, Singh,
and Guestrin 2016) method itself falls under this family umbrella, since it employs
super-pixels occlusion to compute the most influential ones. Perturbation methods
are model-agnostic by definition since the only thing they need access to is the model
outcome value, so to compare it after different perturbation runs.

Different methods were proposed for both gradient-based (Ancona et al. 2018)
and perturbation-based (Ivanovs, Kadikis, and Ozols 2021) families and, while the
goal of this project is not to give an exhaustive list of them, we want to point out that
there exist different general approaches when black-box models have to be explained.
While some methods might be tied to a specific input data format, others tend to
work on different input opening to tests in different contexts. Dealing with black-
box models is not an easy task, but developing model-agnostic technique has found

a good response in the research community. Every method works differently than
the others under the hood, but they all aim to provide clear and easy-to-understand
explanations. The form of such explanations is as close as possible to the human
reasoning and it tends to be as graphic as possible like. Image-related explanations,
for example, are usually heatmaps of the areas that play the bigger part in the model
classification behaviour. Explanations have to be easy-to-read, to guide humans in
understanding what and how much influences the black-box models final outcomes.

4 Problem Formulation

This thesis want to build Siamese Networks by training them on audio inputs
in the context of C-way one-shot learning, and it wants to address the challenge
of explain such models outcomes. As of today, to the best of our knowledge, few
researches address the study of implementation-related details of this type of archi-
tecture specifically for audio input data. Moreover, explaining the whys behind the
outcomes of Siamese Networks has never explored before for such inputs, especially
in the context of few-shot learning. The final goal of our work is to assess whether
or not Siamese Networks are able to correctly classify audio recordings belonging
to class distributions that were never seen during training. More importantly, we
want to answer the informal question that asks what is the model listening to when
it correctly matches the class of two audio it has never heard before? But also why
a given recording is more similar to a specific audio more than it is to others? And
finally why is the model miss-classifying a given audio?

Let us formalize these two separate problems. Given:

• C = {c1, c2, ..., cn} a set of n distinct classes;

• S = {s2, s2, ..., sn} a support set of n samples belonging each to a specific
ci ∈ C;

• x a query sample belonging to a class ci ∈ C;

• Y = {y2, y2, ..., yn} a labels set where yi = 1 if the class of the support sample
si is the same of the query sample x, and yi = 0 otherwise.

We define P (ci|x, si) as the probability that the query sample x belongs to class ci,
given the support sample si. We want to train a model to predict the query sample
class ĉ, being this the biggest probability given the pair-wise comparison between

24

the query sample and each element si ∈ S:

ĉ = argmax
∀ci∈C;∀si∈S

P (ci|x, si) (4.1)

and we want to do this in such a way that yĉ = 1. Ultimately, we want that the
support sample si resulting in the highest similarity score belongs to the same ci

class that the query sample x belongs to. Let us define f as such model prediction
function that given a query sample x and a support set S, returns the class ĉ of x
or, formally, f(x, S)→ ĉ.

The goal of this work is to define a function δ that, given the model prediction
function f along with the query sample x and the support set S, it explains why the
model classifies x as class ĉ by means of a set H = {h1, h2, ..., hn} of n heatmaps.
Such explanation function is formalized as δ(f, x, S) → H. Each hi contains the
contribution values expressing how each area of each support sample si ∈ S con-
tributes to the similarity score given by the model when comparing the query sample
x with the support sample si in exam. This will allow to assess how each portion
of the support sample si affects the model classification towards the class ci when
compared to the query x, for each ci ∈ C.

5 Methodology

This chapter describes the methodology we propose to solve the problem of explain-
ing Siamese Networks outcomes for audio inputs. Section 5.1 details the frame-
work employed to approach C-way one-shot learning (introduced by Koch, Zemel,
Salakhutdinov, et al. 2015), while Section 5.2 describes the novel method we propose
to explain the outcomes in such a learning context.

5.1 C-way one-shot Learning

Similarly to the process followed by Koch, Zemel, Salakhutdinov, et al. 2015 and
Honka 2019, we approached one-shot learning in two main phases: first we train
the Siamese Network to learn pairs similarity on training classes, while validating
it by monitoring the mean accuracy of different random C-way one-shot tasks on
validating classes. Then, we test the network performance in terms of mean accu-
racy of several random C-way one-shot tasks on test classes. The learning-validating
process is repeated until model convergence is reached, or no accuracy improvements
are observed for a certain amount of validating iterations. Training, validation and
test sets are disjoint, so to measure the model ability to generalise on unseen class
distributions. Before going into the details of each step, let us illustrate a complete
overview of this approach with Algorithm 1.

Algorithm 1 Overview of the general framework
1: repeat
2: X, y← GetTrainBatch()
3: m← TrainOnBatch(m, X, y)
4: if current run involves evaluation then
5: accuracy← EvaluateOneShot(m, validation classes)
6: save model weights if accuracy has improved
7: until model convergence or no validation accuracy improvement recorded
8: EvaluateOneShot(m, test classes)

26

The training-validating step is included in a loop cycle (lines 1-7, Algo 1) and
the training stops if the model converge or if no validation accuracy improvement
has been recorded in a given number of such loop iteration runs. The very first step
is the training phase, where the model is trained on learning semantic similarities
and dissimilarities between input pairs (line 3, Algo.1). What we refer to as m in
this algorithm must not be confused with the f function defined in Chapter 4. Line
3 has to be intended as a preliminary phase where the model gets fit to training
instances, to then being queried on a query sample and a support set to predict the
class scoring the highest similarity value based on the previous training phase. The
f function is encapsulated in the EvaluateOneShot function (line 5 and 8, Algo.1),
since it is the one responsible to evaluate the model performance predicting new
class instances similarities in the context of C-way one-shot learning. Training pairs
are generated from the GetTrainBatch function (line 3, Algo.1), which is detailed as
follows.

Algorithm 2 GetTrainBatch(pos, ratio)
Input: pos - positive pairs to generate,

ratio - positive to negative ratio
Output: X - spectrogram pairs,

y - spectrogram pairs labels

1: X, y← Inizialize()
2: neg← compute number of negative airs to generate from pos and ratio
3: for class in training classes do
4: spect← get a random sample from current class
5: for n in pos do
6: pos_spect← get a different random sample from current class
7: X← add pair <spect, pos_spect>
8: y← add label 1
9: different_classes← get neg classes different from the current one

10: for diff_class in different_classes do
11: neg_spect← get a random sample from diff_class
12: X← add pair <spect, neg_spect>
13: y← add label 0
14: return X, y.

The batches used to train the models are formed of positive and negative pairs,
labelled as 1 and 0 respectively. This labelling system guides the model in under-
standing when two inputs are somehow similar or dissimilar. The total number of

Figure 5.1 One-shot classification process for C classes (Exhibited by Honka 2019).

positive pairs is controlled via the pos parameter, while its combination with ra-
tio defines the overall number of negative pairs to be generated (line 2, Algo. 2).
Let us say we want to generate 4 positive and 2 negative pairs per batch, then we
would set pos = 4 and ratio = 2÷ 1. Such parameters setting enables to study how
data balancedness influences the model performances. Each training batch results
in C × neg negative and C × pos positive pairs, where C is the training set class
cardinality. For each class a first sample is picked at random and it is paired with
pos different spectrogram chosen in a randomise way (lines 4-8, Algo.2). A number
of neg samples are then selected randomically from the remaining classes, and paired
with spectrogram picked at the very beginning (line 12, Algo.2).

While training, we regularly evaluate the model performance by measuring the
mean C-way one-shot accuracy on C validation classes. We do this by generating
several random C-way one-shot classification tasks, where each consists of comparing
a query sample from class ci ∈ C to each element si ∈ S of the support set as
shown in Figure 5.1. The support set is composed of C samples, each belonging
to a different validation class. Only one element of the support set belongs to the
same ci class that the query sample belongs to. A pair-wise similarity score is
computed between the query sample and each element of the support set. Finally,
the classification outcome is determined according to the support set sample scoring
the highest similarity prediction. This process is repeated for every ci ∈ C, and the
mean accuracy of a given class ci is computed considering several different iteration
where class ci is fixed as query class. Let us discuss the evaluating process detailed
in Algorithm 3.

Algorithm 3 EvaluateOneShot(model, runs)
Input: model - model to evaluate,

runs - evaluation runs per class
Output: accuracy - normalized global mean accuracy

1: accuracy← 0
2: for class in evaluating classes do
3: for run in runs do
4: X, y← GetOneShotBatch(class, evaluating classes)
5: probs← predict model probabilities on X
6: if argmax(probs) == argmax(y) then
7: accuracy← accuracy + 1
8: return accuracy / (evaluating classes cardinality × runs).

We are interested in monitoring the overall mean accuracy considering all C

classes by looping on a specified runs number of evaluation runs per each of these
classes (lines 2-3, Algo.3). In each run we generate a C-way one-shot classification
task, and increment the global accuracy when the highest similarity value matches
the only pair labelled as 1 (lines 4-7, Algo.3). Finally, we normalize the overall
accuracy in the range of [0,1]. It is important to draw attention to the fact that in
Algorithm 3 we use the term evaluating classes, which could indicate classes deriving
from both validating or test sets separately. The GetOneShotBatch function (line
4, Algo.3) is responsible to generate one-shot pairs batch on which the model is

evaluated on. For the sake of completeness, let us show its specifics in Algorithm 4.

Algorithm 4 GetOneShotBatch(c, evaluation_classes)
Input: c - query sample class,

evaluation_classes - validation or test classes
Output: X - spectrogram pairs,

y - spectrogram pairs labels

1: X, y← Inizialize()
2: query_spect← get a random sample from query class c
3: pos_spect← get a different random sample from query class c
4: X← add pair <query_spect, pos_spect>
5: y← add label 1
6: for every other class diff_class in evaluation_classes do
7: neg_spect← get a random sample from diff_class
8: X← add pair <query_spect, neg_spect>
9: y← add label 0

10: return X, y.

Since the model expects two inputs, we have to generate a stack of C input
pairs, where C is the overall number of evaluation classes. We do this by fixing the
query sample class c and we pick at random the element which we refer to as query
sample. Then, another random sample from class c is selected, paired with the
query sample and marked with label y = 1 to form a positive pair (line 4-5, Algo.4).
Then, C − 1 negative pairs are formed: the query sample gets paired with C − 1

elements each belonging to a different class and labelled as 0.

Looking back at the general workflow described in Algorithm 1, we enter the
final test phase once the model converges or stops training. This last testing phase
is framed within the same framework used to evaluate the model while training, but
on a separate test set. The final model performance is therefore measured in terms
of mean accuracy of different C-way one-shot task using the process we previously
discussed (Algorithm 3). The only difference is that here we make use of the test
set, instead of the validating one.

This 2-tier train-validation and test framework allows to build the function f

defined in Chapter 4. Evaluating the system in a C-way one-shot learning context
in two separate moments and on two separate sets of class, is the core aspect of the
methodology we followed. At the end of this process (Algorithm 3) we possess a

Siamese Network that, when presented with a query sample and a list of possible
candidate - all belonging to unseen classes - it returns the one believed to be the
most similar to the query input.

5.2 Explanation Method

The implementation of Siamese Networks we make use of comprehends two main
parts: two identical convolution-based encoding sub-networks and the external final
layers that compute the difference between the encoded vectors to generate their
similarity score. To analyze the network outcomes, we propose to consider all layers
contributing to the final outcome. Employing a gradient-based explanation tech-
nique on the isolated sub-networks would highlight how they work when reducing
the inputs in different convolution stages, but they would not consider the final lay-
ers and the way they affect the similarity score prediction. Grad-CAM (Selvaraju
et al. 2019) technique has been tested replacing ReLU activation functions with
leaky ReLU ones to avoid vanishing gradient problems. Poor overall explanatory
results were observed, since only the input feature that would mostly stimulate the
encoders were highlighted. For these reasons, we decided to follow a perturbation-
based approach measuring the outcome similarity prediction after different input
perturbations.

A brief description of the way inputs are processed is now useful to understand
the context where our explanation method sets the ground. Audio inputs are treated
via their log-mel spectrogram representation, resulting in matrix of size x×y (Figure
5.2). The x axes represents time, while the y axes represents frequencies. Each

(time, frequency) coordinate contains the decibel (dB) value of the recorded sample.
Resulting x and y dimensions depend on the length of the recorder sample together
with the parameter setting used when converting audios in spectrograms. Due to
this-matrix structure a spectrogram representation could be intended as an image,
but it should not be confused as one. In fact, it is crucial to add an additional
channel dimension so that the spectrogram can be used as image-like input data
with common convolution-based architectures.

Figure 5.2 Log-mel dB spectrogram of an audio containing a person laughing. Darker
areas represents lower dB, suggesting silence in that frequency areas, while lighter pixels
represent sounds that are audible by human hear.

Before exploring the proposed explanation method, let us separate the general
workflow to compute features contribution values in the following two steps:

1. Decide the segmentation technique;

2. Determine the input(s) to perturb and perturb them to store segments con-
tribution values.

5.2.1 Segmentation technique

The first aspect to considered is how to perturb spectrogram inputs. After a first
inspection of the classical Occlusion inspired scrolling window (Zeiler and Fergus
2013) and an analysis of the 3 audio segmentation technique proposed by Mishra,
Sturm, and Dixon 2017 described in Chapter 2, we decided to test something dif-
ferent. The main limitation of occluding with a fixed size shape or segmenting on
time-frequency areas, is that the morphology of the spectrum is not considered and
therefore yield only approximate results. Occlusion experiments with scrolling win-
dow of shapes 1× 1, 3× 3, 50× 50 and 100× 100 were not able to find areas that
would really affect the outcomes. Not quadratic-shaped window of different sizes
were also tested, but the areas presumed to be important turned out not to be so
when the model would be later queried on them as counter proof. Even worst, using
fixed length segments to divide the input based on the time or the frequency axes

individually, would imply a direct bond between specific class instances and their
segmentation. Relying deeply on time segmentation alone, would mean assuming
that every sound event starts and end at the same moment in time in a given record-
ing. It is easy to see that in real-world applications it is unimaginable to assume
that the actual sound event occur in the exact same time under different recording
repetitions. In fact, this is hardly true even for recordings belonging to the same
class. On the other hand, it is hard to segment a spectrum into separate but still
meaningful parts. It is reasonable to believe that similar instances involve activa-
tions in comparable frequency bins, regardless of the recording repetition and the
decibel intensity. But still, a slight decibel variance could be discriminative of two
distinct classes and we want our model to be able to catch on that.

Considering the image-like matrix structure of spectrogram, we propose to seg-
ment them by means of techniques typically used for image inputs. The first al-
gorithm we propose to use is Felzenszwalb introduced by Felzenszwalb and Hutten-
locher 2004, which computes the Felsenszwalb’s graph based image segmentation
using a minimum spanning tree based clustering on the image grid. The second
algorithm we propose to use is SLIC introduced by Achanta et al. 2012, which
instead segments images using k-means clustering. Unfortunately the single-fake-
channeled nature of audio inputs, precludes the possibility of experimenting with
various other segmentation algorithms which process mainly RGB images. For this
reason Felzenszwalb and SLIC are the algorithm we decide to cover, since they can
work on grey-scale image-input as well.

5.2.2 Perturbation procedure

Once the segmentation technique is determined, the only thing left to decide are the
input to segment and the actual procedure to later perturb it. But, considering the
C-way one-shot framework, we have to think of a way to have an explanation that
considers both the query and the support samples and compares them as evenly as
possible. One could think of segmenting the query sample spectrogram and then
measure the perturbation changes of its segments when overlayed on the support

sample inputs. This approach would consider the query sample spectrum morphol-
ogy and use that to compare evenly all the support set instances, which are different
from the query by definition. A different approach would instead imply to segment
each support set sample, and later perturb it on its own segments. Differently from
the first procedure, here every support set sample gets segmented and perturbed
based on its own characteristics.

The overall idea we follow to explain the network outcomes in our C-way one-shot
environment is outlined in Algorithm 5.

Algorithm 5 GetContributions(X, model, seg_algorithm)
Input: X - one shot pairs batch,

model - model to explain
seg_algorithm - segmentation algorithm

Output: contributions - contribution values

1: contributions← Inizialize()
2: query_sample← get query sample from X
3: for supp_sample in the support set of X do
4: start_similarity← predict model on <query_sample, supp_sample>
5: segments← segment supp_sample with seg_algorithm
6: supp_sample_contribution← Inizialize()
7: for segment in segments do
8: pert_sample← perturb supp_sample current segment
9: pert_similarity← predict model on <query_sample, pert_sample>

10: delta← start_similarity - pert_similarity
11: segment_contribution← delta / current segment size
12: supp_sample_contribution← update supp_sample segment_contribution
13: contributions← add supp_sample_contribution
14: return contributions.

The proposed method keeps the query input fixed (line 2, Alg.5) and, for every
sample of the support set, it measures the model similarity outcome between the
query input and the support sample before perturbation (line 4, Alg.5). Then, our
method segments the support set sample using the selected segmentation algorithm
(line 5, Alg.5). For each segment its contribution value is computed as follows:
first the support set sample gets perturbed (line 8, Alg.5), then the new similarity
outcome is computed pairing the query sample with the perturbed version of the
support set spectrogram (line 9, Alg.5) and the difference between the starting

(a) Input spectrogram (b) Partition on 12 segments

(c) Perturbation on the 3rd segment (d) Perturbation on the 5th segment

Figure 5.3 Overview of the perturbation procedure.

similarity score and the one resulting after-perturbation is finally computed (line
10, Alg.5). Such difference is then weighted by the current segment size (line 11,
Alg.5). When perturbing a spectrum based on a segment (line 8, Alg.5), we keep
turned on that segment area while silencing off the remaining ones. Considering
that we are dealing with audio inputs, turning off a segment means setting its value
to −80 being this the smallest value in the dB scale. We could think this as a way
to create silence in the area we want to turn off. Figure 5.3 shows an overview of
this perturbation procedure: given a starting spectrogram (Fig. 5.3a), it is divided
in segments by the segmentation algorithm (Fig. 5.3b) and then perturbed one
segment at a time (Fig. 5.3c, Fig. 5.3d).

Before detailing the final version of the explanation method we propose to use,
we want to draw the attention to some known problems perturbation-based methods
usually lead to. First of all, when we perturb samples we might be generating out-of-
distribution (OOD) data point. We have to remember that traditional models might
generalize correctly on new samples, as long as they belong to a known distribution.
One possible solution to this problem is to re-train the model on a dataset that in-
cludes the perturbed data points (Hooker et al. 2018), accepting the additional time

resources needed. Ras, Çallı, and Gerven 2022 introduced the concept of Hermitry
Ratio to indicate how close a data sample is to a given distribution and assessed that
both the dataset and the architecture affect to some degree how perturbation-based
methods generate OOD data points. On top of that we have to consider the isolated
effect such techniques might lead to. Measuring the prediction changes of singular
segments perturbations might help us understand how that segment is contributing
to the final outcome, but it will disregard it completely from the interplay it has
with the remaining input areas. In our work we considered both these problems
and therefore included some fixes. Considering our few-shot learning context and
the fact that we evaluate the model on new classes, we could think that it would
not be affected by inputs that don’t belong to the training set distribution. Despite
this benefit, the nature of audio inputs might still play an important role when a
spectrogram from an unknown distribution is compared with a perturbed sample
belonging to that same distribution.

Our proposal to mitigate these downsides is to consider how much a specific seg-
ment contributes to the final outcome by considering its average prediction value.
Inspired by SHAP main idea (Lundberg and Lee 2017), we want such value to con-
sider the interplay between the segment and the remaining super-pixels. Differently
from SHAP, our context does not allow to compute such value using the training set
data. The goal of our project is in fact to produce a model-agnostic method which is
disregarded from its training phase. We therefore suppose to have a trained model,
and we want to explain its outcome when it is queried on new sets of classes. Let
us now exhibit the refined proposed method in Algorithm 6 to better explain how
we compute such per-segment average prediction value.

The improvements introduced to the first method described in Algorithm 5, are
highlighted in yellow to help the reader spot the proposed mitigation fixes. To mea-
sure the interplay between each segment and the remaining areas of the spectrogram,
we introduce a new parameter p that generates some additional perturbations where
the segment in exam is turned on alongside different others. The overall number
of segments that shall remain active in each perturbation is controlled via the s
parameter. By doing so we measure not only how a specific segment influences the

Algorithm 6 GetContributionsRefined(X, model, seg_algorithm, p, s)
Input: X - one shot pairs batch,

model - model to explain
seg_algorithm - segmentation algorithm
p - per-segment additional perturbations,
s - per-perturbation active segments

Output: contributions - contribution values

1: contributions← Inizialize()
2: query_sample← get query sample from X
3: for supp_sample in the support set of X do
4: start_similarity← predict model on <query_sample, supp_sample>
5: segments← segment supp_sample with seg_algorithm
6: supp_sample_contribution← Inizialize()
7: for segment in segments do
8: segment_similarities← Inizialize()
9: perturbations← compute p perturbations with s active segment each

10: for perturbation in perturbations do
11: pert_sample← perturb supp_sample based on current perturbation
12: pert_similarity← predict model on <query_sample, pert_sample>
13: segment_similarities← add pert_similarity
14: delta← start_similarity - mean value of segment_similarities
15: segment_contribution← delta / current segment size
16: supp_sample_contribution← update supp_sample segment_contribution
17: contributions← add supp_sample_contribution
18: return contributions.

outcome, but how its interplay with other area of the spectrogram impact on the
final outcome. For each additional perturbation, we store the similarity score ob-
tained querying the model (line 10-13, Algo.6), and we compute the final segment
contribution value as the difference between the starting similarity score and the
mean similarity value obtained on such p additional perturbations (line 14, Algo.6).
Finally, such segment-average prediction value is weighted according to the segment
size (line 15, Algo.6). Similarly to what we previously described, this process is
iterated over each pair of a C-way one-shot batch keeping fixed the query sample
and applying such perturbation methodology to each element of the support set.

At the end of Algorithm 6, we hold every support set sample contribution val-
ues per each segment within its own spectrogram segmentation. Each support set
contribution map has to be intended as an heatmap having the same x × y size

of the sepctrogram input itself. We can therefore visualize such heatmaps showing
how each segment is influencing - either positively or negatively - the final similarity
score outcome. For visualization purposes, the contribution values were considered
in terms of their absolute values and normalized in the scale of [-abs(contributions),
abs(contributions)]. Finally, to target the problem of explaining each C-way one-
shot classification task as a whole, we propose to share a common representation
scale. We therefore use the negative(−) maximum absolute value as minimum of
such scale, and it positive(+) variant as maximum of the scale.

6 Experiments

In this chapter we describe the different experiments we conducted to build and
explain the architecture of interest. First of all, we introduce the datasets and
detail how we pre-processed the data in Section 6.1, and we describe the network
architectures in Section 6.2. We continue detailing how we trained, evaluated and
tested the models in Section 6.3, concluding in Section 6.4 reporting and discussing
qualitative examples of the explanation method we proposed.

6.1 Datasets

One of the core elements of our project is the audio nature of the input data. We
utilize the AudioMNIST1 and ESC-502 datasets, exploiting the LibROSA (McFee
et al. 2015) package3 to pre-process them.

The AudioMNIST dataset is composed of 30000 audio recordings of spoken
digits (0-9) in the English language. Each digit is repeated 50 times for each of the
60 different speakers. These audios were recorded in quiet offices as mono channel
signal at a sampling frequency of 48kHz using a RØDE NT-USB microphone. 12 of
the speakers that recorded the clips were female, while 48 of them were male and
their ages range between 22 and 61 years old. Considering the context of C-way
one-shot learning we decided to use this dataset to pursue a speaker recognition
task, due to the high number of speakers and digits repetitions. The high number of
available speakers allows us to create three disjoint set: the training set is composed
of 50 classes, while the remaining 10 are divided equally between validation and
test set. The large number of available repetition for each of speakers, enables us
to generate a reasonable amount of both training, validating and testing pairs. To
transform the audio inputs, we decided to use their logarithmic-mel spectrogram

1https://github.com/soerenab/AudioMNIST
2https://github.com/karolpiczak/ESC-50
3https://librosa.org/

39

https://github.com/soerenab/AudioMNIST
https://github.com/karolpiczak/ESC-50
https://librosa.org/

(a) A man saying one (b) A woman saying zero

Figure 6.1 Examples of the AudioMNIST dataset spectrograms.

representation, which is commonly used for audio classification tasks (Hershey et al.
2016, Piczak 2015) and conveniently enough it allows to use architectures originally
designed for image classification. Prior to the transformations, the original samples
were down-sampled to 41kHz and zero-padded in order to generate input vectors
equal in length. While zero-padding, we added silence to the audio (-80 dB) by
placing the audio signal at random position within the vector. We followed this
approach to add randomness to the data, preventing silence to be placed at the
same position for all samples of our dataset. For each sound clip we computed its
log-mel spectrogram representation using an FFT window size of 4096, hop length of
216 samples and 224 mel-bands4. Such process lead to spectrogram of sizes equal to
224× 224, that would store enough information to allow an inverse transformation
that helped us sonify the spectrograms in the later explaining phase. Figure 6.1
shows two examples of the resulting spectrograms for this dataset.

The ESC-50 dataset is a collection of 2000 annotated 5-second audio clips di-
vided into 50 different classes and 40 repetition per class. All dataset clips were
recorded at a sampling rate of 44.1kHz. Similarly to the AudioMNIST dataset, the
large category space of ESC-50 is beneficial for Siamese Networks: a large amount of
pairs can be created to train the model and then generalize on new unseen classes. In
this case, we decided to pursue an environmental audio classification task. We split
the dataset so to have 50 training class, 5 validating and 5 testing ones. The dataset
recordings can be grouped into 5 macro-categories, each containing 10 classes. This
division is shown in Table 6.1 to give the reader a general overview of the kind of

4Parameters specifics at https://librosa.org/doc/main/generated/librosa.feature.
melspectrogram.html

https://librosa.org/doc/main/generated/librosa.feature.melspectrogram.html
https://librosa.org/doc/main/generated/librosa.feature.melspectrogram.html

Animals Natural soundscapes Human, non-speech sounds Domestic sounds Urban Noises
Dog Rain Crying baby Door knock Helicopter
Rooster See waves Sneezing Mouse click Chainsaw
Pig Crackling fire Clapping Keyboard typing Siren
Cow Crickets Breathing Door, wood creaks Car horn
Frog Chirping birds Coughing Can opening Engine
Cat Water drops Footsteps Washing machine Train
Hen Wind Laughing Vacuum cleaner Church bells
Insects (flying) Pouring water Brushing teeth Clock alarm Airplane
Sheep Toilet flush Snoring Clock tick Fireworks
Crow Thunderstorm Drinking, sipping Glass breaking Hand saw

Table 6.1 ESC-50 classes

(a) Curch bells class spectrogram (b) Laughing class spectrogram

(c) Glass breaking class spectrogram (d) Cow class spectrogram

Figure 6.2 Examples of the ESC-50 dataset spectrograms.

classes we will deal with. Here again, we processed the audio clips to recover their
log-mel spectrogram representations. Each sound clip was converted using a FFT
window size of 2048, hop length of 512 samples and 128 mel-bands. The dimensions
of the each spectrogram converted on such parameters result to be of 128 × 431.
In this occasion, the sampling rate was kept at 44.1kHz and no down-sampling
was applied before conversion. Example of ESC-50 spectrogrms resulting from this
conversion process is showed in Figure 6.2.

Let us now discuss a final change we made to our data by quickly recalling
that in our x × y spectrogram size definition, the x axes represents time while
the y axes represents the frequency variable. Despite the fact that spectrograms
might be intended as images due to their matrix structure, they still could not be
programmatically used as such. An additional channel dimension was infact needed
to use them as image-line input for common convolution-based architecture. The
final spectrograms input dimension would therefore be x× y × 1.

Figure 6.3 Siamese Network overview

6.2 Network architectures

In this project we built two distinct networks, one per each of the two dataset de-
scribed. Before getting into their details, let us briefly present an overview of a typi-
cal Siamese Network that process spectrograms by means of Figure 6.3. The overall
architecture is composed of two convolution-based encoders, followed by a distance
(or merging) layer and a final output scoring layer. Some optional fully connected
layers might be present right after the encoded inputs get merged together. The two
encoders share the same architecture and weights, which are updated simultaneously
during training so to result in identical embedding sub-net. Each conv-encoder is
composed of several convolution blocks, usually followed by a flattening and a fully
connected layer. The merging layer calculates element-wise metric distance between
the embedded inputs. Finally, an output layer consisting of a single fully connected
unit functions on such difference and generates a similarity output score between
the two given inputs.

Spectrogram representation enables to use architecture originally designed for
image-input like AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and VGG Net
(Simonyan and Zisserman 2014). This is why the encoders of our networks were
implemented as convolution-based architecture. Starting from this well-known ar-
chitectures and inspired by Becker et al. 2018, we conducted several experiments
to adjust the inner encoder structure. In addition, we experimented on different
parameters configuration to find the best architecture for each of the two dataset.
The hyper-parameters we tested include arrangements for the inner-structure of the
encoders as well as variables controlling the overall architecture learning process.
Table 6.2 lists all the parameters we investigated together with their search space.

Hyper-parameter Search space
Number of conv layers 1, 2, 3, 4
Number of filters per layer 12, 32, 64
Pooling layers type Average Pooling, Max Pooling
Fully connected unit size 1024, 2048, 4096
Distance metric Absolute difference, Squared difference
Loss function Binary crossentropy, MSE, Contrastive loss
Dropout in conv layers 0.0, 0.25, 0.5
Dropout in fully connected layers 0.0, 0.25, 0.5
Number of positive pairs 2, 4, 6
Positive-to-negative pair ratio 1÷ 1, 1÷ 2, 1÷ 3, 2÷ 1, 3÷ 1

Table 6.2 Hyper-parameter configurations

The hyper-parameter tuning phase was conducted in the learning-evaluating
framework described in Chapter 5 and the mean 5-way 1-shot accuracy was marked
as the value to maximize. After some preliminary trial runs, the number of maximum
training epochs was set to 1500. Such number resulted to be a reasonable trade-
off between the model performance and the run time. After 50 training epochs, the
model would be evaluated on 100 random 5-way 1-shot tasks, and the training would
stop if no mean accuracy improvements was recorded after 10 of such evaluation
runs. The Adam optimizer (Kingma and Ba 2014) was used for the loss function
minimization process. This framework was applied separately on the two dataset.

While tuning, we noticed some similarities. First of all, both dataset architecture
would stop training due to the evaluation threshold when the MSE and the Con-
trastive loss were employed. These loss function would not let the model train since
its training accuracy score would only decrease progressively. Another common be-
haviour was found when dropout was in work: the mean one-shot accuracy would
result equal to 1 (the maximum) after few evaluation runs and never unlock from
this state. After investigating this condition, we noticed that the model would some-
how explode and return a similarity score of 1 (the maximum) for every support-set
pair. To summarize, dropout would led the model in classifying every pair as com-
pletely equal always and forever on both datasets. After noticing such similarities
between the models behaviour on the two different datasets, we decided to test the
best resulting architecture for AudioMNIST to ESC-50. Surprisingly enough, the

Figure 6.4 Selected Siamese Network architecture.

same architecture would achieve the best result on both the two dataset separately.

The final selected architecture, for both the two distinct dataset, is showed in
Figure 6.4. The sub-encoders are composed of 3 convolution blocks, each containing
a 2D-convolutional layer and a max-pooling layer. Conv 64 is composed of 64 filters
and a kernel window of size 5×5, Conv 32 contains 32 filters and a 5×5 kernel size
while the last Conv 12 layer is composed of 12 filters with a 3× 3 kernel window.
Each convolution layer is activated with a rectified linear unit (ReLU) activation
function. The max-pooling layers all share a 2 × 2 window pool size. The max-
pooling layers down-sample the previous layer’s output applying a max-filter to
sub-regions of specific size, so to reduce the complexity of the input at different
stages. Finally, a fully connected layer of 4096 units takes the input back to a
1-dimension form. The square distance operates as merging layer between the two
encoded inputs, and a final fully connected layer composed of only 1 unit computes
the similarity score by means of a sigmoid activation function. The positive-to-
negative pair ratio was selected to be 1÷ 1, since a slight tendency to overfit was
noticed if it would tip to either one of the two pole. The only difference was in
the number of positive (and negative) pairs to generate: 2 and 4 were selected
for AudioMNIST and ESC-50 respectively. In both cases, a higher number would
drastically slow the training procedure, without leading to better results.

(a) MNIST-Net (b) ESC-Net

Figure 6.5 Training accuracy (blue) and loss (red) curves together with the 5-way 1-shot
mean accuracy progress (orange). The validating mean accuracy was measured once every
100 epochs.

6.3 5-way one-shot learning performance

Let us quickly summarize was we previously described. Two different Siamese Net-
works were built, one per dataset. They were trained to learn pair similarities on
a training set while being validated in a C-way one-shot learning framework on a
validation set, and then tested on a test set. The training/validation/test set split
results in 50/5/5 and 40/5/5 classes for the AudioMNIST and ESC-50 dataset
respectively. Let us now give the details of the training, validation and test phase
that the final selected architectures have gone through. In our discussion, we will
refer to the two networks as MNIST-Net and ESC-Net.

Differently from the hyper-parameter tuning phase, the maximum number of
training epochs was increased to 5000, with the model performance being evaluated
still every 100 training runs but this time on 300 random 5-way 1-shot tasks. While
training, the model weights were updated retrieving the layers gradients with respect
to the binary crossentropy loss value after every training batch. Figure 6.5 shows
the training-validating process for the two distinct dataset. Both the training pro-
cedure stopped because no 5-way 1-shot mean accuracy improvements was recorded
in 10 evaluation runs. MNIST-Net reached its best mean 5-way one-shot accuracy
after only 900 training epochs with a value of 0.83 (83%), while the process for
the ESC-50 dataset needed 1900 training epochs with a pick value of 0.86 (86%).
Additional tests with higher value of the early-stopping threshold were explored, but

Class Accuracy
04 93%
56 91%
55 88%
27 82%
46 78%
Mean total 86%

(a) MNIST-Net

Class Accuracy
Glass breaking 99%
Church bells 93%
Frog 91%
Laughing 82%
Door wood creaks 71%
Mean total 87%

(b) ESC-Net

Table 6.3 5-way one-shot mean test accuracy scores.

(a) MNIST-Net (b) ESC-Net

Figure 6.6 C-way one-shot mean accuracy while varying C from 1 to 5.

no overall improvement was found. The additional time needed by ESC-Net might
be due to the fact that it is composed of a smaller number of training classes. Each
training batch would therefore result in a lower overall number of pairs to learn
from.

Both networks were tested on test sets composed of 5 unseen classes each5. To
better comprehend the models behaviour, the mean 5-way one-shot accuracy was
also measured per each singular class. Test results for both networks are listed in
Table 6.3. Results show that the network working on the ESC-50 dataset reaches
accuracy values higher than 90% on 3 out of 5 classes, but the door wood creaks
class lowers the overall value scoring a mean accuracy of 71% singularly. Such value
is smaller than the smallest MNIST-Net results in, which generally scores values

5Not even one sample of the test classes was ever seen during training, leading to a situation
which is commonly referred as zero-shot learning. Despite this, in this thesis we use the term C-way
one-shot learning to indicate that the additional support set is composed of a singular sample for
each of the C classes. We are therefore asking the model to zero-shot the right classification of an
unseen query class, by providing exactly one other sample of that same class in the support set.

(a) MNIST-Net (b) ESC-Net

Figure 6.7 Confusion matrix classification results.

that seems to be better distributed among the 5 classes. The final mean accuracy
results to be of 86% for MNIST-Net and 87% for ESC-Net. A slight improvement
of 1% and 3% has been recorded from the validation phase for the two networks
respectively. This is not surprising, since we evaluated the model measuring the
mean accuracy in a 5-way one-shot framework. Figure 6.6 compares the model
accuracy while varying C from 1 to 5 on both validation and test set. The mean
accuracy decreases at increasing values of C, making it harder for the model to match
the right support set element for a given query input. Interestingly enough, the mean
accuracy decreasing behaviour is somewhat similar between the validating and test
set on both networks. This might be a counter-proof to the fact that the model
is interested in the samples semantic features, more than their class distribution.
We can safely state that the training-while-validating framework has successfully
trained the model to generalize on new classes.

Finally, let us now visualize the results achieved by the model in form of con-
fusion matrix in Figure 6.7. Following on what the mean accuracy value results
suggested, we can see that while the miss-classification are almost equally distributed
in MNIST-Net (Fig. 6.7a), higher miss-classification values are found for ESC-Net
(Fig. 6.7b) between the laughing and door wood creaks classes. This might be due
to both laughing and door wood creaks consisting of sounds generally composed of
repeated repetition distributed along a high range of the frequency spectrum.

6.4 Explainability

Let us recall that the goal of our explainability method is to explain 5-way 1-shot
classification tasks in their entirety, highlighting which segments have a positive
influence and which others a negative one on the similarity outcome.

The two segmentation algorithms we tested are Felzenszwalb and SLIC via their
publicly available implementation of the scikit-image6 python package. Felzen-
szwalb implementation opens to test on different parameters like scale to indicate
the cluster dimension scale, sigma to specify the standard deviation of the Gaussian
kernel used while pre-processing, and min_size to suggests the minimum size of each
segment. Regarding the SLIC algorithm, the package opens to a variety of param-
eters to test with and it even allows to use the maskSLIC version of the algorithm
(Irving 2016) which is commonly used to segment medical images. Both algorithms
detailed documentation can be found on the official package website7. After dif-
ferent preliminary test, we decided to use the Felzenszwalb segmentation algorithm
on both dataset with the same parameters setting of scale = 100, sigma = 1.5

and min_size = 1000. The number of random perturbation to be generated per
each segment was selected to be 500 (parameter p, Algorithm 6) and the percentage
of segments to keep active along with the examined one in each perturbation was
set to 20% (parameter s, Algorithm 6). Such configuration resulted to be a good
trade-off between the number of segments per each sample, the explanatory results
of the attribution values computed and the time needed to generate them. The vi-
sualization color scale of our explanations ranges from light blue to pink: blue areas
represent a negative influence on the model outcome, while pink portions indicate a
positive contribution to the similarity score. White areas are instead neutral to the
model classification. Important segments were further analyzed and an inversion
from spectrogram to audio was applied on such areas by means of the Griffin-Lim
algorithm (Griffin and Lim 1984). We will refer to this process as Soundification.
We carried out a total of 100 experiments per each dataset, dividing them in 20 per
class. Each of the 20 class-related experiment would consider that specific class as
the query label.

6https://scikit-image.org/
7https://scikit-image.org/docs/stable/api/skimage.segmentation.html

https://scikit-image.org/
https://scikit-image.org/docs/stable/api/skimage.segmentation.html

Figure 6.8 Explanation of a 5-way one-shot correct classification on speaker 56. MNIST-
Net outcomes a similarity score of 0.99 for the support sample labelled as 56, while the
second most similar spectrogram achieve a similarity score of 0.59 and it was produced by
speaker 46.

Figure 6.9 Explanation of a 5-way one-shot incorrect classification on speaker 56.
MNIST-Net outcome a similarity score of 0.885 for the support sample labelled as 56,
while the most similar spectrogram achieve a similarity score of 0.893 and it was produced
by speaker 46.

6.4.1 AudioMNIST Results and Discussion

The test set used to generate the explanation for the AudioMNIST dataset is com-
posed of the following speaker classes: 56, 27, 46, 55, 56. Speaker 56 is the only
female, while the remaining ones are male. Several experiments were conducted for
each of the speakers in order to understand the model outcomes on both correct and
incorrect classifications.

Let us examine an example of correct classification for speaker 56, which is shown
in Figure 6.8. In this example the model returns a similarity score of 0.99 for the

right support set spectrogram. By inspecting its heatmap, it is easy to see that
darker segments contain higher dB values, meaning that the model is indeed looking
at spoken areas. To be more specific, the outcome is due to segments that range
between 200 and 1000Hz along with frequency areas higher than 4096Hz. In a
general prospective, this explanation brings to light what is important to the model
and why the other support samples did not score high similarity values. Speakers
labelled as 04, 55 and 27 reach similarity score lower than 0.1 because no areas
rising such outcome value were found. Moreover, we can see that despite the fact
that similarities are found between speaker 46 and the query sample, they have a
much lower magnitude impact than the ones found on the correct support sample.

By looking at the miss-classified example for the same speaker 56 in Figure
6.9, an interesting result can be observed. The sample wrongly classified scores a
similarity value of 0.89%, while the right spectrogram is only 0.01% smaller. By
inspecting this miss-classification, we can clearly see that the frequency spectrum
the model is looking at for wrong label 46 range from 0 to 512Hz. These values are
much smaller than the ones considered to be important when label 56 gets correctly
classified.

The classification confusion matrix in Figure 6.7a shows that the higher value
of miss-classification for speaker 56 is indeed the speaker labelled as 46, and quanti-
tative explanation experiments suggest what the model behaviour might be. When
it correctly classifies 56 speaker’s audio, it mainly considers spoken segments in
medium-high values of the frequency spectrum. On the other hand when miss-
classifying, it mainly looks at areas located in at the very bottom of the frequency
range. A similar behaviour was also found when the query sample is spoken by any
other male speaker. In Figure 6.10 we show an example of miss-classification for
the male speaker 55 to comment on a common classification behaviour we noticed.
In this specific case we can see that the support set sample scoring the highest value
belongs to speaker 46 and that important segments are found in frequencies higher
than 4096Hz. Such frequencies are completely different from the ones the model is
looking at the majority of the time when correctly classifying audios of the query
sample speaker 55. Quantitative experiments guide us to believe this is a mistake

Figure 6.10 Explanation of a 5-way one-shot incorrect classification on speaker 55.
MNIST-Net outcomes a similarity score of 0.363 for the support sample labelled as 56,
while the most similar spectrogram achieve a similarity score of 0.786 and it was produced
by speaker 46.

the model repeats frequently. A correct classification for a specific male class would
usually look at lower freuency Hz values, while incorrect classifications would instead
usually depend on segment higher in the frequency spectrum.

Let us now draw some conclusion for MNIST-Net from the experiments we car-
ried out. First of all, each perturbation run on the described parameters setting
would need an average time of 1 minute (±0.5min) per each element of the support
set. In our case, considering the 5 classes composing the support set, the overall
time needed to have a complete explanations on a 5-way 1-shot task would be of
5 minutes (±2.5mins). Experiments show that, generally, positive-influential seg-
ments are usually the same for a specific speaker, and they change according to the
query speaker in exam. The female speaker’s important areas would always reside in
medium-high frequency areas (higher than 2048Hz), while the male speaker would
all lay together in the lower spectrum (smaller than 1024Hz). Male speakers have
also slight differences between them, but the model seems to catch on them correctly.
Speaker 46 has the lower tone of voice (<200Hz), while speaker 27 speaks a little
higher (150-300Hz). Finally, speakers 55 and 04 progressively speaks in the range
from 250-350Hz and 300-450Hz respectively. In many occasion, the MNIST-Net
tendency of focusing on silent spectrogram areas has been highlighted. Although
experiments did not show cases where a correct classification is mainly due to silence
portions, we could still examine miss-classification that predominantly depended on

such areas from time to time. This wrong behaviour might be due to the data-
augmentation phase we carried out inserting silence areas at random position to
uniform the dataset. The soundification process did not help in drawing additional
conclusions. Listening back to both positive and negative influencing segment is
not very helpful in this context, since the overall recording duration is of 1 second.
Segments would only contain portions much shorter and, therefore, with a poor
meaning. Listening to male speakers important segments is also pointless since they
all mostly lay in the same range of low-frequency. Such lower frequencies are hard
to be perceived as different by human ear, especially when they do not include their
harmonics and occur in very short sound events.

6.4.2 ESC-50 Results and Discussion

We tested ESC-Net performance on a test set composed of the following classes that
we now seek to explain: frog, curch bells, glass breaking, laughing and door wood
creaks. The classification confusion matrix depicted in Figure 6.7b shows that the
first three classes seem to be recognizable enough, while the last two result in the
highest miss-classification rate instead. We conducted several experiments on each
class fixing it as query label, to try understand the model classification behaviour.

Let us first analyze the laughing and door wood creaks classes, which are fre-
quently mixed-up together. Inspecting different 5-way 1-shot tasks, we noticed that
both classes provide samples belonging to a wide domain space: door wood creaks
recordings would vary from short sounds to longer ones with wood singular creak
being alternatively well separate or almost completely unified. Same thing goes
for the laughing class: laughs might appear both as unified spectrograms or well-
separate laugh giggles. Figure 6.11 shows an examples of correct classification for
the door wood creaks. If we take a closer look to both query and support set samples
belonging to this class, we can see a big difference by sight alone. The query sample
is composed of similar creaks repetitions, each spanning across the entire frequency
spectrum range, that tend to create a uniform sound as a whole. The support set
spectrogram is composed of much fewer creaks instead.

Figure 6.11 Explanation of a 5-way one-shot correct classification on door wood creaks
class. ESC-Net outcomes a similarity score of 0.978 for the support sample labelled as
door wood creaks, while the second most similar sample achieve a similarity score of 0.686
and it belongs to the laughing class.

Moreover the support sample spectrogram presents two main frequency slides:
the first slides down frequencies from 4096Hz up to 0Hz, while the second slide
does the exact opposite. Our explanation brings to light the fact that ESC-Net is
mostly paying attention to the door wood creaks support samples portion that occur
between 0.6 and 1.8 seconds. This segment is located at high frequencies (>4096Hz)
and it is composed of a number of repetition creaks which is higher than it is in
the rest of the spectrogram. This is interesting to notice because this segment area
is very much similar to the query sample morphology itself. The explanation also

Figure 6.12 Explanation of a 5-way one-shot incorrect classification on door wood creaks
class. ESC-Net outcomes a similarity score of 0.79 for the support sample labelled as 56,
while the most similar spectrogram achieve a similarity score of 0.881 and it belongs to the
laughing class.

highligts that the laughing support sample is considered somewhat similar to the
query input due to the same higher frequency range, especially in the wave crests of
each singular laugh. Through different experiments we could also notice that when
ESC-Net correctly classifies the door wood creaks class samples, the remaining frog,
curch bells and glass breaking classes are mostly only colored in blue.

Let us now exhibit an example of incorrect classification for the door wood creaks
class in Figure 6.12. This example, together with the correct-classification one we

previously described, were carefully chosen because they encapsulate the two main
problems that different experiments showed us to affect the model in mixing-up these
two classes rather frequently. The first of them being the wide domain range of both
classes recordings, and the second one is the inability of discriminate correctly on
the higher frequency range. Here again, if we take a look at the samples themselves
we can see their different spectrogram morphology. The query door wood creaks
sample in Figure 6.12 is composed of separate creak sounds that, differently from the
support sample belonging to the same class, reside in a smaller range of frequencies
(<2048Hz). Such condition is enough for ESC-Net to classify the query sample as
laughing, since the wave crests of each laugh mostly lives in that same frequency
range.

Regarding the frog and church bells recordings we could notice a dual attitude
of ESC-Net. The network classifies frog samples correctly when the different croaks
are well-separate, while it is prone to miss-classify them as church bells clips when
the distance between croaks is relatively small and it includes a little decay after
the sound event itself. In a dual manner ESC-Net correctly classifies church bells if
the different bell tolls are somehow connected by means of delay, while it classifies
them as frog recordings if they are well-separate. Finally, the glass breaking samples
are pretty much different from all other classes since they are typically composed of
short sound events (1,2 seconds) in a longer audio recordings (5 seconds). Usually
for this class, our methods exposes as important areas for correct classifications a
curve that follows the spectrogram separation between the end of the breaking-glass
sound event and the remaining silence exclusively. The tendency to miss-classify
the glass breaking recordings is especially highlighted when the query sample of a
glass breaking is longer in time, the relative support sample is instead shorter and
the door wood creaks class spectrogram has a length much more similar to the query
input than the supposedly correct support sample does.

Let us now draw some conclusion for ESC-Net from the experiments we carried
out. Each perturbation run on the described parameters setting would need an
average time of 1.5 minute (±1.0min) per each element of the support set. In our
case, considering the 5 classes composing the support set, the overall time needed

to have a complete explanations on a 5-way 1-shot task would be of 7.5 minutes
(±5mins). A common mistake that ESC-Net does when miss-classifies some query
samples is due to the spectrograms actual morphology regardless of the query class
in exam. Our explanation method seems to indicate that the network is indeed able
to discriminate between different classes as long as the query sample and the support
sample of a given class derive from a similar generating source. An additional insight
that points to this direction was given by the later soundification process. Some
laughs were recorded by groups of people, while other were generated by an only
speaker alone. Moreover, evil laughs that usually starts from the bottom frequencies
and tend to reach higher ones were also present. Experiments show that the network
is not able to discriminate between an evil laugh and a door opening sounds that
similarly slides from lower frequencies to higher ones. ESC-Net does not grasp
correctly on these frequency-slides, but focuses its attention on the higher spectrum.
Listening back to these isolated frequencies for both the correct classifications (Fig.
6.11) and the incorrect ones (Fig. 6.12) no difference was perceived by human ear.
Moreover, a human classification would have been impossible by only listening to
such audio portions. The soundification process has turned out to be useful for the
church bells recordings instead: it guided us to understand that the model is paying
more attention to the decay between different bell tolls, more than the actual toll
sound event itself. Similarly, dry frog croaks are much more easy to classify than
recordings containing echo or reverb that somehow connects different croaks between
them.

6.4.3 Insertion and Deletion

To asses qualitative significance of the explanations found via our perturbation
method, we followed a Randomized input sampling fashion (Petsiuk, Das, and Saenko
2018) computing the deletion and insertion scores by increasingly deleting and in-
serting the segments our method value as most important from a full and an empty
spectrogram respectively. In this framework, we ideally expect the insertion curve
to rapidly increase after only few segments addition, remaining closer to high simi-
larity values as less important segment are gradually added. Additionally, we expect

the insertion related area under curve (AUC) to be as closer to 1 as possible. On
the other hand, we expect the deletion curve to decrease rapidly after only few seg-
ments removal, stationing on small similarity values as less important segments are
deleted. In this case, we expect the deletion related area above curve (AAC) to be
as closer to 1 as possible. In both cases, such curves behaviour would imply that
our explanation method has indeed found important segments.

To do this, we generated 50 random 5-way one-shot tasks per each of the 5
test classes and we repeated this process for both dataset. Each of the 50 class-runs
would consider that specific class as query label, computing the attribution values for
the support set sample belonging to the class in exam using our perturbation-based
method. Once the segment attribution values were stored, we then measured:

• Insertion scores by adding segments from the most to the least important
to an empty spectrogram. Similarity prediction between the query sample
and such perturbed version of the support set sample was recorded at every
segment-addition step.

• Deletion scores by removing segments from the most to the least impor-
tant from the intact support set spectrogram. Similarity prediction between
the query sample and such perturbed version of the support set sample was
recorded at every segment-removal step.

Finally, we computed the mean value of both insertion and deletion scores. Addi-
tionally, the mean predicted value of the second most similar element of the support
sample was also stored for those same 50 one-shot tasks.

To assess the qualitative relevance of the results we described for the AudioM-
NIST dataset, let us show the insertion and deletion curves for speakers 56 and
46 (Figure 6.13). Both insertion and deletion curves show that the segments our
method identifies are somewhat important to the model outcomes. Looking at the
speaker 56 insertion curve (Fig. 6.13a), we can see that we only need to add ∼ 0.1%

of important segments to let MNIST-Net match the query with the correct support

(a) Speaker 56 insertion curve AUC = 0.5739 (b) Speaker 56 deletion curve AAC = 0.6963

(c) Speaker 46 insertion curve AUC = 0.6072 (d) Speaker 56 deletion curve AAC = 0.7528

Figure 6.13 Insertion and deletion curves for speakers 56 and 46

sample, since the second most similar element scores a mean value of ∼ 0.30%. Inser-
tion curve for speakers 46 shows that the average percentage of important segments
needed for a correct classification is of ∼ 0.35% instead (Fig. 6.13c). Analyzing
the deletion curves we can see that while for speaker 56 we would need to delete
in average ∼ 0.25% of important segments to match the right support sample (Fig.
6.13b), speakers 46 would only require a ∼ 0.05% of segments to be removed (Fig.
6.13d). It is due noticing that a strange behaviour is highlighted for the deletion
curves of speaker 56. When the percentage of important segments deleted is between
∼ 0.80% to ∼ 0.85%, the similarity score increases to values even higher than the
second most similar element of the support set.

Let us now describe deletion and insertion curves for the door wood creaks and
laughing classes processed by the ESC-Net and displayed in Figure 6.14. All curves
guide us to think that our explanation methods is somehow capable of pointing to
important segments. Both insertion curves imply a reasonably high AUC, despite

(a) Laughing insertion curve AUC = 0.6266 (b) Laughing deletion curve AAC = 0.3998

(c) Door wood creaks insertion curve
AUC = 0.6487

(d) Door wood creaks deletion curve
AAC = 0.4759

Figure 6.14 Insertion and deletion curves for laughing and door wood creaks classes

the fact that the percentage of segment to add to let the network match the query
with the right support sample, is of ∼ 0.25% and ∼ 0.5% for the laughing (Fig.
6.14a) and door wood creaks classes (Fig. 6.14c) respectively. On the other hand,
both deletion curves imply AAC lower than 0.5. The percentage of segments to
remove for a correct classification is ∼ 0.5% for the laughing class (Fig. 6.14b), and
∼ 0.1% for the door wood creaks class instead (Fig. 6.14d). The deletion curves
of ESC-Net let us notice the same weird behaviour we encountered on MNIST-Net
speaker 56: a peak is always present when more than 80% of important segments
are deleted from the starting spectrogram. This finding might lead us to think that
both models give importance to silent areas, since they return high similarity values
when comparing intact spectrograms with empty ones. This behavior might be due
to the fact that the model has never been trained on completely silent recordings,
leading to a comparison incapacity when it is presented with such out-of-distribution
inputs.

7 Conclusions

In this thesis, we present a novel perturbation-based method to explain Siamese
Networks that process audio inputs in the context of C-way k-shot learning. Using
a perturbation approach based on the spectrogram morphology, the tool evaluates
segments-weighted-average contribution values to the final outcome considering the
interplay of different areas of the overall spectrogram. Such contributions values
are computed for every support set sample and then visualized as heatmaps in a
shared min-max scale. The tool is able to highlight segments important for the
model classification process, both towards higher and lower similarity scores. Com-
bining the visual communicative effect and the soundification of such important
segments, our approach is able to guide us in understanding both correct and incor-
rect classification behaviours. In Chapter 6 we reported extensively the experiments
conducted on the AudioMNIST and the ESC-50 dataset separately, followed by a
insertion-and-deletion assessment to validate our proposal.

Experiments on the AudioMNIST dataset demonstrate that state-of-the-art per-
formance are achievable in the context of 5-way one-shot learning by means of
Siamese Networks for short audio clips. Moreover, experimental results illustrate
that our explanation method can bring some interesting findings to light. Correct
classification of female speakers recordings is mainly due to medium-high frequency
segments, while their miss-classification depends primarily on segments that reside
at the very bottom of the frequency range. A symmetrical behaviour is observed
for male speakers audios: a correct classification is usually based on lower frequency
values, while incorrect classifications is generally due to segment higher in the fre-
quency spectrum. Our explanation method also brings to surface the model reliance
on silent-areas. While in most cases it is present with low magnitudes, there are
cases where its importance is higher than actual spoken areas guiding the model
towards the wrong prediction.

60

The experiments carried out on the ESC-50 dataset confirm that state-of-the-art
performance can be reached in the context of 5-way one-shot learning using Siamese
Networks on longer audio clips (Honka 2019). The application of our explanation
method extracts different insights, the first one being a strong dependence on the
recordings domain range. Such finding might seem trivial, but it has a huge impact
on the model generalization capability and an even greater meaning in our one-shot
learning context. Distinct recordings belonging to the same class label, could still
be produced by different sources and in different recording environments. An evil
laugh and a people-group laugh are labelled as equals, even though their spectrogram
morphology is quite different. The former tend to evolve from low to medium-high
frequencies, while the latter mainly reside in the higher frequency spectrum. The
network inability of discriminating on medium-high frequency was largely explored
analysing correct and incorrect classification for the laughing and door wood creaks
classes jointly. The segments of interest for both classes tend to reside in the higher
frequency spectrum, which is where the network has not really learned to discrimi-
nate. In these cases, the final decision is deferred to the actual nature of the support
set recordings: having crest-shaped values in the mid-high spectrum range is the the
only thing that matters. In other cases, the explanations led us to understand the
importance of the decay between two sound events that are repeated frequently in
the overall recording. Most of the times, decays is the discriminating variable when
miss-classification occurs between frog croaks and church bells tools. Despite the
good one-shot performances, such findings lead to obvious questions towards the
model robustness.

A significant conclusion we can draw from using our explanation method is that
the recordings domain is crucial to the model trustworthiness. AudioMNIST is a
pretty simple dataset where every audio clip is only composed of a spoken digit.
Moreover, all dataset samples were recorded with the same microphone and in the
same environment. If we consider the recordings of a new speaker, they still have
the same accent and similar intention when being spoken. On the other hand each
ESC-50 class is composed of a more heterogeneous set of recordings. When queried
on these classes, the network might fail to match the two correct samples since
they are indeed quite different by nature. Our experiments also showed that the

soundification process effectiveness is dataset-dependent: listening back to segments
belonging to short audio clips (1 second) is pretty useless since it reconstruct audios
that are too short to be semantically meaningful. On the other hand, soundifying
portion of longer clips is helpful to the overall explanation goal especially when they
include segments residing in distinct frequency ranges.

A critical drawback of our method concerns the time resources needed. Generally,
perturbation-based method are computational expensive since they might perturb
the input several times. In addition to that, our explanation is linked to a C-
way k-shot learning framework, and therefore needs to compute contribution values
per each of the C elements included in the support set. Another critical aspect
of our method is the number of different parameters to tune. In order to have a
comprehensive idea of the explanation results each configuration would lead to, one
should have to wait for all contribution values to be computed. The hyper-parameter
tuning phase could easily become time consuming by itself. A possible mitigation
to such problem would imply tuning the parameter settings on a smaller value of C,
before running the method on the desired number of classes to explain.

Combination of our tool’s generated heatmaps and the insertion-and-deletion
assessment, showed model weaknesses on silence-areas. Possible future works could
tackle this problem in two separate manners. The data augmentation phase that pre-
cedes the spectrogram conversion, could make use of white noise instead of silence-
areas. This change could also bring our problem much closer to a real-world scenario
where noise is largely present in recording clips. A different solution could make use
of completely silenced pairs to train the model. By doing so such areas could be less
problematic during our method’s perturbations, especially if the networks does not
see them as out-of-distribution data points anymore.

Future directions of this work might be refining the explanations, working both
on the front-end visualization and the inner algorithm itself. Deeper investigations
can be carried out in order to decide which sample to perturb. The experiments we
carried out in this thesis keep intact the query sample, to then segment and perturb
each support set element based on its own segmentation mask. A different approach

could segment and perturb the query sample instead, and measure its distance to
each of the support set samples. It would be also interesting to analyze the pos-
sibility of perturbing both the query and the support samples together to measure
segment-wise similarities. Intriguing aspects worth exploring with additional exper-
iments would be working on different audio conversions, regardless of their ability
to get later sonified. Training the Siamese Network on much smaller amount of data
could also be explored. This approach would take the problem closer to real-world
scenarios where few data repetition are available per each class.

Let us conclude by saying that the motivation behind the explanation method we
proposed in this thesis is the desire to explain machine learning models that emulate
human learning behaviour. Being able to understand which are the discriminative
features for a black-box model that works in a few-shot learning framework, could
help us understand to which extent machines think as human (at the very least in
a context where they are asked to do so). Important aspects to explore with addi-
tional experiments would be testing our explanation method on dataset composed of
recordings longer than the one we tested in this thesis. Moreover, the combination
of heatmaps visualization along with the soundification process, could be further ex-
plored on such longer recordings to better understand if it is able to expose segment
portions meaningful to the human ear. Despite our proposal was born to explain
Siamese Networks, a future research direction would be extending our explanation
method on other architectures which are commonly employed in few-shot learning
tasks like Matching Networks, Relation Networks or Prototypical Networks. Fi-
nally, future studies might cover the possibility of exploring our method’s efficiency
on traditional image inputs.

References

Acconcjaioco, Michelangelo and Stavros Ntalampiras (2021). “One-shot learning for
acoustic identification of bird species in non-stationary environments”. In: 2020
25th International Conference on Pattern Recognition (ICPR). IEEE, pp. 755–
762.

Achanta, Radhakrishna et al. (2012). “SLIC Superpixels Compared to State-of-the-
Art Superpixel Methods”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 34.11, pp. 2274–2282. doi: 10.1109/TPAMI.2012.120.

Adadi, Amina and Mohammed Berrada (2018). “Peeking Inside the Black-Box: A
Survey on Explainable Artificial Intelligence (XAI)”. In: IEEE Access 6, pp. 52138–
52160. doi: 10.1109/ACCESS.2018.2870052.

Ancona, Marco et al. (2018). “Towards better understanding of gradient-based
attribution methods for Deep Neural Networks”. In: International Conference
on Learning Representations. url: https : / / openreview . net / forum ? id =

Sy21R9JAW.
Bach, Sebastian et al. (2015). “On pixel-wise explanations for non-linear classifier

decisions by layer-wise relevance propagation”. In: PloS one 10.7, e0130140.
Becker, Sören et al. (2018). “Interpreting and Explaining Deep Neural Networks for

Classification of Audio Signals”. In: CoRR abs/1807.03418. arXiv: 1807.03418.
Bhati, Saurabhchand et al. (2019). “LSTM Siamese Network for Parkinson’s Dis-

ease Detection from Speech”. In: 2019 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pp. 1–5. doi: 10.1109/GlobalSIP45357.

2019.8969430.
Bodria, Francesco et al. (2021). Benchmarking and Survey of Explanation Methods

for Black Box Models. doi: 10.48550/ARXIV.2102.13076. url: https://

arxiv.org/abs/2102.13076.
Bromley, Jane et al. (1993). “Signature verification using a” siamese” time delay

neural network”. In: Advances in neural information processing systems 6.
Chou, Szu-Yu et al. (2019). “Learning to match transient sound events using atten-

tional similarity for few-shot sound recognition”. In: ICASSP 2019-2019 IEEE

64

https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/ACCESS.2018.2870052
https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=Sy21R9JAW
https://arxiv.org/abs/1807.03418
https://doi.org/10.1109/GlobalSIP45357.2019.8969430
https://doi.org/10.1109/GlobalSIP45357.2019.8969430
https://doi.org/10.48550/ARXIV.2102.13076
https://arxiv.org/abs/2102.13076
https://arxiv.org/abs/2102.13076

International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, pp. 26–30.

Cireşan, Dan, Ueli Meier, and Juergen Schmidhuber (Feb. 2012). “Multi-column
Deep Neural Networks for Image Classification”. In: Proceedings / CVPR, IEEE
Computer Society Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion. doi: 10.1109/CVPR.2012.6248110.

Dimitrova, Diana (2020). “The Right to Explanation under the Right of Access to
Personal Data: Legal Foundations in and beyond the GDPR”. In: Eur. Data
Prot. L. Rev. 6, p. 211.

Erhan, Dumitru, Aaron Courville, and Yoshua Bengio (2010). Understanding rep-
resentations learned in deep architectures. Tech. rep. Technical Report 1355,
Université de Montréal/DIRO.

Felzenszwalb, Pedro F and Daniel P Huttenlocher (2004). “Efficient graph-based
image segmentation”. In: International journal of computer vision 59.2, pp. 167–
181.

Griffin, D. and Jae Lim (1984). “Signal estimation from modified short-time Fourier
transform”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing
32.2, pp. 236–243. doi: 10.1109/TASSP.1984.1164317.

Guidotti, Riccardo et al. (Aug. 2018). “A Survey of Methods for Explaining Black
Box Models”. In: ACM Comput. Surv. 51.5. issn: 0360-0300. doi: 10.1145/

3236009. url: https://doi.org/10.1145/3236009.
Haenlein, Michael and Andreas Kaplan (2019). “A Brief History of Artificial Intelli-

gence: On the Past, Present, and Future of Artificial Intelligence”. In: California
Management Review 61.4, pp. 5–14. doi: 10.1177/0008125619864925. eprint:
https://doi.org/10.1177/0008125619864925. url: https://doi.org/10.

1177/0008125619864925.
Hershey, Shawn et al. (2016). CNN Architectures for Large-Scale Audio Classifica-

tion. doi: 10.48550/ARXIV.1609.09430. url: https://arxiv.org/abs/1609.

09430.
Hoffer, Elad and Nir Ailon (2014). Deep metric learning using Triplet network. doi:

10.48550/ARXIV.1412.6622. url: https://arxiv.org/abs/1412.6622.

https://doi.org/10.1109/CVPR.2012.6248110
https://doi.org/10.1109/TASSP.1984.1164317
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1177/0008125619864925
https://doi.org/10.48550/ARXIV.1609.09430
https://arxiv.org/abs/1609.09430
https://arxiv.org/abs/1609.09430
https://doi.org/10.48550/ARXIV.1412.6622
https://arxiv.org/abs/1412.6622

Honka, Tapio (2019). “One-shot Learning with Siamese Networks for Environmental
Audio”. In.

Hooker, Sara et al. (2018). A Benchmark for Interpretability Methods in Deep Neural
Networks. doi: 10.48550/ARXIV.1806.10758. url: https://arxiv.org/abs/

1806.10758.
Hu, Linwei et al. (2018). Locally Interpretable Models and Effects based on Supervised

Partitioning (LIME-SUP). doi: 10.48550/ARXIV.1806.00663. url: https:

//arxiv.org/abs/1806.00663.
Irving, Benjamin (2016). maskSLIC: Regional Superpixel Generation with Applica-

tion to Local Pathology Characterisation in Medical Images. doi: 10.48550/

ARXIV.1606.09518. url: https://arxiv.org/abs/1606.09518.
Ivanovs, Maksims, Roberts Kadikis, and Kaspars Ozols (2021). “Perturbation-based

methods for explaining deep neural networks: A survey”. In: Pattern Recognition
Letters 150, pp. 228–234. issn: 0167-8655. doi: https://doi.org/10.1016/

j.patrec.2021.06.030. url: https://www.sciencedirect.com/science/

article/pii/S0167865521002440.
Khosla, Prannay et al. (2020). Supervised Contrastive Learning. doi: 10.48550/

ARXIV.2004.11362. url: https://arxiv.org/abs/2004.11362.
Kingma, Diederik P. and Jimmy Ba (2014). Adam: A Method for Stochastic Opti-

mization. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.org/abs/

1412.6980.
Koch, Gregory, Richard Zemel, Ruslan Salakhutdinov, et al. (2015). “Siamese neural

networks for one-shot image recognition”. In: ICML deep learning workshop.
Vol. 2. Lille.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran As-
sociates, Inc. url: https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
Lecun, Y. et al. (1998). “Gradient-based learning applied to document recognition”.

In: Proceedings of the IEEE 86.11, pp. 2278–2324. doi: 10.1109/5.726791.

https://doi.org/10.48550/ARXIV.1806.10758
https://arxiv.org/abs/1806.10758
https://arxiv.org/abs/1806.10758
https://doi.org/10.48550/ARXIV.1806.00663
https://arxiv.org/abs/1806.00663
https://arxiv.org/abs/1806.00663
https://doi.org/10.48550/ARXIV.1606.09518
https://doi.org/10.48550/ARXIV.1606.09518
https://arxiv.org/abs/1606.09518
https://doi.org/https://doi.org/10.1016/j.patrec.2021.06.030
https://doi.org/https://doi.org/10.1016/j.patrec.2021.06.030
https://www.sciencedirect.com/science/article/pii/S0167865521002440
https://www.sciencedirect.com/science/article/pii/S0167865521002440
https://doi.org/10.48550/ARXIV.2004.11362
https://doi.org/10.48550/ARXIV.2004.11362
https://arxiv.org/abs/2004.11362
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/5.726791

Lundberg, Scott and Su-In Lee (2017). A Unified Approach to Interpreting Model
Predictions. doi: 10.48550/ARXIV.1705.07874. url: https://arxiv.org/

abs/1705.07874.
McFee, Brian et al. (2015). “librosa: Audio and music signal analysis in python”. In:

Proceedings of the 14th python in science conference. Vol. 8.
Miller, Tim (2017). Explanation in Artificial Intelligence: Insights from the Social

Sciences. doi: 10.48550/ARXIV.1706.07269. url: https://arxiv.org/abs/

1706.07269.
Mishra, Saumitra, Bob L. Sturm, and Simon Dixon (2017). “Local Interpretable

Model-Agnostic Explanations for Music Content Analysis”. In: ISMIR.
Petsiuk, Vitali, Abir Das, and Kate Saenko (2018). RISE: Randomized Input Sam-

pling for Explanation of Black-box Models. doi: 10.48550/ARXIV.1806.07421.
url: https://arxiv.org/abs/1806.07421.

Piczak, Karol J. (2015). “Environmental sound classification with convolutional neu-
ral networks”. In: 2015 IEEE 25th International Workshop on Machine Learning
for Signal Processing (MLSP), pp. 1–6. doi: 10.1109/MLSP.2015.7324337.

Ras, Gabrielle, Erdi Çallı, and Marcel van Gerven (2022). Hermitry Ratio: Eval-
uating the validity of perturbation methods for explainable deep learning. url:
https://openreview.net/forum?id=vQ58AMOw4Il.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2016). ”Why Should I
Trust You?”: Explaining the Predictions of Any Classifier. doi: 10 . 48550 /

ARXIV.1602.04938. url: https://arxiv.org/abs/1602.04938.
Selvaraju, Ramprasaath R. et al. (Oct. 2019). “Grad-CAM: Visual Explanations

from Deep Networks via Gradient-Based Localization”. In: International Journal
of Computer Vision 128.2, pp. 336–359. issn: 1573-1405. doi: 10.1007/s11263-

019-01228-7. url: http://dx.doi.org/10.1007/s11263-019-01228-7.
Shankaranarayana, Sharath M. and Davor Runje (2019). ALIME: Autoencoder Based

Approach for Local Interpretability. doi: 10.48550/ARXIV.1909.02437. url:
https://arxiv.org/abs/1909.02437.

Shih, Chin-Hong et al. (2017). “Investigating Siamese LSTM networks for text
categorization”. In: 2017 Asia-Pacific Signal and Information Processing As-

https://doi.org/10.48550/ARXIV.1705.07874
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://doi.org/10.48550/ARXIV.1706.07269
https://arxiv.org/abs/1706.07269
https://arxiv.org/abs/1706.07269
https://doi.org/10.48550/ARXIV.1806.07421
https://arxiv.org/abs/1806.07421
https://doi.org/10.1109/MLSP.2015.7324337
https://openreview.net/forum?id=vQ58AMOw4Il
https://doi.org/10.48550/ARXIV.1602.04938
https://doi.org/10.48550/ARXIV.1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.48550/ARXIV.1909.02437
https://arxiv.org/abs/1909.02437

sociation Annual Summit and Conference (APSIPA ASC), pp. 641–646. doi:
10.1109/APSIPA.2017.8282104.

Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje (2017). “Learning Im-
portant Features Through Propagating Activation Differences”. In: doi: 10 .

48550/ARXIV.1704.02685. url: https://arxiv.org/abs/1704.02685.
Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman (2013). Deep Inside Con-

volutional Networks: Visualising Image Classification Models and Saliency Maps.
doi: 10.48550/ARXIV.1312.6034. url: https://arxiv.org/abs/1312.6034.

Simonyan, Karen and Andrew Zisserman (2014). Very Deep Convolutional Networks
for Large-Scale Image Recognition. doi: 10.48550/ARXIV.1409.1556. url:
https://arxiv.org/abs/1409.1556.

Snell, Jake, Kevin Swersky, and Richard Zemel (2017). “Prototypical networks for
few-shot learning”. In: Advances in neural information processing systems 30.

Sung, Flood et al. (June 2018). “Learning to Compare: Relation Network for Few-
Shot Learning”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Tang, Wensi, Lu Liu, and Guodong Long (2020). Interpretable Time-series Classi-
fication on Few-shot Samples. doi: 10.48550/ARXIV.2006.02031. url: https:

//arxiv.org/abs/2006.02031.
Traunmüller, Hartmut and Anders Eriksson (1995). “The frequency range of the

voice fundamental in the speech of male and female adults”. In: Unpublished
manuscript 11.

Utkin, Lev, Maxim Kovalev, and Ernest Kasimov (Jan. 2020). “Explanation of
Siamese Neural Networks for Weakly Supervised Learning”. In: Computing and
Informatics 39, pp. 1172–1202. doi: 10.31577/cai_2020_6_1172.

Vélez, Ivette, Caleb Rascon, and Gibrán Fuentes-Pineda (2018). “One-shot speaker
identification for a service robot using a cnn-based generic verifier”. In: arXiv
preprint arXiv:1809.04115.

Vinyals, Oriol et al. (2016). “Matching Networks for One Shot Learning”. In: Ad-
vances in Neural Information Processing Systems. Ed. by D. Lee et al. Vol. 29.
Curran Associates, Inc. url: https://proceedings.neurips.cc/paper/2016/

file/90e1357833654983612fb05e3ec9148c-Paper.pdf.

https://doi.org/10.1109/APSIPA.2017.8282104
https://doi.org/10.48550/ARXIV.1704.02685
https://doi.org/10.48550/ARXIV.1704.02685
https://arxiv.org/abs/1704.02685
https://doi.org/10.48550/ARXIV.1312.6034
https://arxiv.org/abs/1312.6034
https://doi.org/10.48550/ARXIV.1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.48550/ARXIV.2006.02031
https://arxiv.org/abs/2006.02031
https://arxiv.org/abs/2006.02031
https://doi.org/10.31577/cai_2020_6_1172
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf

Wang, Yaqing et al. (June 2020). “Generalizing from a Few Examples: A Survey on
Few-shot Learning”. In: ACM Computing Surveys 53, pp. 1–34. doi: 10.1145/

3386252.
Wang, Yu et al. (2020). “Few-Shot Sound Event Detection”. In: ICASSP 2020 -

2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 81–85. doi: 10.1109/ICASSP40776.2020.9054708.

Wexler, James et al. (2020). “The What-If Tool: Interactive Probing of Machine
Learning Models”. In: IEEE Transactions on Visualization and Computer Graph-
ics 26.1, pp. 56–65. doi: 10.1109/TVCG.2019.2934619.

Wolters, Piper et al. (2020). A Study of Few-Shot Audio Classification. doi: 10.

48550/ARXIV.2012.01573. url: https://arxiv.org/abs/2012.01573.
Zafar, Muhammad Rehman and Naimul Mefraz Khan (2019). DLIME: A Determin-

istic Local Interpretable Model-Agnostic Explanations Approach for Computer-
Aided Diagnosis Systems. doi: 10.48550/ARXIV.1906.10263. url: https:

//arxiv.org/abs/1906.10263.
Zeiler, Matthew D and Rob Fergus (2013). Visualizing and Understanding Convolu-

tional Networks. doi: 10.48550/ARXIV.1311.2901. url: https://arxiv.org/

abs/1311.2901.
Zhang, Yichi, Bryan Pardo, and Zhiyao Duan (2019). “Siamese Style Convolutional

Neural Networks for Sound Search by Vocal Imitation”. In: IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing 27.2, pp. 429–441. doi:
10.1109/TASLP.2018.2868428.

https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252
https://doi.org/10.1109/ICASSP40776.2020.9054708
https://doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.48550/ARXIV.2012.01573
https://doi.org/10.48550/ARXIV.2012.01573
https://arxiv.org/abs/2012.01573
https://doi.org/10.48550/ARXIV.1906.10263
https://arxiv.org/abs/1906.10263
https://arxiv.org/abs/1906.10263
https://doi.org/10.48550/ARXIV.1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://doi.org/10.1109/TASLP.2018.2868428

Acknowledgements

Many thanks to Riccardo Guidotti for sharing his inspirational ideas and expertise.
Thank you for your constant and essential mentorship throughout the entire course
of this thesis.

70

	Introduction
	Related Work
	Siamese Networks in Few-shot Learning
	Audio and Time Series Explainability
	Siamese Networks Explainability

	Background
	Siamese Networks
	C-way k-shot Learning
	Explainable Artificial Intelligence

	Problem Formulation
	Methodology
	C-way one-shot Learning
	Explanation Method
	Segmentation technique
	Perturbation procedure

	Experiments
	Datasets
	Network architectures
	5-way one-shot learning performance
	Explainability
	AudioMNIST Results and Discussion
	ESC-50 Results and Discussion
	Insertion and Deletion

	Conclusions
	References
	Acknowledgements

